直线和圆的方程练习题
- 格式:doc
- 大小:1.43 MB
- 文档页数:12
高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y x C. 01=-+y x D. 052=--y x2.圆012222=+--+y x y x上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+3.圆0422=-+x y x在点)3,1(P 处的切线方程( )A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x4.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( )A .1-或3 B .1或3 C .2-或6 D .0或45.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y x C .03222=-++x y xD .0422=-+x y x6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22- C .12- D .12+7.两圆229x y +=和228690x y x y +-++=的位置关系是( )A .相离B .相交C .内切D .外切8.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y xB .0=-y x C .01=++y x D .0=+y x9.若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2 10.若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23-D .1或3- 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A.4)1()3(22=-++y x B. 4)3()1(22=-++y xC.4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是( )A .相交B .相交或相切C .相交或相切或相离D .与k 值有关二、填空题(每小题4分,共16分)13.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 。
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。
45,1B。
不存在C。
不存在D。
-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。
a+b=1B。
a-b=1C。
a+b=√2D。
a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。
2x+y-1=0B。
2x+y-5=0C。
x+2y-5=0D。
x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。
4x+2y=5B。
4x-2y=5C。
x+2y=5D。
x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。
平行B。
垂直C。
斜交D。
与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。
4B。
13√10C。
26√5D。
207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。
-1/3B。
-3C。
1D。
38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。
2/3B。
-3/2C。
-2D。
-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。
3x+y-6=0B。
x-3y+2=0C。
x+3y-2=0D。
3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1+2√2D。
1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。
5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。
6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。
12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。
直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。
一、选择题(每题4分)1 .点A(4,0)关于直线5x+4y+21=0的对称点是( )A.(-6,8)B.(-8,-6)C.(6,8)D.(-6,-8)2 .经过点(2,1)的直线/到A(1,1)、B(3,5)两点的距离相等,那么直线/的方程为( )A.2x-y-3=OB.x=2C.2x-y-3=O或x=2D.都不对3 .圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()A.x2+(y-2)2-lB./+(),+2)2=1C.(x-l)2÷(y-3)2=l D,x2÷(γ-3)2=l4,假设直线x+y+印=0与圆*+/=勿相切,那么卬为( ).A.0或2B.2C,√2D.无解5 .圆⅛-l)2+3+2)2=20在X轴上截得的弦长是().A.8B.6C.6V∑D.4V36 .两个圆G:%2+y+2Λ,+2y—2=0与G:x2+y—4x—2y+l=0的位置关系为( ).A.内切B.相交C,外切 D.相离x≤27 .假设x、y满足约束条件y≤2,那么z=x+2y的取值范围是〔)x+y≥2A、[2,6]B、[2,5]C、[3,6]D、(3,5]2x+y-6≥08,.不等式组卜+y-3≤0表示的平面区域的面积为()j≤2A、4B、1C、5D、无穷大9.圆元2+y2-ar+2=0与直线/相切于点A(3,l),那么直线/的方程为()A.2x-y-5=0B.x-2y-l=0C.x-y-2=0D.x+y-4=0x≥l10,(2011顺义二模文7)点PEy)的坐标满足条件y≥x,那么点P到直线x-2y+3≥031一4y一9=0的距离的最小值为()二、填空(每题4分)11 .∣S]x2÷r-4x=O在点P(l,√3)处的切线方程为.12 .当α二时,直线/1:x+αy=2α+2,直线“:依+y=〃+1平行.13 .直线2x+1Iy+16=O关于点P(O,1)的对称直线的方程是.14 .设圆*+/-4*一5=0的弦45的中点为尸(3,1),那么直线力6的方程是.15 .圆心为。
