五年级数学上册6 多边形的面积第4课时 梯形的面积(1)
- 格式:doc
- 大小:76.01 KB
- 文档页数:4
【导语】当物体占据的空间是⼆维空间时,所占空间的⼤⼩叫做该物体的⾯积,⾯积可以是平⾯的也可以是曲⾯的。
平⽅⽶,平⽅分⽶,平⽅厘⽶,是公认的⾯积单位,以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学五年级上册数学《多边形的⾯积》知识点 1、公式 长⽅形:周长=(长+宽)×2;字母公式:C=(a+b)×2 ⾯积=长×宽;字母公式:S=ab 正⽅形:周长=边长×4;字母公式:C=4a ⾯积=边长×边长;字母公式:S=a 平⾏四边形:⾯积=底×⾼;字母公式:S=ah 三⾓形:⾯积=底×⾼÷2;字母公式:S=ah÷2 底=⾯积×2÷⾼;⾼=⾯积×2÷底 梯形:⾯积=(上底+下底)×⾼÷2;字母公式:S=(a+b)h÷2 上底=⾯积×2÷⾼-下底;下底=⾯积×2÷⾼-上底;⾼=⾯积×2÷(上底+下底) 2、单位换算的⽅法 ⼤化⼩,乘进率;⼩化⼤,除以进率。
3、常⽤单位间的进率 1千⽶=1000⽶1⽶=10分⽶ 1分⽶=10厘⽶1厘⽶=10毫⽶ 1平⽅千⽶=100公顷1公顷=10000平⽅⽶ 1平⽅⽶=100平⽅分⽶1平⽅分⽶=100平⽅厘⽶ 4、图形之间的关系 (1)、平⾏四边形可以转化成⼀个长⽅形;两个完全相同的三⾓形可以拼成⼀个平⾏四边形。
两个完全相同的梯形可以拼成⼀个平⾏四边形。
(2)、等底等⾼的平⾏四边形⾯积相等;等底等⾼的三⾓形⾯积相等。
(3)、等底等⾼的平⾏四边形⾯积是三⾓形⾯积的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等底,则三⾓形的⾼是平⾏四边形的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等⾼,则三⾓形的底是平⾏四边形的2倍。
(4)、把长⽅形框架拉成平⾏四边形,周长不变,⾯积变⼩了。
【精选】人教版五年级上册数学第六单元《多边形的面积》优秀教案本单元的教学内容主要有:平行四边形的面积、三角形的面积、梯形的面积、组合图形的面积、不规则图形面积的估计。
“多边形的面积”是图形与几何领域“测量”中的重要内容之一。
多边形的面积计算是以长方形面积计算为基础,以图形之间的内在联系为线索,借助将未知转化为已知的基本方法开展学习。
各图形面积计算公式的推导都采用了“转化”的方法,即设法将所研究的图形转化为已经会计算面积的图形。
在“组合图形的面积”教学中,同样突出了转化思想,只不过是用分解的方法将组合图形转化为简单图形。
本单元的教学,要引导学生在观察、实验、猜想、验证等活动中,渗透平移、旋转、转化等数学思想方法,发展合情“推理能力”,促进学生“空间观念”的进一步发展,感受“几何直观”和“符号意识”的作用,渗透估测意识、策略,了解解决问题方法的多样性,培养学生的应用意识和创新意识。
)第1课时平行四边形的面积【教学内容】教材第87~88页的内容。
【教学目标】1.让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形面积的计算方法,能解决相应的实际问题。
2.通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括问题和动手解决实际问题的能力。
【重难点】重点:理解并掌握平行四边形面积的计算公式。
难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。
【教学准备】平行四边形卡纸一张、剪刀、三角尺、课件。
【教学设计】【情境导入】课件出示教材第86页单元主题图。
师:你在图上看到了哪些我们学过的平面图形?学生汇报交流。
师:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。
