2019-2020学年高考数学一轮复习讲义 第11课时 函数的周期性 理.doc
- 格式:doc
- 大小:907.00 KB
- 文档页数:7
第11讲光合作用的影响因素影响光合作用速率的环境因素(Ⅱ)影响光合作用的因素及应用1.内部因素(1)植物自身的遗传特性(如植物品种不同)以阴生植物、阳生植物为例,如图所示:(2)植物叶片的叶龄、叶绿素含量及酶。
2.外部因素(1)光照强度(2)CO2浓度(3)温度(4)必需矿质元素(N、P、Mg、K等)据图分析多因素对光合作用的影响,回答下列问题:(1)三条曲线在P点之前限制光合速率的因素分别是________、__________、________。
(2)三条曲线在Q点之后横坐标所表示的因子________(填“是”或“不是”)影响光合速率的主要因素,此时的限制因素分别是________、__________、________。
(3)在北方的冬暖大棚中施用有机肥的益处包括____________________。
答案:(1)光照强度光照强度温度(2)不是温度CO2浓度光照强度(3)增加土壤肥力、增加大棚内的温度和CO2浓度考向1考查影响光合作用的环境因素1.(2019·湖北孝感一中等八所重点高中协作体联考)在CO2浓度为0.03%和适宜的恒定温度条件下,测定植物甲和植物乙在不同光照条件下的光合速率,结果如图。
下列有关分析正确的是()A.当光照强度为1 klx时,植物甲开始进行光合作用B.当光照强度为3 klx时,植物乙的总光合速率是0 mg/(100 cm2叶·h)C.若在c点时突然停止CO2供应,短时间内植物甲的叶绿体中C3的含量会增加D.d点时限制植物乙的光合速率增大的主要环境因素是CO2的浓度解析:选D。
光照强度为1 klx时,此时植物甲的光合作用强度等于呼吸作用强度,A错误;当光照强度为3 klx时,总光合速率=净光合速率+呼吸速率=0+20=20 mg/(100 cm2叶·h),B错误;c点的限制因素主要是CO2浓度,因此突然停止CO2供应,CO2固定受阻,短时间内C3的含量会减少,C错误;d点时植物乙到达光饱和点,因此光照强度不再是限制因素,而题中又提出此过程处于“适宜的恒定温度条件”,因此此时限制植物乙的光合速率增大的主要因素是CO2的浓度,D正确。
函数的周期性一.知识点:1.周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得定义域内任何值f(x+T)=f(x),那么就称f(x)为周期函数,T为f(x)的周期。
2.周期函数的性质:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合3.判定定理:定理1. 若f(x)是在数集M上以T*为最小正周期的周期函数,则K f(x)+C(K≠0)和1/ f(x)分别是集M和集{X/ f(x)≠0,X ∈M}上的以T*为最小正周期的周期函数。
定理2. 若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+b)是集{x|ax+b∈M}上的以T/ a为最小正周期的周期函数,(其中a、b为常数)。
定理3. 设f(u)是定义在集M上的函数,u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。
定理4. 设f1(x)、f2(x)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍数为它们的周期。
4.几个常见常考周期函数的关系式:(其中a≠0)(1)f(x+a)= -f(x) =>f(x+2a)=f(x)(2)f(x+a)=1/f(x) =>f(x+2a)=f(x)(3)f(x+a)= -1/f(x) =>f(x+2a)=f(x)(4)若奇函数f(x)的图像关于直线x=a对称,则f(x+4a)=f(x)(5)若偶函数f(x)的图像关于直线x=a对称,则f(x+2a)=f(x)二.典型例题(难):例题1:已知定义在R上的奇函数f(x)的图像关于直线x=1对称,则f(1)+f(2)+…+f(2019)=_______例题2:已知定义在R上的函数f(x)满足f(x+2)=12f(x)且当x∈[0,2]时,f(x)= -2sinπ2x①若当x∈[ -4,-2]时,f(x)≥t➖9t恒成立,则t的取值范围为________②函数g(x)=f(x) ➖12log16X 零点的个数为________例题答案:例题一:0 例题二:t≤9或0<t≤1 ; 5三.基础例题1.若函数f(x)=x2+bx+c对一切实数都有f(x+2)=f(2 -x)则有()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)2.已知定义在R上的函数f(x)满足f(-x)= - f(x),f(3-x)=f(x),则f(2019)=()A.- 3 B.0 C.1 D.33.已知定义在R上的函数f(x)满足:y=f(x - 1)的图像关于点(1,0)对称,且当0≥0时恒有f(x)=f(x+2),当x∈[0,1]时,f(x)=ex – 1,则f(2016)+f(-2015)=()A.1 – e B. e – 1 C. – 1 – e D.e+14.定义在R上奇函数f(x)满足f(x+2)= -f(x),且在[0,2)上单调递减,则下列结论正确的是()A.0<f(1)<f(3) B. f(3)<0<f(1)C.f(1)<0<f(3) D. f(3)<f(1)<05.