《直线和圆的方程》练习与答案一、单项选择题1.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 等于()A.-32B.32C.-1D.1答案C解析由已知,得y +34-2=tan 45°=1.故y =-1.2.直线2x +y +1=0与直线x -y +2=0的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析x +y +1=0,-y +2=0,=-1,=1.∴交点(-1,1)在第二象限.3.已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°答案C解析直线倾斜角α的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角α的取值范围是90°<α<180°.4.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于()A.5B.42C.25D.210答案C解析设A (x ,0),B (0,y ),由中点公式得x =4,y =-2,则由两点间的距离公式得|AB |=42+-22=20=2 5.5.已知直线2x +my -1=0与直线3x -2y +n =0垂直,垂足为(2,p ),则p +m +n 的值为()A.-6B.6C.4D.10答案A解析因为直线2x +my -1=0与直线3x -2y +n =0垂直,所以2×3+(-2)m =0,解得m =3,又垂足为(2,p ),p-1=0,p+n=0,=-1,=-8,则p+m+n=-1+3+(-8)=-6.6.设P,Q分别是3x+4y-10=0与6x+8y+5=0上的任意一点,则|PQ|的最小值为() A.3B.6C.95D.52答案D解析两条直线的方程分别为3x+4y-10=0与6x+8y+5=0,因为36=48≠-105,直线6x+8y+5=0可化为3x+4y+52=0,所以两平行线的距离即为|PQ|的最小值即d=|-10-52|32+42=52.二、多项选择题7.下列说法正确的是()A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x1,y1),(x2,y2)两点的直线方程为y-y1y2-y1=x-x1x2-x1D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0答案AB解析A选项,直线在横、纵坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,故正确;By=x+1上,且(0,2),(1,1)连线的斜率为-1,故正确;C选项,需要条件y2≠y1,x2≠x1,故错误;D选项,还有一条截距都为0的直线y=x,故错误.8.已知直线l:3x-y+1=0,则下列结论正确的是()A.直线l的倾斜角是π6B.若直线m:x-3y+1=0,则l⊥mC.点(3,0)到直线l的距离是2D.过(23,2)与直线l 平行的直线方程是3x -y -4=0答案CD解析对于A,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B,直线l 的斜率k =3,直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C,点(3,0)到直线l 的距离d =|3×3-0+1|32+-12=2,故C 正确;对于D,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.三、填空题9.已知点A (1,2),B (2,1),则线段AB 的长为________,过A ,B 两点直线的倾斜角为________.答案23π4解析根据两点之间的距离公式,得线段AB 的长为1-22+2-12=2,根据斜率公式,得过A ,B 两点直线的斜率为k AB =2-11-2=-1,又因为直线的倾斜角的范围为[0,π),所以过A ,B 两点直线的倾斜角为3π4.10.已知直线l 1经过点A (0,-1)和点-4a ,1l 2经过点M (1,1)和点N (0,-2).若l 1与l 2没有公共点,则实数a 的值为________.答案-6解析直线l 2经过点M (1,1)和点N (0,-2),∴2l k =1+21-0=3,∵直线l 1经过点A (0,-1)和点-4a ,1∴1l k =2-4a=-a 2,∵l 1与l 2没有公共点,则l 1∥l 2,∴-a2=3,解得a =-6.11.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为____________;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是________.(结果用m 表示)答案x -2y +2=02m 2+32解析设点P (1,0)关于直线AB 的对称点为P ′(x 0,y 0),直线AB :x +y -4=0,-1=-1,+y 0+02-4=0,解得x 0=4,y 0=3,故P ′(4,3),又Q (-2,0),∴直线P ′Q :y -0=3-04--2(x +2),即反射光线所在直线方程为x -2y +2=0.设点M (m ,0),m ∈(0,4)关于y 轴的对称点为P ″(-m ,0),关于直线AB 的对称点为P(x 1,y 1),-1=-1,+y 1+02-4=0,解得x 1=4,y 1=4-m ,故P (4,4-m ).故|P ″P|=4+m2+4-m2=2m 2+32.12.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,则AB 的中点到原点的距离的最小值为________.答案655解析设AB 的中点坐标为(x ,y ),因为A (x 1,y 1),B(x 2,y 2),=x 1+x 22,=y 1+y 22,又A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,x1+y1-7=0,x2+y2-5=0,两式相加得2(x1+x2)+(y1+y2)-12=0,所以4x+2y-12=0,即2x+y-6=0,即为AB中点所在直线方程,因此原点到直线2x+y-6=0的距离,即为AB的中点到原点的距离的最小值,由点到直线的距离公式,可得距离的最小值为|-6|4+1=655.四、解答题13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.解(1)如图,当∠A=∠D=90°时,∵四边形ABCD为直角梯形,∴AB∥DC且AD⊥AB.∵kDC=0,∴m=2,n=-1.(2)如图,当∠A=∠B=90°时,∵四边形ABCD为直角梯形,∴AD∥BC,且AB⊥BC,∴kAD=kBC,kAB·kBC=-1.=2--14-5,·2--14-5=-1,解得m=165,n=-85.综上所述,m =2,n =-1或m =165,n =-85.14.已知直线l 过点(1,2),且在两坐标轴上的截距相等.(1)求直线l 的方程;(2)当直线l 的截距不为0时,求A (3,4)关于直线l 的对称点.解(1)当直线l 在两坐标轴上的截距相等且不为零时,可设直线l 的方程为x +y +b =0,将点(1,2)代入直线l 的方程,得1+2+b =0,解得b =-3,此时直线l 的方程为x +y -3=0;当直线l 过原点时,可设直线l 的方程为y =kx ,将点(1,2)代入直线l 的方程,得k =2,此时直线l 的方程为y =2x ,即2x -y =0.综上所述,直线l 的方程为x +y -3=0或2x -y =0.(2)当直线l 的截距不为0时,直线l 的方程为x +y -3=0,设点A 关于直线l 的对称点B 的坐标为(a ,b ),则线段AB 的中点为M 在直线l 上,则a +32+b +42-3=0,整理得a +b +1=0,又直线AB ⊥l ,且直线l 的斜率为-1,所以直线AB 的斜率为k AB =b -4a -3=1,整理得b =a +1,+b +1=0,=a +1,=-1,=0,因此,点A (3,4)关于直线l 的对称点为(-1,0).15.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0.求:(1)顶点C 的坐标;(2)直线BC 的方程.解(1)因为AC 边上的高BH 所在直线方程为x -2y -5=0,所以k AC =-2,又因为点A (5,1),所以AC 边所在直线方程为2x +y -11=0.又因为AB 边上的中线CM 所在直线方程为2x -y -5=0,x +y -11=0,x -y -5=0,=4,=3,所以C (4,3).(2)设B (m ,n ),则AB 的中点MCM 上,所以2×5+m 2-1+n2-5=0,即2m -n -1=0.又点B (m ,n )在高BH 所在直线上,所以m -2n -5=0.-2n -5=0,m -n -1=0,=-1,=-3.所以B (-1,-3).所以直线BC 的方程为y +33+3=x +14+1,即6x -5y -9=0.。