我们已经研究过哪些平面图形的面积?计算公式是什么?生:长方形的面积=长×宽,正方形的面积=边长×边长。
师:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。
第六单元多边形的面积【知识回顾】平行四边形的面积知识点:平行四边形的面积计算公式的推导和应用:平行四边形的面积=底×高字母公式: S=ah推导公式:平行四边形的底=面积÷高字母公式:a=S÷h平行四边形的高=面积÷底字母公式:h=S÷a【典题解析】例1、一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?例2、有一块平行四边形草地,底长25m,高是底的一半。
如果每平方米的草可供3只羊吃一天,这块草地可供多少只羊吃一天?【随堂练习】1、我会填。
(1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形()。
这个长方形的长与平形四边形的底(),宽与平行四边形的高()。
平行四边形的面积等于(),用字母表示是()。
(2)0.85公顷=()平方米 0.56平方千米=()公顷86000平方米=()公顷 9.28平方米=()平方分米=()平方厘米2、我会计算下面各个平行四边形的面积。
(1)底=2.5cm,高=3.2cm。
(2)底=6.4dm,高=7.5dm。
3、我会计算下面每个平行四边形的面积。
4、我会填表。
5、我会用。
1)、一块平行四边地,底长150m,高80m,这块地有多少公顷?在这块地里共收小麦7680千克,平均每公顷收小麦多少千克?2)、一个平行四边形的周长是78cm (如图),以CD 为底时,它的高是18cm ,又BC 是24cm ,求它的面积。
A DB 24 C【知识回顾】三角形的面积知识点:三角形的面积计算公式的推导和应用:三角形的面积=底×高÷2 字母公式: S=ah÷2推导公式:底=面积×2÷高字母公式:a=S×2÷h高=面积×2÷底字母公式:h=S×2÷a【典题解析】例1、一块三角形地,底长是200m,高是50m,1)那么这块三角形地的面积是多少?2)如果一共收油菜籽1762.5千克,平均每公顷产油菜籽多少千克?例2、一个三角形的面积是0.24 m2,高是6dm,底是多少dm?【随堂练习】1、我会填。
第六单元多边形的面积公式推导:公式运用公式转化:S=ah a=S÷h h=S÷a平行四边形三角形公式推导:公式运用公式转化:S=ah÷2 a=2S÷hh =2S÷a转化转化转化公式推导:公式运用公式转化:S=ah a=S÷h h=S÷a平行四边形梯形公式推导:公式运用公式转化:S=(a+b)h÷2 h=2S÷(a +b )(a+b)=2S÷h转化转化转化公式推导:公式运用公式转化:S=ah a=S÷h h=S÷a平行四边形组合图形:转化要有转化、切补思想知识点一:平行四边形面积如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形的面积计算公式可以写成:S=ah。
知识点二:三角形的面积两个完全相同的三角形可拼成平行四边形,三角形的面积是拼成的平行四边形面积的一半。
三角形的面积=底×高÷2,用字母表示为:S=ah÷2知识点三:梯形的面积梯形的面积=(上底+下底)×高÷2,用字母表示为:S=(a+b)h÷2上底下底b知识点四:组合图形的面积1. 组合图形面积的求法:把组合图形分割或者拼凑成已学过的简单图形,再算这些简单图形的面积的和,就是组合图形的面积。
2.不规则图形面积的求法:数方格的方法进行估算;把不规则的图形转化为学过的图形进行估算。