已知函数f(x)的图像关于点(- 3 ,2 )对称,则函数h(x)=f(x+1)- 3的图像的对称中心是_______6.设f(x)是定义在R上的奇函数,且在( -∞,0 )上是减函数,f(-2)=0,则xf(x)<0的解集为________7.已知f(x),g(x)都是定义在R上的函数,且f(x)为奇函数,g(x)的图像关于直线x=1对称,则下列四个结论中错误的是()A.y=g[f(x)+1]为偶函数 B.y=g[f(x)]为奇函数C.函数y=f[g(x)]的图像关于直线x=1对称D.y=f[g(x+1)]为偶函数8.定义在R上得函数f(x)满足f( - x)=f(x),且当x≥0时,f(x)={−x2+1,0≤x≤12−2x,x≥1若对任意得x∈[m,m+1],不等式f(1-x)≤f(x+m)恒成立,则实数m的最大值是()A.- 1 B.12C. - 13D.13答案:1. A由已知得:对称轴为x=2,由于抛物线开口向上,所以越靠近对称轴值越小2.B∵f(- x)= - f(x),∴f(3 - x)= - f(x - 3),且f(0)=0.又∵f(3 - x)=f(x),∴f(x)= - f(x - 3),∵f(x - 3)= - f(x - 6),∴f(x)=f(x - 6),∴f(x)是周期为6的函数,∴f(2019)=f(6×336+3)=f(3)=(0)=03.A∵y=f(x - 1)的图像关于点(1,0)对称,∴f(x)的图像关于远点对称,∵当x≥0时恒有f(x)=f(x+2),∴函数f(x)的周期为2∴f(2016)+f(- 2015)=f(0)- f(1)=1 – e4.C由函数f(x)时定义在R上的奇函数,得f(0)=0,由f(x+2)= - f(x),得f(x+4)= - f (x+2)=f(x),故函数f(x)是以4为周期的周期函数∴f(3)=f(- 1)又∵f(x)在[0,2)上单调递减,∴函数f(x)在(- 2,2 )上单调递减∴f(-1)>f(0)>f(1)5.(- 4,- 1)函数h(x)=f(x+1)- 3的图象是由函数f(x)的图像向左平移1个单位,再向下平移1个单位,再向下平移3个单位得到的,又f(x)的图像关于点(- 3,2)对称,所以函数h(x)的图像的对称中心为(-4,-1)6.(-∞,-2]∪[0,2](1)x=0时,xf(x)=0,满足要求;(2)x<0时xf(x)≤0,所以,f(x)≥0f(x)在(-∞,0)上是减函数,f(-2)=0所以,x≤-2(3)x>0时,xf(x)≤0,所以,f(x)≤0f(x)为R上的奇函数,且在(-∞,0)上是减函数,所以在(0,+∞)上是减函数,f(2)=0f(x)≤0,解得,0<x≤2所以,不等式 xf(x)≤0 的解集为(-∞,-2]∪[0,2]7. B已知得f (- x )= - f (x ),g (1 - x )=g (1+x ), ∵g[f(-x)+1]=g[ - f(x)+1]=g[f(x)+1],∴y=g[f(x)+1]为偶函数∵f[g(x)]=f[g(2 - x)]∴y=f[g(x)]得图像关于直线x=1对称∵f[g( - x+1)]=f[g(x+1)]∴y=f[g(x+1)]为偶函数∵g[f( - x)]=g[ - f(x)]=g[2+f(x)]∴y=g[f(x)]不是基函数8. C由题知函数f(x)为偶函数,且当x ≥0时,函数f(x)为减函数,则当x <0时,函数f (x )为增函数。
第11章 算法复数推理与证明 第2讲A 组 基础关1.(2018·榆林模拟)已知复数z 1=6-8i ,z 2=-i ,则z 1z 2=( ) A .8-6i B .8+6i C .-8+6i D .-8-6i 答案 B解析 z 1z 2=6-8i -i=(6-8i)·i=8+6i.2.(2019·青岛模拟)在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B 解析 z =4-7i2+3i=4-7i2-3i13=-13-26i 13=-1-2i ,其共轭复数z =-1+2i对应的点(-1,2)在第二象限.3.(2018·河南省天一大联考)已知复数z =2-3i ,若z 是复数z 的共轭复数,则z ·(z +1)=( )A .15-3iB .15+3iC .-15+3iD .-15-3i答案 A解析 依题意,z ·(z +1)=(2-3i)(3+3i)=6+6i -9i +9=15-3i.4.(2019·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i=-3i3=-i.故选C.5.已知m 为实数,i 为虚数单位,若m +(m 2-4)i>0,则m +2i2-2i=( )A .iB .1C .-iD .-1 答案 A解析 因为m +(m 2-4)i>0,所以m +(m 2-4)i 是实数,所以⎩⎨⎧m >0,m 2-4=0,故m =2.所以m +2i 2-2i=2+2i 2-2i =1+i1-i=i. 6.(2018·成都市第二次诊断性检测)若虚数(x -2)+y i(x ,y ∈R )的模为3,则yx的最大值是( )A.32B.33C.12 D.3 答案 D解析 因为(x -2)+y i 是虚数, 所以y ≠0,又因为|(x -2)+y i|=3, 所以(x -2)2+y 2=3.