直线和圆的方程一、选择题1 若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y xD.1)2()1(22=-++y x2 在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6π B .3π C .65π D .32π3 直线0=++c by ax 同时要经过第一第二 第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab4 已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为 45,则直线2l 的方程是( )A .1-=x yB .5331+=x y C .73+-=x y D .73+=x y5 不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6 直线0943=--y x 与圆422=+y x 的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7 已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8 过两点)9,3()1,1(和-的直线在x 轴上的截距是()A .23-B .32-C .52D .29 点)5,0(到直线x y 2=的距离为()A .25B .5C .23 D .25 10 下列命题中,正确的是( )A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内11 由点)3,1(P 引圆922=+y x 的切线的长是 ( )A .2B .19C .1D .412 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113 已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是A .03或B .03或-C .3D .3-14 如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-15 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( )A .3-B .6-C .23-D .32 16 由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43π D .23π 17 动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y xD .21)23(22=++y x 18 参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是( )A .圆心为)3,3(-,半径为9的圆B .圆心为)3,3(-,半径为3的圆C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆19 以点)1,5()3,1(-和为端点的线段的中垂线的方程是20 过点023)4,3(=+-y x 且与直线平行的直线的方程是21 直线y x y x 、在0623=+-轴上的截距分别为22 三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23 若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是三、解答题24 若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程25 求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程26 求点)2,3(-A 关于直线012:=--y x l 的对称点'A 的坐标已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程---直线和圆的方程答案一、二、19 02=--y x20 053=--y x 21 32和- 2212234<a三、24 设所求圆的方程为022=++++F Ey Dx y x ,则有⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=++=++=++8660420416024F E D F E F D F D 所以圆的方程是086622=+--+y x y x25 设),(y x M 为所求轨迹上任一点,则有2=MBMA042)1()2(222222=+-⇒=+-++∴y x x y x y x26 设),('b a A ,则有)54,513( 5451301222321232'-∴⎪⎩⎪⎨⎧=-=⇒⎪⎩⎪⎨⎧=---+⋅-=⋅-+A b a b a a b27 设圆C 的圆心为),(b a ,则6234004231)1(33322==⇒⎩⎨⎧-==⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧++=+-=-+r r b a b a b a b a a b 或或 所以圆C 的方程为36)34(4)4(2222=++=+-y x y x 或。
直线和圆的方程练习题一、选择题1、若直线1:310l ax y ++=与2:2(1)10l x a y +++=互相平行,则实数a 的值是()A.-3B.2C.-3或2D.3或-22、若直线(1)30kx k y +--=和直线(1)(23)20k x k y -++-=互相垂直,则k =()A.-3或-1B.3或1C.-3或1D.-1或33、已知点()00,P x y 是直线:0l Ax By C ++=外一点,则方程()000Ax By C Ax By C +++++=表示()A.过点P 且与l 垂直的直线 B.过点P 且与l 平行的直线C.不过点P 且与l 垂直的直线D.不过点P 且与l 平行的直线4、点(0,1)-到直线(1)y k x =+距离的最大值为()A.1D.25、已知(1,2)M ,(4,3)N ,直线l 过点(2,1)P -且与线段MN 相交,那么直线l 的斜率k 的取值范围是()A.(,3][2,)-∞-+∞ B.11,32⎡⎤-⎢⎥⎣⎦C.[3,2]- D.11,,32⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭6、已知直线:20l kx y -+=过定点M ,点(,)P x y 在直线210x y +-=上,则MP 的值最小是()B.5D.7、若直线l 经过(2,1)A ,()21,()B m m -∈R 两点,则直线l 的倾斜角α的取值范围是()A.04απ≤≤B.2απ<<π C.42αππ≤< D.324αππ<≤8、已知圆2222240x y k x y k ++++=关于直线y x =对称,则k 的值为()A.1B.-1C.-1或1D.09、方程||1y -=所表示的曲线的长度是()A.6πB. C.+ D.612π+10、点()sin 30,cos30︒︒与圆2212x y +=的位置关系是()A.点在圆上B.点在圆内C.点在圆外D.