【易错典例1】一块平行四边形草坪的底是32m,高是15m,扩建后,底比原来增加了8m,高比原来增加了3m.扩建后的草坪面积比原来增加了m2.【思路引导】首先根据增加后的底和高各是多少米,根据平行四边形的面积公式:S=ah,把数据分别代入公式求出扩建后的面积与原来面积的差即可.【完整解答】解:(32+8)×(15+3)﹣32×15=40×18﹣480=720﹣480=240(平方米)答:扩建后的草坪面积比原来增加了240平方米.故答案为:240.【考察注意点】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.【易错典例2】(•勃利县期末)一个底是4cm的三角形与边长是4cm的正方形面积相等,那么三角形的面积应该是16平方厘米,高是8厘米.【思路引导】根据正方形的面积=边长×边长,可求出正方形的面积,即是三角形的面积,再根据三角形的面积=底×高÷2,可知高=面积×2÷底,据此代入数据进行求解.【完整解答】解:4×4=16(平方厘米)16×2÷4=8(厘米)答:三角形的面积应是16平方厘米,高是8厘米.故答案为:16平方厘米,8厘米.【考察注意点】本题主要考查了学生对三角形面积公式和正方形面积公式的掌握.【易错典例3】(广东)六个等腰三角形如图摆放,那么四个空白三角形的面积和是两个阴影三角形的面积和的6倍.【思路引导】因为两个完全一样的等腰直角三角形可以拼成一个正方形,据此通过画辅助线(如图),把这六个等腰直角三角形从小到大分别编号为①②③④⑤⑥,由此可以看出,三角形②的面积是三角形①的2倍,三角形③的面积②的2倍…,三角形⑥的面积是三角形⑤的2倍,设①号三角形的面积为1,则②号的面积为2,③号的面积为4,④号的面积为8,⑤号的面积为16,⑥号底面积为32,由此很容易求出空白三角形的面积是阴影三角形面积的几倍.【完整解答】解:如下图:把这六个等腰直角三角形从小到大分别编号为①②③④⑤⑥,设①号三角形的面积为1,则②号的面积为2,③号的面积为4,④号的面积为8,⑤号的面积为16,⑥号的面积为32,(2+4+16+32)÷(1+8)=54÷9=6答:四个空白三角形的面积和是两个阴影三角形的面积和的6倍.故答案为:6.【考察注意点】此题解答关键是明确:两个完全一样的等腰直角三角形可以一个正方形,设出最小等腰直角三角形的面积,根据求一个数是另一个数的几倍,用除法解答.【易错典例4】如图中,甲、乙、丙、丁分别表示直角梯形中四个部分的面积,已知甲与丙拼成的是一个平行四边形,则图中面积相等的两个部分是甲和乙.【思路引导】由于甲与丙拼成的是一个平行四边形,根据平行四边形的特征,AD=BE,由于四边形AFCD是长方形,AD=FC,三角形ABF与三角形DEC的底、高相等,其面积也相等,三角形ABF的面积减丁的面积就是甲的面积,三角形DEC的面积减丁的面积就是乙的面积,从而推出甲、乙的面积相等.【完整解答】解:如图因为ABED是平行四边形,AFCD是长方形所以BE=AD=FC因而得出三角形ABF与三角形DEC的底、高相等所以三角形ABF与三角形DEC面积相等因为三角形ABF的面积﹣丁的面积=甲的面积,三角形DEC的面积﹣丁的面积=乙的面积所以图中面积相等的两个部分是甲和乙.故答案为:甲,乙.【考察注意点】通过观察可以看出甲、乙的面积相等,然后再找相等的理由,甲+丁=乙+丁,即三角形ABF 与三角形DEC面积相等,再找三角形ABF与三角形DEC面积相等的条件,根据平行四边形、长方形的特征,推出三角形ABF与三角形DEC的底、高相等.考点1:平行四边形的面积1.(•沈河区期末)将一个底是8cm,高是4cm的平行四边形框架拉成一个长方形框架,则这个长方形框架的面积可能是()cm2。
五年级上册数学《6 多边形的面积:梯形的面积》听课笔记一、导入(教师行为)1.1 教师首先回顾之前学习的平行四边形和三角形的面积计算方法,并询问学生是否还记得这些图形的面积公式。
1.2 教师展示一个梯形,并问:“同学们,你们认识这个图形吗?它是什么形状?我们该如何计算它的面积呢?”学生活动:•学生回忆平行四边形和三角形的面积公式。
•学生识别梯形,并尝试给出计算梯形面积的初步想法或猜测。
