博弈论的几个经典模型
- 格式:ppt
- 大小:3.28 MB
- 文档页数:81
聊聊四种经典的博弈论模型展开全文1、囚徒困境:为什么两个犯人都选择坐牢官差破获了一宗盗窃案,抓住了两名犯罪嫌疑人。
但在审讯过程中,被关在一处的二人始终矢口否认盗窃罪名,说东西不是我们偷的。
为了避免两人达成默契,结成攻守同盟,官差决定对他们进行单独审讯。
官差表示,如果两人中有一人坦白认罪,则可立即释放,另一个不认罪的人判5年徒刑;如果两人都坦白罪刑,则他们将各判2年徒刑。
但还有一种情况,那就是两个人都拒绝坦白,由于缺乏证据,他们只会以扰乱公共场合为名判处3个月拘役。
这就是两名罪犯面临的困境中,他们会做出怎样的选择呢?首先,他们互相之间都不清楚对方是否会坦白,其次,二人都希望将自己的刑期缩至最短。
如此考虑,最终,两名犯人都会选择坦白交代。
上面的案例就是博弈论所说的“囚徒困境”。
犯人们如果彼此合作,可为集体带来最佳利益(刑期最短);但当二人面对同样的情况且不知道对方如何选择时,在理性思考后,双方都会得出相同的结论(坦白交代),以便达到个人利益的最大化。
囚徒困境是博弈论的“非零和博弈”中具代表性的例子,反映的是个人的最佳选择并非是团体的最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
2、智猪博弈:赢的总是小猪猪圈里有大小两头猪,它们在同一个食槽里进食。
为了保持饲料的新鲜,在远离猪食槽的另一边有一个踏板,大猪或小猪跑过去,每按动一次踏板,投食口就会掉落10个单位的食物。
于是,在大猪和小猪每次进食前,就会形成这样一种局面:如果小猪跑去按踏板,大猪守在食槽边,则大猪小猪吃到的食物比是9:1;反之,如果大猪去按而小猪守在食槽边,则吃食比例是6:4。
如果二猪同时到食槽边,则吃食比是7:3。
这样一来,从纯收益的角度考虑,小猪就更愿意选择在食槽边等待食物落出,因为“等待优于行动”,而大猪只能被迫奔忙在踏板和食槽之间。
上述“智猪博弈”的案例是经济学家的假设论证模型,这个博弈的结果,用经济学视角看待,可以解释为:谁占有更多资源,谁就必须承担更多义务。
3.4 几个经典动态博弈模型453.4.1 寡占的斯塔克博格模型46动态的寡头产量竞争博弈厂商1先选择,厂商2后选择。
21q q Q +=121111112)](8[)(q q q q q c Q P q u -+-=-=221222222)](8[)(q q q q q c Q P q u -+-=-=策略空间:[0,Q max ]中所有实数。
Q max 为不至于使价格降到亏本的最大限度的产量。
Q Q P P -==8)(价格函数:边际生产成本:无固定成本得益函数:221==c c 2121116q q q q u --=2221226q q q q u --=47两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
1 、第二阶段厂商2的选择目标:得益最大化。
求使自己得益最大化下的产量值,即最大化时的一阶条件:得益函数:2221226q q q q u --=用逆推归纳法进行分析:02602122=--⇒=∂∂q q q u 112213)6(21q q q -=-=求出厂商2对厂商1产量的反应函数:48两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
2 、第一阶段厂商1的选择。
用逆推归纳法进行分析:12213q q -=厂商1可直接求出使自己得益最大化时的产量:厂商1知道2的决策思路:直接将上式代入厂商1的得益函数,得到:2112111121*211*211213)213(66),(q q q q q q q q q q q q u -=---=--=3030*1*111=⇒=-⇒=∂∂q q q u厂商1的最佳产量是生产3单位。
将之代入厂商2的反应函数,得到厂商2的最佳产量5.15.13*2=-=q 此时市场价格为3.5,双方的得益别为4.5和2.25单位。