因为y x是复数x +y i 对应点的斜率,所以⎝ ⎛⎭⎪⎫y x max =tan ∠AOB =3,所以y x 的最大值为 3.7.(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.8.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i2+i=a -i2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.9.(2018·合肥模拟)设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.答案 1解析 设z 1=a +b i ,z 2=-1+c i , 因为z 2=z 1-i z 1,所以-1+c i =(a +b i)-i(a -b i)=(a -b )+(b -a )i ,所以⎩⎨⎧a -b =-1,b -a =c ,所以c =1,所以z 2的虚部为1.10.已知复数z =i +i 2+i 3+…+i 20221+i ,则复数z 在复平面内对应点的坐标为________.答案 (0,1)解析 因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2022=4×505+2,所以z =i +i 2+i 3+…+i 20221+i =i +i 21+i =-1+i1+i=-1+i1-i 1+i1-i =2i2=i ,对应的点为(0,1).B 组 能力关1.(2018·华南师大附中模拟)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知e a i 为纯虚数,则复数sin2a +i1+i在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 由题意得e a i=cos a +isin a 是纯虚数,所以⎩⎨⎧cos a =0,sin a ≠0,所以sin2a =2sin a cos a =0,sin2a +i 1+i =i 1+i =i 1-i 2=1+i 2,其在复平面内对应的点⎝ ⎛⎭⎪⎫12,12在第一象限. 2.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i的“错位共轭”复数为( )A .-36-12iB .-32+32iC.36+12i D.32+32i 答案 D解析 由(z -i)⎝ ⎛⎭⎪⎫32-12i =1,可得z -i =132-12i =32+12i ,所以z =32+32i.故选D.3.(2019·西安模拟)已知方程x 2+(4+i)x +4+a i =0(a ∈R )有实根b ,且z =a +b i ,则复数z 等于( )A .2-2iB .2+2iC .-2+2iD .-2-2i答案 A解析 由题意得b 2+(4+i)b +4+a i =0, 整理得(b 2+4b +4)+(a +b )i =0,所以⎩⎨⎧ b +22=0,a +b =0,所以⎩⎨⎧a =2,b =-2,所以z =2-2i.4.已知复数z 在复平面内对应的点在第三象限,则z 1=z +|z |在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 令z =a +b i(a <0,b <0),则|z |=a 2+b 2>|a |,z 1=z +|z |=(a 2+b 2+a )-b i ,又a 2+b 2+a >0,-b >0,所以z 1在复平面内对应的点在第一象限.5.已知复数z =(a -2)+(a +1)i(a ∈R )的对应点在复平面的第二象限,则|1+a i|的取值范围是________.答案 [1,5)解析 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以⎩⎨⎧a -2<0,a +1>0,解得-1<a <2.所以|1+a i|=1+a 2∈[1,5).6.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-916,7解析 由复数相等的充要条件,可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.。
函数的周期专题六性1.周期函数的定义对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x );如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.函数周期性常用的结论结论1:若f (x +a )=f (x -a ),则f (x )的一个周期为2a ;结论2:若f (x +a )=-f (x ),则f (x )的一个周期为2a ;结论3:若f (x +a )+f (x )=c (a ≠0),则f (x )的一个周期为2a ;结论4:若f (x )=f (x +a )+f (x -a )(a ≠0),则f (x )的一个周期为6a ;结论5:若f (x +a )=1f (x ),则f (x )的一个周期为2a ;结论6:若f (x +a )=-1f (x ),则f (x )的一个周期为2a ;结论7:若函数f (x )关于直线x =a 与x =b 对称,则f (x )的一个周期为2|b -a |.