第三章过程控制与统计技术汇总
- 格式:ppt
- 大小:15.31 MB
- 文档页数:2
统计过程控制知识大全1、统计过程控制的基本知识1.1统计过程控制的基本概念统计过程控制(Stastistical Process Control简称SPC)是为了贯彻预防原则,应用统计方法对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的并且稳定的水平,从而保证产品与服务符合规定要求的一种技术。
SPC中的主要工具是控制图。
因此,要想推行SPC必须对控制图有一定深入的了解,否则就不可能通过SPC取得真正的实效。
对于来自现场的助理质量工程师而言,主要要求他们当好质量工程师的助手:(1)在现场能够较熟练地建立控制图;(2)在生产过程中对于控制图能够初步加以使用和判断;(3)能够针对出现的问题提出初步的解决措施。
大量实践证明,为了达到上述目的,单纯了解控制图理论公式的推导是行不通的,主要是需要掌握控制图的基本思路与基本概念,懂得各项操作的作用及其物理意义,并伴随以必要的练习与实践方能奏效。
1.2统计过程控制的作用(1)要想搞好质量管理首先应该明确下列两点:①贯彻预防原则是现代质量管理的核心与精髓。
②质量管理学科有一个十分重要的特点,即对于质量管理所提出的原则、方针、目标都要科学措施与科学方法来保证他们的实现。
这体现了质量管理学科的科学性。
第2 页(共12 页)为了保证预防原则的实现,20世纪20年代美国贝尔电话实验室成立了两个研究质量的课题组,一为过程控制组,学术领导人为休哈特;另一为产品控制组,学术领导人为道奇。
其后,休哈特提出了过程控制理论以及控制过程的具体工具——控制图。
道奇与罗米格则提出了抽样检验理论和抽样检验表。
这两个研究组的研究成果影响深远,在他们之后,虽然有数以千记的论文出现,但至今仍未能脱其左右。
休哈特与道奇是统计质量控制(SQC)奠基人。
1931年休哈特出版了他的代表作《加工产品质量的经济控制》这标志着统计过程控制时代的开始。
(2)“21世纪是质量的世纪”。
美国著名质量管理专家朱兰早在1994年的美国质量管理年会上即提出此论断,若干年来得到越来越多的人的认同。
统计过程控制技术一、概述或基础上世纪三十年代,美国休哈特博士提出统计过程控制的概念。
统计过程控制(SPC):指用统计学的方法和技术对过程进行分析和控制。
统计过程控制技术:可以用于过程分析与控制的数理统计技术与方法,是识别和控制过程波动的科学方法。
在生产实践中,即使操作者、机器、原材料、加工方法、测量手段、生产环境等到条件相同,生产出来一批产品的质量特性的实际值并不完全一样,总是存在差异,这就是质量特性的波动。
1、关注点:波动的程度、波动的趋势、波动的原因、波动的不利影响、波动是可接受、是否要求采取波动控制的措施、采取什么样的波动控制措施等等。
2、为什么:从顾客的角度来说,他们希望所获得的产品或服务与他们的期望或要求之间差异越小越好。
也就是说,他们希望相对于其要求的目标值来说,波动越小越好。
质量特性实际值一旦偏离目标值就会对顾客造成损失;质量特性越远离目标值,对顾客造成的损失就越大,顾客的损失是与质量特性实际值与目标值之差的平方成正比。
3、传统控制方法:对过程输出质量特性按照合格/不合格进行检验,把不合格的产品挑出来,对它们进行分析和处理。
不再关心那些落在规范限或公差限内的合格产品,则出现产品特性波动大,产品的适配性差,在装配和调试过程中将要花费更多的时间和资源;甚者,还将引起产品性能、可靠性和使用寿命的降低。
4、波动分为:正常、异常两种波动。
1)正常波动:由随机因素(又称为普通因素)影响而引起的波动。
2)异常波动:由系统性因素(又称特殊因素)影响而引起的波动。
3)随机因素:那些随时随地影响过程的、微小的、在技术上很难根本消除和或消除其影响要花费很大的经济代价的、在过程中允许存在的波动影响因素。
特点:a)在过程中时刻存在着,对过程波动的影响力随时变化。
b)这类因素一般复杂繁多,要列举出所有的因素很困难。
c)所有随机因素的共同作用导致了过程的总波动。
d)很难通过对过程的控制来减小或消除随机因素的影响。