3*1=q 12213q q -=用逆推归纳法分析得出,该动态博弈的唯一的子博弈完美纳什均衡:厂商1在第一阶段生产3单位产量,厂商2第二阶段生产1.5单位产量。
十大经典博弈论模型博弈论是一门研究决策者之间互动的学科,其应用范围广泛,涉及到经济、政治、生物学等领域。
在博弈论中,经典博弈论模型是基础和核心,以下是介绍十大经典博弈论模型:1. 囚徒困境博弈模型囚徒困境博弈模型是博弈论中最为著名的模型之一,也是最为典型的非合作博弈模型。
该模型主要讲述的是两个囚犯被抓后面临的选择问题,如果两个人都招供,那么都将受到较重的惩罚;如果两个人都不招供,那么都将受到轻微的惩罚;如果一个人招供而另一个人不招供,那么招供的人将受到宽大处理,而另一个人将受到较重的惩罚。
2. 零和博弈模型零和博弈模型是博弈论中最为简单的模型之一,其特点是参与者之间的利益完全相反,即一方获得利益就意味着另一方的利益受到损失。
在这种情况下,参与者之间的互动往往是竞争和对抗的。
3. 博弈树模型博弈树模型是一种用于描述博弈过程的图形模型,它可以清晰地展示出参与者在不同阶段的选择和决策,以及每个选择所带来的收益和风险。
4. 纳什均衡模型纳什均衡模型是博弈论中最为重要的概念之一,它指的是一个博弈中所有参与者都采取了最优策略的状态。
换句话说,如果所有参与者都遵循纳什均衡,那么任何一个人单方面改变策略都将无法获得更多的利益。
5. 最小最大化模型最小最大化模型是一种解决零和博弈问题的方法,其思想是在所有可能的情况中,选择让对手收益最小的情况,从而实现自己的最大化收益。
6. 帕累托最优解模型帕累托最优解模型是一种解决多人博弈问题的方法,其核心思想是通过合作和协商,使得所有参与者都能获得最大的收益,而不是只有某个人获得了最大的收益。
7. 博弈矩阵模型博弈矩阵模型是一种常用的博弈论分析工具,它可以清晰地展示出参与者在不同策略下的收益和风险,从而帮助参与者做出最优决策。
8. 拍卖模型拍卖模型是博弈论中的一个重要应用领域,其目的是通过竞价的方式,让参与者以最低的价格获得所需的商品或服务。
9. 逆向选择模型逆向选择模型是一种解决信息不对称问题的方法,其核心思想是通过知道对方的信息,来预测对方的行为和决策,从而做出最优策略。
博弈论理解决策和合作的数学模型在现代社会中,决策和合作是一个人或一个组织取得成功的关键因素。
为了更好地理解这些概念,人们使用博弈论这一数学工具来建立模型并进行分析。
博弈论是研究决策和合作的数学分析方法,它通过分析参与者之间的相互作用和行为,探讨最优策略和结果。
一、博弈论基础博弈论的基础概念包括参与者、策略和支付。
参与者是博弈过程中的决策主体,可以是个体或组织。
策略是参与者在不同情况下选择的行动方式,支付是参与者根据不同策略和结果所获得的收益或成本。
在博弈论中,有两种常见的形式:合作和非合作博弈。
合作博弈是指参与者之间存在一定合作关系,相互协作以实现共同利益。
非合作博弈是指参与者之间不存在明确的合作关系,各自追求自身最大利益。
二、博弈论模型博弈论通过数学模型来刻画参与者的策略选择和可能的结果。
常见的博弈论模型包括零和博弈、囚徒困境和博弈树。
1. 零和博弈零和博弈是一种非合作博弈模型,参与者的利益总和为零。
在这种模型中,一方的利益的增加必然导致另一方利益的减少。
零和博弈常用来研究竞争对手之间的决策过程和结果。
例如,两个企业在市场上竞争,企业A可以选择提高产品质量,而企业B可以选择降低价格。
通过分析两者的策略选择和可能的结果,可以找到最优策略,实现自身利益最大化。
2. 囚徒困境囚徒困境是一种合作博弈模型,参与者之间存在合作关系。
在囚徒困境中,参与者面临合作和背叛的选择。
假设有两名囚犯被关押在不同的牢房中,警察对他们提供了一个交易:如果他们都保持沉默,将被判轻罪;如果其中一个人背叛,而另一个人保持沉默,背叛者将被判轻罪,而保持沉默的人将被判重罪;如果两个人都背叛,都将被判重罪。
这个模型的关键在于选择背叛对方可以获得较小的惩罚,而合作可能面临更严重的惩罚。
因此,在囚徒困境中,参与者之间往往选择背叛对方,导致最不利的结果。