不能确定11、若圆2244100x y x y +---=上至少有三个不同的点到直线:0l ax by +=的距离为,则直线l 的倾斜角的取值范围是().A.,124ππ⎡⎤⎢⎥⎣⎦B.5,1212ππ⎡⎤⎢⎥⎣⎦C.,63ππ⎡⎤⎢⎥⎣⎦D.0,2π⎡⎤⎢⎥⎣⎦12、直线34120x y ++=与圆22(1)(1)9x y -++=的位置关系是()A.相交且过圆心B.相切C.相离D.相交但不过圆心二、填空题13、已知点(1,2)A -,(5,6)B ,经过线段AB 的中点M ,且在两坐标轴上的截距相等的直线方程为_________.14、若直线l 被直线1:10l x y -+=与2:30l x y -+=截得的线段长为l 的倾斜角9(00)θθ︒≤≤︒的值为__________.15、与直线3490x y ++=平行,并且和两坐标轴在第一象限所围成的三角形面积是24的直线方程为__________.16、在平面直角坐标系中,将直线l 上的点P 向下平移3个单位,再向右平移3个单位,若点P 仍在直线l 上,则直线l 的斜率是__________.17、直线10x y +-=与圆222410x y x y +-++=相交,所得的弦的长为__________.18、直线l 经过点()2,3P -,与圆22:22140C x y x y +++-=相交截得的弦长为则直线l 的方程为________.19、已知直线l 经过点(3,)P m 和点(,2)Q m -,直线l 的一个方向向量为(2,4),则直线l 的斜率为___________,实数m 的值为__________.三、多项选择题20、如图所示,下列四条直线1l ,2l ,3l ,4l 的斜率分别是1k ,2k ,3k ,4k ,倾斜角分别是1α,2α,3α,4α,则下列关系正确的是()A.2143k k k k <<<B.3214k k k k <<<C.2143αααα<<<D.3214αααα<<<四、解答题21、已知圆22:630C x y x y ++-+=上的两点P ,Q 满足:①关于直线:40l kx y -+=对称;②OP OQ ⊥(O 为坐标原点),求直线PQ 的方程.22、已知实数x ,y 满足222410x y x y ++-+=.(1)求4yx -的最大值和最小值;(2)2221x y x +-+.参考答案1、答案:A解析:因为直线1:310l ax y ++=与22(:1)10l x a y +++=互相平行,所以(1)23a a +=⨯,即260a a +-=,解得3a =-或2a =.当3a =-时,直线1:3310l x y --=与2221:0l x y -+=互相平行;当2a =时,直线1:2310l x y ++=,2:2310l x y ++=,1l 与2l 重合,不符合题意.所以3a =-.故选A.2、答案:C解析:因为直线(1)30kx k y +--=和直线(1)(23)20k x k y -++-=互相垂直,所以(1)(1)(23)0k k k k -+-+=,解得1k =或3k =-.故选C.3、答案:D解析: 点()00,P x y 不在直线0Ax By C ++=上,000Ax By C ∴++≠,∴直线()000Ax By C Ax By C +++++=不经过点P .又直线()000Ax By C Ax By C +++++=与直线:0l Ax By C ++=平行,故选D.4、答案:B解析:解法一:点(0,1)-到直线(1)y k x =+的距离d ==到212k k +≥,于是()22222221221121|1|k k k k k k k +=+=+++≥++=+,当且仅当1k =时取等号,即|1|k +≤,所以d =≤,故点(0,1)-到直线(1)y k x =+.故选B.解法二:由题意知,直线:(1)l y k x =+是过点(1,0)-且斜率存在的直线,记点(1,0)-为P ,点(0,1)-为Q .点(0,1)Q -到直线l 的最大距离在直线l 与直线PQ 垂直时取得,此时1k =,最大距离为PQ = B.5、答案:A 解析:如图,由图可知,过点P 且与x 轴垂直的直线斜率不存在,直线PN 绕点P 逆时针旋转到垂直于x 轴的过程中,直线的斜率始终为正,且逐渐增大,此时直线斜率的范围为PN k k ≥,直线由垂直于x 轴绕点P 逆时针旋转到PM 的过程中,斜率为负,且逐渐增大,此时直线斜率的范围是PM k k ≤.易得3(1)242PN k --==-,2(1)312PM k --==--,则3k ≤-或2k ≥.故选A.6、答案:B解析:直线:20l kx y -+=过定点(0,2)M .点(,)P x y 在直线210x y +-=上,MP ∴的最小值为点M 到直线210x y +-=的距离,min 225()5521MP ∴===+.故选B.7、答案:C解析:因为直线l 经过点()2,1A ,()21,()B m m -∈R ,所以直线l 的斜率2211112m k m --==+≥-,又0α≤<π,所以直线l 的倾斜角α的取值范围是42αππ≤<,故选C.8、答案:B解析:圆的方程可化为()2224(1)41x ky k k +++=-+.依题意得241,410,k k k ⎧-=-⎨-+>⎩解得1k =-,故选B.9、答案:B解析:因为方程2||13(2)y x -=--,所以||10y -≥,解得1y ≥或1y ≤-.将原式变形可得22(2)(||1)3x y -+-=,3所以曲线的长度为233=π.故选B.10、答案:C解析:因为2222131sin 30cos 301222⎛⎛⎫︒+︒=+=> ⎪ ⎝⎭⎝⎭,所以点在圆外.故选C.11、答案:B解析:将2244100x y x y +---=整理为222(2)(2)(32)x y -+-=,圆心坐标为(2,2),半径为32:0l ax by +=的距离为22,则圆心到直线l 的距离应小于等于2,222a b ≤+,所以2410a a b b ⎛⎫⎛⎫++≤ ⎪ ⎪⎝⎭⎝⎭,解得2323a b ⎛⎫-≤≤- ⎪⎝⎭令a k b ⎛⎫=- ⎪⎝⎭,则2323k -≤≤+,故直线l 的倾斜角的取值范围是5,1212ππ⎡⎤⎢⎥⎣⎦.12、答案:D解析:圆心坐标为(1,1)-,半径3r =,圆心到直线34120x y ++=的距离115d r ==<,又因为0d ≠,所以直线不过圆心,即直线与圆相交但不过圆心.故选D.13、答案:230x y -=或50x y +-=解析:点(1,2)A -,(5,6)B ,则线段AB 的中点M 的坐标为(3,2).当直线过原点时,方程为23y x =,即230x y -=.当直线不过原点时,设直线的方程为(0)x y k k +=≠,把中点(3,2)M 的坐标代入直线的方程可得5k =,故直线方程是50x y +-=.综上,所求的直线方程为230x y -=或50x y +-=.14、答案:75°或15°解析:画出图形,设直线l 与1l ,2l 分别交于A ,B 两点,过A 作2AC l ⊥于点C ,则AC ==AB =,所以在Rt ABC △中,1sin2AC ABC AB ∠===,因为ABC ∠为锐角,所以30ABC ∠=︒,因为直线1l 的斜率为1,所以直线1l 的倾斜角为45︒,所以直线l 的倾斜角θ为453075︒+︒=︒或453015︒-︒=︒.15、答案:34240x y +-=解析:解法一: 直线3490x y ++=,即3944y x =--的斜率为34-,∴设所求直线方程为3944y x b b ⎛⎫=-+≠- ⎪⎝⎭.令0x =,得y b =;令0y =,得43bx =.由题意知,0b >且403b >,0b ∴>,142423b b ∴⨯⨯=,解得6b =(6b =-舍去),∴所求直线的方程为364y x =-+,即34240x y +-=.解法二:设所求直线方程为340(9)x y m m ++=≠.令0x =,得4m y =-;令0y =,得3m x =-.