05-3刚体绕定轴转动的动能定理
- 格式:ppt
- 大小:1.01 MB
- 文档页数:22
刚体绕定轴转动的动能定理1. 引言刚体是指其内部各点之间的相对位置关系在运动过程中不会发生改变的物体。
刚体绕定轴转动是指刚体在固定轴线上做圆周运动的情况。
动能定理是物理学中的一条重要定理,描述了物体运动过程中动能的变化与外力做功之间的关系。
本文将对刚体绕定轴转动的动能定理进行全面详细、完整且深入的阐述。
2. 刚体绕定轴转动在刚体绕定轴转动的情况下,我们需要考虑刚体的转动惯量和角速度等因素。
转动惯量是描述刚体对转动运动抵抗程度的物理量,通常用符号I表示。
角速度是描述刚体旋转快慢程度的物理量,通常用符号ω表示。
根据牛顿第二定律和角动量守恒定律,我们可以得到刚体绕定轴转动时的基本方程:τ=Iα其中,τ表示作用于刚体上产生转矩(力矩)大小,α表示角加速度。
刚体绕定轴转动的运动规律与作用在刚体上的转矩和转动惯量有关。
3. 动能定理的推导根据刚体绕定轴转动的基本方程,我们可以推导出刚体绕定轴转动的动能定理。
我们来考虑刚体上某一质点的动能T。
由于刚体上各质点都在绕着同一个轴旋转,因此它们具有相同的角速度ω。
设某一质点到轴心的距离为r,则该质点具有的线速度v为v=rω。
该质点的动能T′可以表示为:T′=12mv2=12m(rω)2=12mr2ω2其中,m表示质点的质量。
由于刚体是由众多质点组成的,因此整个刚体的动能T 可以表示为所有质点动能之和:T=∑Tni=1′i其中,n表示刚体上质点的总数。
根据牛顿第二定律和角动量守恒定律,我们知道刚体绕定轴转动时转动惯量I和角加速度α之间存在关系τ=Iα。
将该关系代入动能的表达式中,得到:T=12Iω2其中,ω表示整个刚体的角速度。
刚体绕定轴转动的动能可以表示为12Iω2。
这就是刚体绕定轴转动的动能定理。
4. 动能定理的物理意义刚体绕定轴转动的动能定理描述了刚体在转动过程中动能的变化与外力做功之间的关系。
根据动能定理,我们可以得出以下物理结论:1.外力对刚体做功会改变刚体的动能。
论述刚体定轴转动的新转动动能定理力作功就伴随系统机械能的转化,而目前的物理学只定义了非保守作用力对相对参考系有位移的受力体作的耗散功,却忽视了非保守反作用力对相对参考系没有位移的受力体作的耗散功,从而使经典功能方程对系统损失的机械能的去向不能正确的解释,使理论不能正确反映和指导客观实践,需要加以研究解决。
本文依照“论对系统功能原理的推论”[1]、“作用力作功、反作用力也作功”[2]的规律,推导出了刚体定轴转动的新转动动能定理。
使每一对非保守力对各自受力体同时作耗散功,同时消耗系统的机械能的规律如实体现。
1 刚体的新定轴转动动能定理1.1 刚体定轴转动的运动学描述为了在功能方程中既体现非保守力一般情况下作耗散功、又同时作非耗散功的双重特性,又体现非保守力作耗散功、非保守反作用力也伴随着作等值的耗散功的规律性,将质点的绝对运动、相对运动和牵连运动理念[3]引入转动参考系。
以相对于转轴静止的惯性参考系作为S系;刚体相对于S系绕定轴转动的角位移微元为绝对角位移微元;以定轴转动刚体所受非保守力(力矩)的第j个施力体相对于S系绕定轴转动的角位移微元为牵连角位移微元(j=1,2,…,m),这第j个施力体是绕定轴相对于S系转动的转动参考系Sj′的参照物;定轴转动刚体相对转动参考系Sj′的角位移微元是相对角位移微元,而第j个施力体(转动参考系Sj′)相对定轴转动刚体的相对角位移微元,且=-;=+。
1.2 刚体的新定轴转动动能定理设:在惯性参考系O-XYZ中(S系),质量为m0的刚体对定轴oo’的转动惯量为J,刚体受的非保守外力在其作用点所在转动平面的分量依次为f0j,其反作用力在转动平面的分量依次为f0j(j=1,2,…,m),这些非保守外力作用点在各自的转动平面对圆心的位置矢量依次为rj;刚体受的保守外力在各自作用点所在的转动平面内的分量依次为F0i,这些力对定轴oo’的力矩依次为(i=1,2,…,n)。
则保守外力F0i对定轴oo’的合力矩为:=,这继承了保守力矩功的传统定义。