3. 博弈树博弈树是一种用图形方式表示博弈过程的模型。
它通过建立决策节点和结果节点之间的连接来展示参与者的策略选择和可能的结果。
博弈论在经济学中的应用在当今的经济学领域,博弈论已成为一个至关重要的分析工具。
它为我们理解经济现象、预测市场行为以及制定合理的经济策略提供了有力的理论支持。
博弈论的核心在于研究决策主体在相互作用时的决策以及这种决策所产生的均衡结果。
简单来说,就是当多个参与者在做决策时,他们的选择会相互影响,而博弈论就是帮助我们分析在这种情况下每个人可能采取的最优策略。
在经济学中,博弈论有着广泛的应用。
例如在寡头垄断市场中,少数几个大型企业占据了大部分市场份额。
这些企业在制定价格、产量等决策时,必须考虑竞争对手的反应。
假设市场上只有两家企业 A 和B,它们生产相似的产品。
如果A 企业决定降低价格以吸引更多客户,那么 B 企业可能会有几种选择:跟随 A 企业降价以保持市场份额;或者保持价格不变,试图通过产品质量或服务来吸引客户;亦或是提高价格,将自己定位为高端品牌。
A 企业在做决策时,就需要预测 B 企业的可能反应,并选择对自己最有利的策略。
这就是一个典型的博弈过程。
再来看国际贸易领域。
国家之间在制定贸易政策时,也存在着博弈。
假设两个国家 C 和 D,C 国考虑对 D 国的某种商品加征关税。
D 国可能会选择采取报复性措施,对 C 国的商品也加征关税,这可能导致双方的贸易战,两败俱伤;或者 D 国选择通过谈判来解决争端,寻求双方都能接受的贸易条件。
C 国在决定是否加征关税时,必须权衡各种可能的结果,并选择最符合自身利益的策略。
博弈论在劳动力市场中也发挥着重要作用。
雇主和雇员之间存在着一种博弈关系。
雇主希望以最低的成本雇佣到最优秀的员工,而员工则希望获得最高的薪酬和最好的工作条件。
在招聘过程中,雇主可能会提供不同的薪酬待遇和工作条件来吸引人才,而员工则会根据这些条件来决定是否接受这份工作。
同时,员工在工作中的表现也会影响雇主对其的评价和晋升决策,员工需要在努力工作和适当放松之间找到平衡,以实现自身利益的最大化。
除了上述领域,博弈论在公共政策的制定中也具有重要意义。
博弈论伯川德模型推导1. 博弈论简介说到博弈论,大家可能会想:“这是什么高大上的东西?”其实,博弈论就是研究决策的科学,简单来说,就是在竞争和合作的场合下,怎么做决策才能赢得最多的利益。
想象一下,几个小伙伴在一起打麻将,每个人都想赢,得时刻考虑其他人可能的动作和反应,这就是博弈论的基本思路。
那今天咱们就聊聊伯川德模型,听起来有点复杂,但其实它就像是个有趣的游戏。
1.1 伯川德模型概述伯川德模型(BurkovDear model)是博弈论中的一个经典模型,主要用于分析参与者在重复博弈中的策略选择。
它的核心思想是,参与者会根据之前的结果来调整自己的策略。
比如说,你和朋友一起打扑克,如果你发现朋友总是先出一张高牌,那你下次就得琢磨琢磨怎么应对,是不是该出个小牌试试?通过不断观察和调整,最终找到对策,嘿,赢的机会就大大增加了。
1.2 模型的基本假设在这个模型里,有几个基本的假设。
首先,参与者都是理性的,意味着他们会根据自己的利益最大化来做出决策。
想想啊,谁会自愿跳进火坑呢?其次,信息是对称的,所有参与者都能获得相同的信息。
这就像是你和朋友们都在同一桌子上,大家都能看到牌,只是看谁出牌更聪明。
最后,参与者之间存在着策略的可重复性,换句话说,他们可以根据之前的结果调整自己的行为。
这就好比,玩游戏的时候,你总会总结经验,下次再也不犯同样的错误。
2. 模型的推导过程接下来,我们就要进入推导过程了。
乍一看,推导可能有点晦涩,但其实只要耐心点,慢慢来,就能明白其中的奥妙。
2.1 基本方程式在这个模型中,参与者的收益可以用一个简单的方程表示。
假设有两个参与者A 和B,他们的收益分别是R_A和R_B。
根据博弈的不同阶段,他们的收益可以通过计算对手的策略来得出。
比如说,如果A选择合作而B选择背叛,那么A的收益会减少,B 的收益则会增加。