由题意得0,40,3mm ⎧->⎪⎪⎨⎪->⎪⎩解得0m <,124243m m ⎛⎫⎛⎫∴⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭,解得24m =-(24m =舍去),∴所求直线方程为34240x y +-=.16、答案:-1解析:由题可得直线l 的斜率313y k x ∆-===-∆.17、答案:解析:因为圆222410x y x y +-++=即:()()22124x y -++=,则圆心()1,2-到直线10x y +-=的距离:d ==由弦长公式可得弦长为:==故答案为:.18、答案:512460x y --=或2x =解析:圆22:22140C x y x y +++-=,即()()221116x y +++=,圆心为()1,1C --,半径4r =,因为直线与圆相交截得的弦长为,所以圆心到直线的距离3d ==,若直线的斜率不存在,此时直线方程为2x =,满足圆心()1,1C --到直线2x =的距离为3,符合题意;若直线的斜率存在,设斜率为k ,则直线方程为()32y k x +=-,即230kx y k ---=,则3d ==,解得512k =,所以直线方程为()53212y x +=-,即512460x y --=,综上可得直线方程为512460x y --=或2x =.故答案为:512460x y --=或2x =.19、答案:2,43解析:由直线l 的一个方向向量为(2,4)得,直线l 的斜率为422=,因此(2)23m m--=-,解得43m =.故答案为2,43.20、答案:BC解析:由倾斜角的概念及题图可得390180α︒<<︒,14090αα︒<<<︒,20α=︒,所以2143αααα<<<,且30k <,410k k >>,20k =,所以3214k k k k <<<,故选BC.21、答案:1322y x =-+或1524y x =-+解析:由①知直线40kx y -+=过圆心1,32⎛⎫- ⎪⎝⎭,则2k =,直线PQ 的斜率为12PQ k =-.设直线PQ 的方程为12y x b =-+,()11,P x y ,()22,Q x y ,则P ,Q 两点的坐标是方程组221,2630y x b x y x y ⎧=-+⎪⎨⎪++-+=⎩的解,消去y 得225(4)6304x b x b b +-+-+=.由OP OQ ⊥得12120x x y y +=,即121211022x x x b x b ⎛⎫⎛⎫+-+-+= ⎪⎪⎝⎭⎝⎭,即()212125042bx x x x b -++=,将124(4)5b x x -+=-,()2124635b b x x -+=代入得32b =或54b =,所以直线PQ 的方程为1322y x =-+或1524y x =-+.22、答案:(1)最小值是2021-,最大值为0(2)最大值为2+,最小值为2-解析:将方程变形为22(1)(2)4x y ++-=,此方程表示以(1,2)-为圆心、2为半径的圆.(1)4y x -表示圆上的点(,)x y 与定点(4,0)连线的斜率,令4y k x =-,即(4)y k x =-.当直线(4)y k x =-与已知圆相切时,如图,4yx -取最值,2=,解得0k =或2021k =-.因此4y x -的最小值是2021-,最大值为0.222221(1)(0)x y x x y +-+=-+-它表示圆上的点(,)x y 与定点(1,0)的距离.定点(1,0)到已知圆的圆心的距离22(11)222d =++=,2221x y x +-+222d r +=,最小值为222d r -=-.。
直线和圆的方程测试题题目一:直线的方程1. 给定两个点A(2, 3)和B(4, 1),求过这两个点的直线方程。
解析:首先计算两点的斜率k\[k = \frac{y_2-y_1}{x_2-x_1} = \frac{1-3}{4-2} = -1\]进一步,我们可以使用点斜式方程:\[y-y_1 = k(x-x_1)\]\[y-3 = -1(x-2)\]\[y-3 = -x+2\]\[x+y = 5\]所以,过点A(2, 3)和B(4, 1)的直线方程为 \(x+y = 5\)。
题目二:圆的方程2. 以点C(5, 3)为圆心,半径为r = 2的圆,求圆的方程。
解析:对于以点C(x, y)为圆心,半径为r的圆,圆的方程可以表示为:\[(x-x_0)^2 + (y-y_0)^2 = r^2\]将圆心C(5, 3)和半径r=2代入,得到:\[(x-5)^2 + (y-3)^2 = 4\]所以,以点C(5, 3)为圆心,半径为r = 2的圆的方程为 \((x-5)^2 + (y-3)^2 = 4\)。
题目三:直线和圆的交点3. 已知直线方程为 \(3x-y = 2\),以点D(1, 0)为圆心,半径为r = 1的圆。
求直线和圆的交点坐标。
解析:我们可以使用联立方程的方法来求解直线和圆的交点。
首先,将直线方程转换为一般式方程:\[3x-y-2 = 0\]然后,将直线方程带入圆的方程:\[(x-1)^2 + (y-0)^2 = 1\]通过联立这两个方程,我们可以得到交点的坐标。
将直线方程改写为 \(y = 3x-2\),然后代入圆的方程:\[(x-1)^2 + (3x-2-0)^2 = 1\]展开并整理方程,得到二次方程:\[10x^2 - 22x + 11 = 0\]解这个二次方程,可以得到两个解x1和x2:\[x_1 = \frac{11}{10}, \quad x_2 = 1\]将x值代入直线方程,可以得到对应的y值:\[y_1 = 3\left(\frac{11}{10}\right)-2 = \frac{13}{10}, \quad y_2 = 3(1)-2 = 1\]所以,直线 \(3x-y = 2\) 和圆 \((x-1)^2 + (y-0)^2 = 1\) 的交点坐标为\(\left(\frac{11}{10}, \frac{13}{10}\right)\) 和 (1, 1)。
直线和圆的方程测试题1. 直线方程部分1.1 点斜式方程直线L通过已知点P(x₁, y₁)且斜率为k,求直线L的方程。
解析:直线L的点斜式方程为:y - y₁ = k(x - x₁)1.2 斜截式方程直线L的斜截式方程为y = kx + b,已知直线L经过点P(x₁, y₁),求直线L的方程。
解析:直线L的斜率k可通过已知点P(x₁, y₁)和直线方程的斜率形式得到。
将已知点P(x₁, y₁)代入直线方程中,得到方程:y₁ = kx₁ + b从而求解得到斜截式方程y = kx + b。
2. 圆方程部分2.1 标准方程圆C的圆心为点O(h, k),半径为r,求圆C的方程。
解析:圆C的标准方程为:(x - h)² + (y - k)² = r²2.2 一般方程圆C的圆心为点O(h, k),半径为r,求圆C的一般方程。
解析:一般方程形式为:x² + y² + Dx + Ey + F = 0带入圆心坐标O(h, k),得到方程:(x - h)² + (y - k)² = r²展开并整理,可得一般方程。
3. 测试题部分测试题一:已知圆C的圆心为O(-2, 3),半径为5,请写出圆C的标准方程和一般方程。
解析:圆C的标准方程为:(x - (-2))² + (y - 3)² = 5²展开并整理得到:x² + y² + 4x - 6y - 12 = 0因此,圆C的一般方程为:x² + y² + 4x - 6y - 12 = 0测试题二:已知直线L通过点P(3, 4)且斜率为 -2,请写出直线L的点斜式方程和斜截式方程。
解析:直线L的点斜式方程为:y - 4 = -2(x - 3)直线L的斜截式方程为:y = -2x + b为了求解斜截式方程中的截距b,将已知点P(3, 4)代入斜截式方程中得:4 = -2(3) + b求解得到b = 10因此,直线L的斜截式方程为:y = -2x + 10通过以上题目和解析,我们掌握了直线和圆的方程及其不同形式的表示方法。