结论8:若函数f (x )关于点(a ,0)对称,又关于点(b ,0)对称,则f (x )的一个周期为2|b -a |.结论9:若函数f (x )关于直线x =a 对称,又关于点(b ,0)对称,则f (x )的一个周期为4|b -a |.结论7—结论9的记忆:两次对称成周期,两轴两心二倍差,一轴一心四倍差.总规律:在函数的奇偶性、对称性、周期性中,知二断一.即这三条性质中,只要已知两条,则第三条一定成立.考点一已知函数的周期性(显性的),求函数值【方法总结】利用函数的周期性,可将其他区间上的求值等问题,转化到已知区间上,进而解决问题.【例题选讲】[例1](1)若f (x )是R 上周期为2的函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=__________.答案-1解析由f (x +2)=f (x )可得f (3)-f (4)=f (1)-f (2)=1-2=-1.(2)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )x 2-2,-2≤x ≤0,,0<x <1,则=________.答案14解析由题意可得-2=14,=14.(3)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )+a ,-1≤x <0,|25-x|,0≤x <1,其中a ∈R .若5(2f -=9(2f ,则f (5a )的值是________.答案-25解析:由题意可得5()2f -==-12+a,9()2f =|25-12|=110,则-12+a =110,a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.【高中数学函数专题】(4)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)cosπx2,0<x≤2,x+12|,-2<x≤0,则f(f(15))的值为________.答案22解析由函数f(x)满足f(x+4)=f(x)(x∈R),可知函数f(x)的周期是4,所以f(15)=f(-1)=|-1+12|=12,所以f(f(15))=cosπ4=22.(5)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2019)的值等于()A.403B.405C.806D.809答案B解析定义在R上的函数f(x),满足f(x+5)=f(x),即函数f(x)的周期为5.又当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.故f(1)+f(2)+f(3)+…+f(2019)=403×[f(1)+f(2)+f(3)+f(4)+f(5)]+f(2016)+f(2017)+f(2018)+f(2019)=403×1+f(1)+f(2)+f(3)+f(4)=403+0+1+1+0=405.【对点训练】1.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.1.答案7解析因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,∴f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.2.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)1≤x<0,0≤x≤1,其中a,b∈R.若=a+3b的值为________.2.答案-10解析因为f(x)是定义在R上且周期为2的函数,所以f f(-1)=f(1),故=,从而12b+212+1=-12a+1,即3a+2b=-2,①.由f(-1)=f(1),得-a+1=b+22,即b=-2a,②.由①②得a=2,b=-4,从而a+3b=-10.3.已知函数f(x)(1-x),0≤x≤1,-1,1<x≤2,如果对任意的n∈N*,定义f n(x)={[()]}n ff f f x⋅⋅⋅个,那么f2019(2)的值为()A.0B.1C.2D.33.答案C解析∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,f4(2)=f(2)=1,∴f n(2)的值具有周期性,且周期为3,∴f2019(2)=f3×673(2)=f3(2)=2,故选C.4.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2022)=__________.4.答案337解析由f(x+6)=f(x)可知,函数f(x)的周期为6,由已知条件可得f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以在一个周期内有f(1)+f(2)+f(3)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2022)=337×1=337.5.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f(6)=()A.-2B.-1C.0D.25.答案D解析当x>12时,由可得当x>0时,f(x)=f(x+1),所以f(6)=f(1),而f(1)=-f(-1),f(-1)=(-1)3-1=-2,所以f(6)=f(1)=2,故选D.6.