就像是一个你死我活的游戏,谁都想在最后成为赢家。
2.2 策略选择当我们分析参与者的策略选择时,通常会用“纳什均衡”这个概念。
博弈模型汇总博弈模型是博弈论的重要工具,用于描述博弈参与者之间的策略和利益关系。
在博弈论中,通过建立合适的博弈模型,可以帮助我们分析和理解各种不同类型的博弈情境,并预测博弈参与者的行为和可能的结果。
下面将对几种常见的博弈模型进行汇总和介绍。
1. 零和博弈模型:零和博弈模型是博弈论中最简单和最基本的模型之一。
在零和博弈中,博弈参与者的利益完全相反,一方的利益的增加必然导致另一方的利益的减少。
这种博弈模型常常用于描述双方的冲突和竞争情境。
常见的零和博弈模型有二人零和博弈和多人零和博弈。
2. 非合作博弈模型:非合作博弈模型是博弈论中较为常见的模型之一。
在非合作博弈中,博弈参与者之间的行动和决策是相互独立的,每个博弈参与者都追求自身的最大利益。
在非合作博弈模型中,博弈参与者可以选择不同的策略,根据对手的行动做出最优的响应。
常见的非合作博弈模型有纳什均衡模型和博弈树模型。
3. 合作博弈模型:合作博弈模型是博弈论中另一个重要的模型。
在合作博弈中,博弈参与者之间可以进行协作和合作,共同追求最大化整体利益。
合作博弈模型通常用于描述多个博弈参与者之间的联盟和合作情境。
常见的合作博弈模型有核心模型和合作博弈解。
4. 演化博弈模型:演化博弈模型是博弈论中较为新颖和有趣的模型之一。
在演化博弈中,博弈参与者的行动和策略可以随时间变化和演化。
演化博弈模型通常用于描述博弈参与者之间的适应性和进化过程。
常见的演化博弈模型有进化博弈动力学模型和演化博弈解。
博弈模型的应用广泛,不仅在经济学中有重要的地位,也在其他学科领域得到广泛运用。
博弈模型可以帮助我们分析和解决各种决策和策略问题,对于理解社会、经济和生物系统中的行为和演化具有重要意义。
总结起来,博弈模型是博弈论的核心工具之一,用于描述和分析博弈参与者之间的策略和利益关系。
常见的博弈模型包括零和博弈模型、非合作博弈模型、合作博弈模型和演化博弈模型。
这些模型在各个领域中都有广泛的应用,对于理解和解决各种决策和策略问题具有重要意义。
博弈论思维模型引言:博弈论是研究决策制定和结果预测的数学模型。
它通过分析参与者之间的策略选择和收益关系,为我们理解人类决策提供了重要的思维模型。
本文将探讨博弈论思维模型的核心概念,并解读其在现实生活中的应用。
一、博弈论的基本概念1.1 策略与收益在博弈论中,参与者面临多种策略选择,并根据自身选择和其他参与者的选择获得相应的收益。
策略是参与者根据自身利益进行的决策,而收益则是这些决策所带来的结果。
1.2 纳什均衡纳什均衡是博弈论中的一个重要概念,指的是参与者在互相了解对方策略的情况下,无法通过改变自己的策略来获得更高收益的状态。
纳什均衡是一种稳定的策略选择,参与者在该状态下没有足够的动机改变策略。
1.3 零和博弈与非零和博弈零和博弈指的是参与者的收益总和为零,即一方的收益必然是另一方的损失。
非零和博弈则允许参与者在博弈过程中都能获得正向的收益。
这两种博弈模式在分析决策时需要考虑不同的因素。
二、博弈论在现实生活中的应用2.1 商业竞争中的策略选择博弈论在商业竞争中有广泛的应用。
企业在制定定价策略、市场拓展策略等方面都需要考虑竞争对手的策略选择和可能获得的收益,以达到自身利益最大化。
通过分析竞争对手的策略选择,企业可以制定出更具竞争力的策略,提高市场份额和利润。
2.2 政治决策的影响因素博弈论也可以用来分析政治决策中的各种因素。
政治家在制定政策时需要考虑到不同利益相关者的策略选择和可能获得的收益,以平衡各方利益并获得最大的政治支持。
通过博弈论的思维模型,政治家可以更好地预测和理解各方的行为,从而做出更明智的决策。
2.3 国际关系与战略决策博弈论在国际关系和战略决策中也有重要应用。
不同国家之间的政治、经济和军事行为都可以被视为一个复杂的博弈过程。
通过分析各方的策略选择和可能获得的收益,可以帮助国家制定更具战略性和长远眼光的决策,维护自身的国家利益。