直线和圆的方程练习题一一、选择题1.直线)(03R m m y x ∈=++的倾斜角为( )A .︒30B .︒60C .︒150D .︒1202.(2014年XX 模拟)方程03222=+-++y mx y x 表示圆,则m 的X 围是( )A .),2()2,(+∞--∞B .),22()22,(+∞--∞ )C .),3()3,(+∞--∞D .),32()32,(+∞--∞3.若圆0146622=++-+y x y x 关于直线064:=-+y ax l 对称,则直线l 的斜率是( )A .6 B. 32 C .32- D . 23- 4.已知圆C 的圆心在直线03=-y x 上,半径为1且与直线034=-y x 相切,则圆C 的标准方程是( )A .1)37()3(22=-+-y x B .1)1()2(22=-+-y x 或1)1()2(22=+++y x C .1)3()1(22=-+-y x 或1)3()1(22=+++y x D. 1)1()23(22=-+-y x 5.(2014年XX 一模)方程2)1(11||--=-y x 所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆6.已知圆014222=+-++y x y x 关于直线),(022R b a by ax ∈=+-对称,则ab 的取值X 围是( ) A. )41,(-∞ B. )41,0( C. )0,41(- D. ),41[+∞- 7. 已知点M 是直线0243=-+y x 上的动点,点N 为圆1)1()1(22=+++y x 上的动点,则||MN 的最小值是( ) A. 59 B .1 C. 54 D. 513 8.已知两点)0,4()3,0(B A 、-,若点P 是圆0222=-+y y x 上的动点,则ABP ∆面积的最小值为( )A .6 B. 211 C .8 D. 221 9.设0>m ,则直线01)(2:=+++m y x l 与圆m y x O =+22:的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切10. (2013年高考XX 卷)直线0552=+-+y x 被圆04222=--+y x y x 截得的弦长 为( )A .1B .2C .4D .6411.(2014年XX 一模)已知),(00y x M 为圆)0(222>=+a a y x 内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系是( )A .相切B .相交C .相离D .相切或相交12.(2013年高考XX 卷)过点)1,3(作圆1)1(22=+-y x 的两条切线,切点分别为B A ,,则直线AB 的方程为( )A .032=-+y xB .032=--y xC .034=--y xD .034=-+y x13. 在平面直角坐标系xOy 中,直线0543=-+y x 与圆422=+y x 相交于B A ,两点,则弦AB 的长等于( )A .33B .32 C. 3 D .114.(2013年高考XX 卷)已知过点)2,2(P 的直线与圆5)1(22=+-y x 相切,且与直线01=+-y ax 垂直,则=a ( )A .21-B .1C .2 D. 21 15. 两个圆)(,042:2221R a a ax y x C ∈=-+++与)(,012:2222R b b by y x C ∈=+--+ 恰有三条公切线,则b a +的最小值为( )A .6-B .3-C .23-D .316.若圆0342:22=+-++y x y x C 关于直线062=++by ax 对称,则由点),(b a 向圆所作的切线长的最小值是( )A .2B .3C .4D .617.过点)0,1(且与直线022=--y x 平行的直线方程是( )A .012=--y xB .012=+-y xC .022=-+y xD .012=-+y x18.若直线05=++y ax 与072=+-y x 垂直,则a 的值为( )A .2 B. 21 C .2- D .21- 19.(2014年XX 模拟)直线l 经过点(0,1)且倾斜角为︒60,则直线l 的方程为( ) A. 013=-+y x B. 013=+-y x C. 033=--y x D .033=+-y x20.经过两点)3,2(),12,4(-+B y A 的直线的倾斜角为43π,则=y ( ) A .1- B .3- C .0 D .221. 已知两条直线03:,012)1(:21=++=++-ay x l y x a l 平行,则=a ( )A .1-B .2C .0或2-D .1-或222. 若直线03=++a y x 过圆04222=-++y x y x 的圆心,则a 的值为( )A .1-B .1C .3D .3-23.(2014年XX 模拟)已知过点),2(m A -和点)4,(m B 的直线为1l ,直线012=-+y x 为2l ,直线01=++ny x 为3l .若3221,//l l l l ⊥,则实数n m +的值为( )A .10-B .2-C .0D .824.圆06422=+-+y x y x 的圆心坐标是( )A .)3,2(B .)3,2(-C .)3,2(--D .)3,2(-25. (2013年高考XX 卷)已知点),(b a M 在圆1:22=+y x O 外,则直线1=+by ax 与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定26. 若直线01=+-y x 与圆2)(22=+-y a x 有公共点,则实数a 的取值X 围是( )A .]1,3[--B .]3,1[-C .]1,3[-D .),1[]3,(+∞--∞27.直线5=+y x 和圆04:22=-+y y x O 的位置关系是( )A .相离B .相切C .相交不过圆心D .相交过圆心28. 已知圆l x y x C ,04:22=-+是过点)0,3(P 的直线,则( )A .l 与C 相交B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能29. (2013年高考XX 卷)垂直于直线1+=x y 且与圆122=+y x 相切于第一象限的直线方程是( ) A .02=-+y x B .01=++y x C .01=-+y x D .02=++y x30.已知}{n a 是等差数列,55,1554==S a ,则过),4(),,3(43a Q a P 两点的直线斜率为( )A .4B .41 C .4- D .14- 31.(2014年XX 四校第二次联考)直线02sin =++y x α的倾斜角的取值X 围是( ) A .),0[π B. ),43[]4,0[πππ C. )4,0[π D. ),2(]4,0[πππ 32. 已知直线l 经过点)5,2(-P ,且斜率为43-,则直线l 的方程为( ) A .01443=-+y x B .01443=+-y x C .01434=-+y x D .01434=+-y x33.(2014年XX 一模)过点)3,2(A )且垂直于直线052=-+y x 的直线方程为( ) A .042=+-y x B .072=-+y x C .032=+-y x D .052=+-y x34.“0=a ”是“直线03)1(:21=-++y a x a l 与直线0122:2=--+a ay x l 平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件35.若直线3:-=kx y l 与直线0632=-+y x 的交点位于第一象限,则直线l 的倾斜角的取值X 围是( )A. )3,6[ππB. )2,6(ππC. )2,3(ππ D. ]2,6[ππ 36.