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2019)+f(2020)=()A.0B.2C.3D.46.答案B解析∵y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数.令x=-1,则f(-1+2)-f(-1)=2f(1),即f(1)-f(1)=2f(1)=0,即f(1)=0.则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),即函数的周期是2,又f(0)=2,则f(2019)+f(2020)=f(1)+f(0)=0+2=2,故选B.考点二已知函数的周期性(隐性1),求函数值【方法总结】已知函数的周期性(隐性1),可利用周期性的性质结论1到结论6,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例2](1)已知定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x),-1<x≤0,1,0<x≤1,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)答案D解析由f(x+1)=-f(x)知f(x+2)=-f(x+1)=f(x),于是f(x)是以2为周期的周期函数,从而f(2.5)=f(0.5)=-1,f(f(2.5))=f(-1)=f(1)=-1,f(f(1.5))=f(f(-0.5))=f(1)=-1,f(2)=f(0)=1,故选D.(2)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2018)的值为()A.2018B.-2018C.0D.4答案C解析依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(2018)=f(4×504+2)=f(2)=0.(3)已知f(x)是定义在R上的函数,并且f(x+2)=1f(x),当2≤x≤3时,f(x)=x,则f(2022)=__________.答案2解析由f(x+2)=1f(x)得f(x+4)=1f(x+2)=f(x),所以T=4,f(2022)=f(4×505+2)=f(2)=2.(4)已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f (2020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2020)=-2-3.(5)已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2018)的值为________.答案1348解析∵f (x +2)=-1f (x ),∴f (x +4)=-1f (x +2)=f (x ),∴函数y =f (x )的周期T =4.又x ∈(0,2]时,f (x )=2x -1,∴f (1)=1,f (2)=3,f (3)=-1f (1)=-1,f (4)=-1f (2)=-13.∴f (1)+f (2)+f (3)+…+f (2018)=504[f (1)+f (2)+f (3)+f (4)]+f (504×4+1)+f (504×4+2)=+3-11+3=1348.【对点训练】7.函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则5(2f 的值为()A .12B .14C .-14D .-127.答案A解析由f (x +1)=-f (x )得f (x +2)=f (x ),即函数f (x )的周期为2,则5()2f =2×12×=12,故选A .8.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .-2B .2C .-98D .988.答案A解析由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A .9.已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2019)=()A .5B .12C .2D .-29.答案D解析由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.10.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2014)=()A .0B .-4C .-8D .-1610.答案B解析由题意可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2014)=f (167×12+10)=f (10)=f (10-12)=f (-2)=-f (2)=-4.故选B .11.已知定义在R 上的函数f (x )满足f (4)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2018)=()A .-2-3B .-2+3C .2-3D .2+311.答案A解析由f (x +2)=1-f (x )得f (x +4)=f (x ).所以函数f (x )的周期为4,所以f (2018)=f (2).