过程点评:教师通过回顾旧知,有效引导学生进入新知的学习,同时以问题激发学生的好奇心,为后续的梯形面积学习做铺垫。
二、教学过程(教师行为)2.1 知识铺垫•教师简要介绍梯形的基本特征,如上下底、高等。
•展示一个与梯形同底同高的平行四边形,让学生思考两者面积的关系。
2.2 探索梯形的面积公式•教师引导学生思考:“如果我们将两个完全相同的梯形拼在一起,会得到什么图形?它的面积与梯形的面积有什么关系?”•学生动手操作或想象拼接过程,教师辅助展示拼接后的图形(平行四边形)。
•教师提问:“这个平行四边形的面积如何计算?它与单个梯形的面积有什么关系?”•学生讨论并回答,教师总结:“梯形的面积是拼接后平行四边形面积的一半。
”•推导梯形的面积公式:面积= (上底+ 下底) × 高÷ 2,并解释公式中各个部分的意义。
2.3 练习与应用•教师给出一些不同形状和大小的梯形,让学生计算其面积。
•学生独立操作,教师巡视指导,纠正错误,并强调公式中各项的对应关系。
•学生完成后,教师选择典型题目进行展示和讲解,帮助学生巩固所学知识。
学生活动:•学生认真听讲,理解梯形的基本特征及其与平行四边形的关系。
•学生积极参与讨论和动手操作,验证教师的结论。
•学生独立完成练习,应用梯形面积公式进行计算。
过程点评:教师在教学过程中,通过引导学生观察、思考和操作,帮助学生理解梯形面积的计算方法,并推导出梯形的面积公式。
通过练习和应用,学生巩固了所学知识,提高了计算能力。
人教版五年级数学上册第六单元多边形的面积第4课时组合图形的面积教学目标】1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确解答。
3.渗透“转化”的数学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
【教学重、难点】重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形的面积所需的条件。
难点:选择有效的计算方法解决实际问题。
【教学准备】七巧板、课件、简单图形学具,少先队中队旗实物。
【教学过程】一、七巧板拼图游戏,初步感知组合图形师:课前请大家用一些我们已学的简单图形的小纸板做一套七巧板。
都做好了吗?都有些什么图形?(预设)有正方形、长方形、平行四边形、三角形、梯形。
师:怎样计算它们的面积?指名让学生说出正方形、长方形、平行四边形、三角形、梯形的面积计算公式。
师:请用你准备的七巧板,动手摆一个图案,并说说你的图案都用了哪些简单图形?(教师参与到学生的七巧板活动中,特别是要关心后进生的动手情况。
)师:同桌互相看一看、说一说,你们拼的这个图形是由哪些图形拼成的?学生活动。
师:大家都有了自己的设计成果,来展示一下吧!选取几个有创意的图案在实物投影仪上展示,让学生分别汇报。
师:请仔细观察这些图案,它们有什么共同的地方?让学生发表意见。
师:说得真好!像这样由两个或两个以上简单的图形组合而成的图形,我们把它称为组合图形,今天我们就一起来探究组合图形面积的计算方法。
(板书课题:组合图形的面积)二、探索活动,寻求新知师:生活中有许多组合图形,老师准备了3幅图形,大家观察一下,这些组合图形是由哪些简单图形组成的?如果要求它们的面积可以怎样求?课件逐一出示图一、图二、图三,让学生发表意见。
预设:⎩⎪⎨⎪⎧图一:是由三角形、正方形再加上正方形中间的小正方形组成的,面积=三角形面积+正方形面积-小正方形面积。
作品编号:8567941235890031445888659
学校:量印超jgj市收高眉镇页设小学*
教师:谢德刚*
班级:字文叁班*
第4课时梯形的面积(1)
教学环节导案学案达标检测
一
复习导入,引入新知。
(5分钟)
1.请同学们回忆一下,我们前两节课学了哪两
种平面图形的面积计算?它们的计算公式分别是
什么?谁能说说它们是怎样推导的?