在同一平面直角坐标系中,直线0:1=++b y ax l 和直线0:2=++a y bx l 有可能是( )37.点)2,4(-P 与圆422=+y x 上任一点连线的中点轨迹方程是( )A .1)1()2(22=++-y xB .4)1()2(22=++-y xC .4)2()4(22=-++y xD .1)1()2(22=-++y x38.动点P 到点)0,8(A 的距离是到点)0,2(B 的距离的2倍,则动点P 的轨迹方程为( )A .3222=+y xB .1622=+y xC .16)1(22=+-y xD .16)1(22=-+y x39.圆6)2()1(22=++-y x 与直线052=-+y x 的位置关系是( )A .相切B .相交但直线不过圆心C .相交过圆心D .相离40.圆4)2(22=++y x 与圆9)1()2(22=-+-y x 的位置关系为( )A .内切B .相交C .外切D .相离41.点)1,1(-到直线01=+-y x 的距离是( ) A. 21 B. 23 C. 223 D. 22 42.(2014年XX 模拟)若直线l 与直线1=y 和07=--y x 分别交于点N M ,,且线段MN 的中点为)1,1(-P ,则直线l 的斜率等于( ) A. 32 B .32- C. 23 D .23- 43.直线012=+-y x 关于直线1=x 对称的直线方程为( )A . 012=-+y xB .012=-+y xC . 052=-+y xD .052=-+y x44.若曲线32x x y -=在横坐标为1-的点处的切线为l ,则点)2,3(P 到直线l 的距离为( ) A. 227 B. 229 C. 2211 D. 10109 45.(2014年XX 模拟)若直线2:1++=k kx y l 与42:2+-=x y l 的交点在第一象限,则实数k 的取值X 围是( )A .32->kB .2<kC .232<<-k D .32-<k 或2>k 46.在直角坐标系中,)4,0(),0,4(B A ,从点)0,2(P 射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A . 102B .6C .33D .5247.(2014年XX 模拟)与直线0543=+-y x 关于x 轴对称的直线方程为( )A .0543=++y xB .0543=-+y xC .0543=+-y xD .0543=--y x48. 已知点)0,2(),2,0(B A .若点C 在函数2x y =的图象上,则使得ABC ∆的面积为2的点C 的个数为( )A .4B .3C .2D .149.(2014年东城模拟)在OAB ∆中,O 为坐标原点,)1,(sin ),cos ,1(θθB A ,则OAB ∆的面积的取值X 围是( )A .]1,0( B. ]23,21[ C. ]23,41[ D. ]43,41[ 50.(2014年XX 模拟)过点)2,1(A 且与原点距离最大的直线方程为( )A .052=-+y xB .042=-+y xC .073=-+y xD .053=-+y x 51.圆058422=-+-+y x y x 的圆心与半径分别为( )A .5),4,2(-B .5),4,2(-C .15),4,2(-D .15),4,2(-52.方程052422=+-++m y mx y x 表示圆的充要条件是( ) A. 141<<m B .41<m 或1>m C .41<m D .1>m53.(2014年XX 模拟)圆心在y 轴上,半径为1,且过点)2,1(的圆的方程为( )A .1)2(22=-+y xB .1)2(22=++y xC .1)3()1(22=-+-y xD .1)3(22=-+y x54. 圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差 是( )A .30B .18C .26D .2555. 直线023cos =++y x α的倾斜角的X 围是( ) A. ]65,2()2,6[ππππ B. ),65[]6,0[πππ C. ]65,0[π D. ]65,6[ππ 56.(2014年XX 调研)设曲线11-+=x x y 在点)2,3(处的切线与直线01=++y ax 垂直,则=a ( )A .2B .2-C .21- D. 21 57.点P 到点)0,1(A 和直线1-=x 的距离相等,且点P 到直线x y =的距离为22,这样的点P 的个数是( )A .1B .2C .3D .458.两条直线012:1=-+y x l 和042:2=+-y x l 的交点为( ) A. )59,52( B. )59,52(- C. )59,52(- D. )59,52(-- 59.原点到直线052=-+y x 的距离是( )A .1 B. 3 C .2 D. 560.(2014年XX 模拟)P 点在直线053=-+y x 上,且P 到直线01=--y x 的距离为2,则P 点坐标为( )A .)2,1(B .)1,2(C .)2,1(或)1,2(-D .)1,2(或)2,1(-61.已知直线1l 的方程为0743=-+y x ,直线2l 的方程为0186=++y x ,则直线1l 与2l 的距离为( ) A. 58 B. 23 C .4 D .862. 若动点),(),,(222111y x P y x P 分别在直线015:,05:21=--=--y x l y x l 上移动,则21P P 的中点P 到原点的距离的最小值是( ) A. 225 B .25 C. 2215 D .215二、填空题1. (2013年高考XX 卷)若圆C 经过坐标原点和点)0,4(,且与直线1=y 相切,则圆C 的方程是________.2.2011(地方卷)过点)2,1(--的直线l 被圆012222=+--+y x y x 截得的弦长为2,则直线l 的斜率为 .3.过原点的直线与圆044222=+--+y x y x 相交所得弦的长为2,则该直线的方程为.4.(2014年XX 模拟)已知D 是由不等式组⎩⎨⎧≥+≥-03,02y x y x ,所确定的平面区域,则圆422=+y x 在区域D 内的弧长为________.5.已知圆)0(4)2()(:22>=-+-a y a x C 及直线03:=+-y x l .当直线l 被C 截得的弦长为32时,=a ________.6.若圆5:22=+y x O 与圆)(20)(:221R m y m x O ∈=+-相交于B A ,两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.7. (2013年高考XX 卷)已知圆5:22=+y x O ,直线)20(1sin cos :πθθθ<<=+y x l .设圆O上到直线l 的距离等于1的点的个数为k ,则=k ________.8.(2014年XX 模拟)若双曲线116922=-y x 渐近线上的一个动点P 总在平面区域16)(22≥+-y m x ,则实数m 的取值X 围是________. 9. 已知),1(),7,4(),5,3(x C B A -三点共线,则=x ________.10. (2014年XX 模拟)已知点)2,3(),3,2(---B A ,直线l 过点)1,1(P 且与线段AB 有交点,则直线l 的斜率k 的取值X 围为________.11. 若直线052=+-y x 与直线062=-+my x 互相垂直,则实数=m .12. (2014年XX 模拟)已知直线013:1=-+y ax l 与直线01)1(2:2=+-+y a x l 垂直,则实数=a ________.13. (2013年高考XX 卷)过点)1,3(作圆4)2()2(22=-+-y x 的弦,其中最短的弦长为 .14.