三、博弈论思维模型的局限性虽然博弈论提供了一种强大的思维模型,但也存在一些局限性。
博弈论的经典模型在自然界和人类社会中广泛存在合作与竞争,而能够反映这种既激烈竞争又需要合作的一门学科就是博弈论(Game Theory),也称对策论。
它是模拟和分析理性的个体在利益冲突环境下相互作用的形式、决策及其均衡理论,研究个体之间行为的相互影响和相互作用规律,它可以描述现实生活中参与者面对有限资源的合作与竞争行为。
令人惊奇的是,有三次诺贝尔奖获得者是博弈论研究方面的杰出科学家,他们是1985年获得诺贝尔经济学奖的公共选择学派的领导者布坎南,1994年获奖的美国普林斯顿大学的纳什、塞尔屯、哈桑尼3位博弈论专家以及1995年获奖的理性主义学派的领袖卢卡斯。
博弈论在经济学、政治学、管理学、社会学、军事学、生物学等诸多学科领域具有广泛的实际背景和应用价值。
进入20世纪末,随着复杂网络科学的一些新的发现,博弈论也成为网络时代人们的一种思维、竞争与合作的模式。
博弈论对人有一个最基本假定:人是理性的,人在具体策略选择的目的全是使自己的利益最大化。
博弈论就是研究理性的人之间如何进行策略选择的,因此博弈论也称为对策论。
博弈论就凭这么一条最简单的假定可以展开广泛的研究,并获得了丰富多彩的结果,利用博弈论可以解读人类的社会行动或集体行动,更易理解人类社会的复杂性和特殊性。
为了刻画个体间利益的冲突对整个系统的影响,人们已经提出和发展了许多博弈模型,比较著名的有三个模型:囚徒困境、"雪堆"博弈和"少数者"博弈模型,下面笔者通过对这三个模型进行简单而通俗的介绍,让大家来了解博弈论及其应用概况。
斗鸡模型斗鸡博弈(Chicken Game).在西方,鸡是胆小的象征,斗鸡博弈指在竞争关系中,谁的胆小,谁先失败。
现在假设,有两个人要过一条独木桥,这条桥一次只能过一个人,两个人同时相向而进,在河中间碰上了。
这个博弈的结果第一种就是如果两个人继续前进,双方都会掉水里,双方丢面子,这是一种组合。
博弈论66个经典例子python摘要:一、引言二、博弈论概述1.定义及分类2.博弈论的应用领域三、囚徒困境1.囚徒困境的概念2.囚徒困境的实例四、博弈论的66 个经典例子1.例子概述2.例子的具体内容五、博弈论在实际生活中的应用1.价格竞争2.环境保护六、结论正文:一、引言博弈论是研究多个个体或团队之间在特定条件制约下的对局中利用相关方的策略,而实施对应策略的学科。
它在生物学、经济学、国际关系学、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
本文将介绍博弈论的66 个经典例子,并探讨其在实际生活中的应用。
二、博弈论概述1.定义及分类博弈论,又称对策论或赛局理论,是研究具有斗争或竞争性质现象的理论和方法。
它是应用数学的一个分支,既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。
博弈论可以分为合作博弈和非合作博弈。
合作博弈是指参与者可以通过协商达成共同利益的博弈;非合作博弈是指参与者在没有协商的情况下,根据个人利益做出决策的博弈。
2.博弈论的应用领域博弈论在许多领域都有广泛应用,如经济学、政治学、军事战略、生物学、心理学等。
其中,经济学领域的应用最为广泛,如价格竞争、拍卖、垄断策略等。
三、囚徒困境1.囚徒困境的概念囚徒困境是一种非零和博弈,它是美国经济学家阿尔伯特·塔克(Albert Tucker)在1950 年根据梅里尔·弗拉德(Merrill Flood)和梅尔文·德雷希尔(Melvin Dresher)的理论拟定的。
囚徒困境反映了个人最佳选择并非团体最佳选择,虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
2.囚徒困境的实例假设警方逮捕了甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。
于是警方分开囚禁嫌疑犯,分别和二人见面。
警方告诉甲,如果乙承认罪行,甲将获得轻罚;如果乙否认罪行,甲将获得重罚。