又f (4)=f (2+2)=1-f (2)=2-3,所以-f (2)=12-3=2+3,即f (2)=-2-3,故选A .12.已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则________.12.答案52解析∵f (x +2)=-1f (x ),∴f (x +4)=f (x ),∴2≤x ≤3时,f (x )=x ,∴=52,∴=52.考点三已知函数的周期性(隐性2),求函数值【方法总结】已知函数的周期性(隐性2),可利用周期性的性质结论7到结论9,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例3](1)已知函数y =f (x )满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=()A .π3B .2π3C .πD .4π3答案B解析由y =f (-x )和y =f (x +2)是偶函数知f (-x )=f (x ),且f (x +2)=f (-x +2),则f (x +2)=f (x -2).∴f (x +4)=f (x ),则y =f (x )的周期为4.所以F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f (1)=2π3.(2)函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f (0.5)=9,则f (8.5)等于()A .-9B .9C .-3D .0答案B解析因为f (x -1)是奇函数,所以f (-x -1)=-f (x -1),即f (-x )=-f (x -2).又因为f (x )是偶函数,所以f (x )=-f (x -2)=f (x -4),故f (x )的周期为4,所以f (0.5)=f (8.5)=9.故选B .(3)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为()A .2B .1C .-1D .-2解析:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1).∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A .(4)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2020)=________.答案解析因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x+2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,所以f (1)+f (2)+f (3)+f (4)+…+f (2020)=0.(5)设函数f (x )是定义在R 上的奇函数,对任意实数x 有33()()22f x f x +=--成立.若f (1)=2,则f (2)+f (3)=________.答案-2解析由33()()22f x f x +=--,且f (-x )=-f (x ),知f (3+x )=f 32+-f 32-=-f (-x )=f (x ),所以y =f (x )是周期函数,且T =3是其一个周期.因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(6)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x -1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2,故选C.【对点训练】13.定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3-2x),则()A.12B.-12C.-1D.113.答案C解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(-x+1)=f(x+1)=-f(x-1),f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),则f(x)的周期是4,∴f-12=-=-12·(3-1)=-1,故选C.14.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为() A.-3B.-2C.2D.314.答案D解析因为f(x-1)是奇函数,所以f(-x-1)=-f(x-1),即f(-x)=-f(x-2).又因为f(x)是偶函数,所以f(x)=-f(x-2)=f(x-4),故f(x)的周期为4,所以f(5)+f(6)=f(1)+f(2)=0+3=3.选D.15.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.15.答案3解析解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x).又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.16.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.16.