(2014年皖南八校第二次联考)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧-≥≥-+≥+-330101x y y x y x ,则11+-=x y z 的最大值为________.15. 若直线l 的斜率为k ,倾斜角为α,而),32[)4,6[ππππα ∈,则k 的取值X 围是_______. 16.一条直线经过点)2,2(-A ,并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.17.(2014年皖南八校联考)已知直线022=++y x a 与直线01)1(2=-+-y a bx 互相垂直,则||ab 的最小值为________.18.(2014年山师大附中模拟)函数)1,0(1≠>=-a a a y x 的图象恒过定点A ,若点A 在直线)0(01>=-+mn ny mx 上,则nm 11+的最小值为________. 19.(2014年XX 联考)已知直线22=+y x 与x 轴、y 轴分别相交于B A 、两点,若动点),(b a P 在线段AB 上,则ab 的最大值为________.20.经过两条直线02,0332=+-=+-y x y x 的交点,且与直线013=--y x 平行的直线的一般式方程为________.21. (2014年XX 模拟)已知点),4(a P 到直线0134=--y x 的距离不大于3 ,则a 的取值X 围是________.22.将一X 坐标纸折叠一次,使得点)2,0(与点)0,4(重合,点)3,7(与点),(n m 重合,则=+n m ________.23.过点)1,3(,且过直线x y 2=与直线3=+y x 交点的直线方程为_______.24.已知)0,0(111>>=+b a ba ,则点),0(b 到直线02=--a y x 的距离的最小值为________. 25.若点)1,1(在圆4)()(22=++-a y a x 的内部,则实数a 的取值X 围是________.26.(2014年XX 模拟)过点)5,1(),0,6(B A ,且圆心C 在直线0872:=+-y x l 上的圆的方程为________.27. 已知圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于点B A 、,且3||=AB ,则该圆的标准方程是________.28. 已知点),(y x P 在圆1)1(22=-+y x 上运动,则21--x y 的最大值与最小值分别为______. 29.点)2,1(P 和圆022:222=++++k y kx y x C 上的点的距离的最小值是________.30.已知直线04:=+-y x l 与圆2)1()1(:22=-+-y x C ,则圆C 上各点到l 的距离的最小值为________.31. (2013年高考XX 卷)直线32+=x y 被圆08622=--+y x y x 所截得的弦长等于____.32.(2014年XX 十校模拟)已知两圆1022=+y x 和20)3()1(22=-+-y x 相交于B A ,两点,则直线AB 的方程是________.33.已知圆C 的圆心是直线01=+-y x 与x 轴的交点,且圆C 与直线03=++y x 相切,则圆C 的方程为.三、解答题1. 已知直线08:1=++n y mx l 与012:2=-+my x l 互相平行,且21,l l 之间的距离为5,求直线1l 的方程.2. 求经过直线0123:1=-+y x l 和0125:2=++y x l 的交点,且垂直于直线0653:3=+-y x l 的直线l 的方程.3.已知点)1,2(-P .(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.4. 已知直线0132:1=+-y x l ,点)2,1(--A .求:(1)点A 关于直线1l 的对称点A '的坐标;(2)直线0623:=--y x m 关于直线1l 的对称直线2l 的方程;(3)直线1l 关于点A 对称的直线3l 的方程.5.求适合下列条件的直线方程:(1)经过点)2,3(P ,且在两坐标轴上的截距相等;(2)过点)3,1(--A ,斜率是直线x y 3=的斜率的41-; (3)过点)1,1(-A 与已知直线062:1=-+y x l 相交于B 点且5||=AB .6.(1)求过点)3,1(A ,斜率是直线x y 4-=的斜率的31的直线方程. (2)求经过点)2,5(-A ,且在x 轴上的截距等于在y 轴上截距的2倍的直线方程.7. 已知一等腰三角形的顶点)20,3(A ,一底角顶点)5,3(B ,求另一底角顶点),(y x C 的轨迹.8. 已知圆C 和直线0106=--y x 相切于点)1,4(-A ,且经过点)6,9(B ,求圆C 的方程.9. (2014年XX 模拟)已知圆M 过两点)1,1(),1,1(--D C ,且圆心M 在02=-+y x 上.(1)求圆M 的方程;(2)设P 是直线0843=++y x 上的动点,PB PA ,是圆M 的两条切线,B A ,为切点,求四边形PAMB 面积的最小值.10.已知:圆0128:22=+-+y y x C ,直线02:=++a y ax l .(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于B A 、两点,且22||=AB 时,求直线l 的方程.11.设直线l 的方程为b kx y +=(其中k 的值与b 无关),圆M 的方程为04222=--+x y x .(1)如果不论k 取何值,直线l 与圆M 总有两个不同的交点,求b 的取值X 围;(2)1=b 时,l 与圆M 交于B A ,两点,求||AB 的最大值和最小值.12.已知圆C 过点)1,1(P ,且与圆)0()2()2(:222>=+++r r y x M 关于直线02=++y x 对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求MQ PQ ⋅的最小值;(3)过点P 作两条相异直线分别与圆C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.13. 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于B A ,两点,如图所示,求ABO ∆的面积的最小值及此时直线l 的方程.14.过点)2,1(P 的直线l 被两平行线0134:1=++y x l与0634:2=++y x l 截得的线段长2||=AB ,求直线l 的方程.15.已知直线l 经过直线052=-+y x 与02=-y x 的交点,(1)点)0,5(A 到l 的距离为3,求l 的方程;(2)求点)0,5(A 到l 的距离的最大值.16.已知直线082:=+-y x l 和两点)4,2(),0,2(--B A .(1)在直线l 上求一点P ,使||||PB PA +最小;(2)在直线l 上求一点P ,使||||||PA PB -最大.17. 根据下列条件求圆的方程:(1)经过点)1,1(P 和坐标原点,并且圆心在直线0132=++y x 上;(2)圆心在直线x y 4-=上,且与直线01:=-+y x l 相切于点)2,3(-P ;(3)过三点)2,9(),10,7(),12,1(-C B A .18. (2014年XX 模拟)已知)0,4(P 是圆3622=+y x 内的一点,B A ,是圆上两动点,且满足︒=∠90APB .(1)求AB 中点R 的轨迹.(2)求矩形APBQ 的顶点Q 的轨迹方程.19. 如图所示,圆1O 和圆2O 的半径长都等于4||,121=O O .过动点P 分别作圆1O ,圆2O 的切线N M PN PM ,(,为切点),使得||2||PN PM =.试建立平面直角坐标系,并求动点P 的轨迹方程.。