2.今天我给大家带来一位新朋友,认识吗?(出
示梯形)它想让大家帮它求求面积,你们愿意帮它
吗?那就让我们带着这助人为乐的心来学习梯形
的面积。
(板书课题)
1.回顾平行四边
形和三角形的计算
公式及推导过程。
2.明确本节课的
学习任务。
1.如何用字
母表示三角形的
面积计算公式?
答案:S=ah÷2
2.填空。
(1)两个完全
一样的梯形可以
拼成一个()
形。
(2)一个梯形
上底与下底的和
是15 cm,高是8.8
cm,面积是
()cm2。
答案:(1)平行四
边
(2)66
3.计算下面梯形
的面积。
(单位:
dm)
(14+25) ×12÷2
=234(dm2)
二
实践操作,推导出梯形的面积计算公式。
(20分钟)
1.猜想。
老师:我们在推导平行四边形和三角形的面积
时,都转化成我们知道的图形计算,大家大胆地猜
想一下,梯形可以转化成我们学过的哪种图形?
2.验证。
(1)拿出学具,动手拼一拼、剪一剪、摆一
摆,把梯形转化成我们学过的图形。
(2)学生汇报,教师补充小结。
(强调:长方
形、正方形都属于特殊的平行四边形,所以拼的结
果可以概括为:任意两个完全一样的梯形都可以拼
成一个平行四边形。
(3)讨论:
①平行四边形的底与梯形的上底、下底有什么
关系?
②平行四边形的高与梯形的高有什么关系?
梯形的面积与平行四边形的面积又有什么关系?
③根据平行四边形的面积公式怎样推导出梯
形的面积计算公式?
(4)教师用课件演示转化过程,引导学生重
新操作,体会推导过程。
1.学生大胆猜
测,老师根据学生的
回答写出图形的名
称。
2.(1)学生动手
操作。
(2)学生操作
后明确:两个完全一
样的梯形可以拼成
长方形、正方形或平
行四边形。
(3)观察汇报:
平行四边形的底等
于梯形的(上底+下
底),平行四边形的
高等于梯形的高,每
个梯形面积等于平
行四边形的面积的
一半,所以:梯形的
面积=(上底+下底)
3.延伸。
用分割的方法推导出梯形的面积计算公式。
(1)师:刚才展示的都是拼图的方法,你能用一个梯形剪拼成我们学过的图形,推导出梯形的面积计算公式吗?
可能出现的拼剪情况:
①把一个梯形剪成两个三角形。
②把一个梯形剪成一个平行四边形和一个三角形。
③从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形。
(2)引导学生选一种情况进行研究,其他课后探究。
4.字母表示公式。
如果用S表示梯形的面积,a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形的面积计算公式呢?根据学生的汇报,得出:S=(a + b)×h÷2。
×高÷2
(4)观察课件
演示,规范操作和推
理过程。
3.(1)尝试操作,
小组讨论交流推导
过程,然后汇报、交
流。
(2)学生按要
求完成。
4.在草稿本上写
出用字母表示梯形
的面积计算公式,回
答老师提出的问题。
(4+6) ×4.2÷2
=21(dm2)
4.如图,一条水渠
的横截面是一个
梯形,它的横截面
的面积是多少平
方米?
(1.2+2.2) ×0.8÷
=1.36(m2)
三
应用新知,解决问题。
(6分钟)
教学例3。
1.出示教材第96页例3:你知道了哪些信息?
2.想一想,计算梯形的面积必须要知道哪些条
件?
3.组织学生自主完成,汇报解答过程。
4.集体讲解。
1.学生自由交
流。
2.自由回答老师
的问题。
3.学生根据题意
独立完成此题,汇报
解答过程。
4.认真倾听、反
思。
5.一块梯形
木板,上底长10
cm,下底比上底长
7 cm,高6 cm,
这块木板的面积
是多少?
(10+10+7)
×6÷2=81(cm2)
答:这块木板的面
积是81cm2。
1.交流自己本节课的收获。
2.独立完成作业。