答案2解析根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x),又由函数为奇函数,则f(-x)=-f(x),则有f(x)=-f(6-x)=f(x-12),则f(x)的最小正周期是12,故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.17.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1-x),且f(1)=a,则f(2)+f(3)+f(4)=() A.0B.-a C.a D.3a17.答案B解析因为函数f(x)满足f(1+x)=f(1-x),所以f(x)关于直线x=1对称,所以f(2)=f(0),f(3)=f(-1),又f(x)是定义在R上的奇函数,所以f(0)=0,又由f(1+x)=f(1-x)可得f(x+1)=f(1-x)=-f(x-1),所以f(x+2)=-f(x),故f(x+4)=-f(x+2)=f(x),因此,函数f(x)是以4为周期的周期函数,所以f(4)=f(0),又f(1)=a,因此f(2)+f(3)+f(4)=f(0)+f(-1)+f(0)=-f(1)=-a.故选B.18.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.18.答案4解析∵函数y=f(x-1)的图象关于点(1,0)对称,∴f(x)是R上的奇函数,又f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),故f(x)的周期为4,∴f(2017)=f(504×4+1)=f(1)=4,∴f(2016)+f(2018)=f(2016)+f(2016+2)=f(2016)-f(2016)=0,∴f(2016)+f(2017)+f(2018)=4.。
第一章 集合与常用逻辑用语命题探究§1.1集合的概念及运算考纲解读考点内容解读要求高考示例常考题型预测热度 1 •集合的含义与表示①了解集合的含义、元素与集合的属于关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题了解 2017课标全国 U,2;2016四川,1题★ ★★2 •集合间的基本关系① 理解集合之间包含与相等的含义,能识别给定集合的子集;② 在具体情境中,了解全集与空集的含义2015 重庆,1; 2013江苏,4 选择题3 •集合的基本运算① 理解两个集合的并集弓交集的含义,会求两个简单集合的并集与交集;② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;③ 能使用韦恩(Verm )图表达集合间的关系及运算as2017课标全国I ,1; 2016课标全国 I ,1; 2014 课标I ,1醪题 ★ ★★分析解读1 •理解、掌握集合的表示方法.能够判断元素与集合、集合与集合之间的关系2能够正确处理含有字母的讨论问题, 掌握集合的交、并、补运算和性质.3 .要求具备数形结合的思想意识,会借助Venn 图、数轴等工具解决集合运算问题.4.命题以集 合的运算为主,其中基本知识和基本技能是高考的热点.5.本节在高考中分值为5分左右,属于中低档题.能力要求) ------------------- 会僧绝对值不等式;理解正裟映数 的性质;理解築合间的包含关系; 理舗充分必要条件的盘义卢> 核心考点) -------------1.充分必製条件的判断 2绝对值不等式的解法 3止弦函数的图彖和性质〜命题规律〕 ------------------------ 以充分条件.必耍条件为栽休.考 賁不等式的解法.零价转化思想■ 集合之间的关系,常以选择題的形 式岀现,分值约为5分孕易错警示} 错解:B0<0<^.nRin 氐丄台-<+2jbt<0<?*2后,2 b b keZ.因为-乎+"”<氐尹2后 OeZ )->(kX 讣反之不成立•所以 为必耍不充分条件.(逻出关系与集 合关系的转化岀错〉错因分析:命題的逻辑关系与集合 何的包含关系紧密相关.一般来说 “小范国=> 大范圃” •错解中关 系考出反r申储备知识) ----------------------充分条件•必耍条件与集合的关系: 如果集合**1龙满圧条件从集合 B ・{xk 満足朵件从则仏⑴若*6,則p ・g,UPp 是q 的 充分条件;(2)若4 = 則g*・ 即P 是g 的必要条件;⑶若“乩则 勺•即刃切的充要条件;(4)若人创 1L 必人则p 址g 的既不充分也不必 要条件(2017天津.4. 5分)的A. 充分何不必要条件B. 必要而不充分条件C.充要条件m ch 八 u 、思路分析 化简两个Cl知不第 何的关系.利用为 义,即可得別结论F 式.结合集合之 [分必耍条件的定孕解答过程】 ----------------------答案:A 解析:||林-卡計辽C 说心寻 <寻台0<氐罟, p«in &< } — -^+2/TK <9< § +2A :x,址乙由(0.#烘罟*2后,舟+2耳的充分不必5?条件.解法二|e -誇|v 誇台0v6<W ^sin 6ky,当0 0时.8inO<y f 但不漏足卜誇|<誇,所以足 充分不必耍条件.选AL )•既不充分也不必耍条件没OER. M "I 亠二lv IT ■・ 址sin 火亠"12五年高考考点一集合的含义与表示1.(2017 课标全国U 25 分)设集合A二{124}后{xlx—x+nrf}.若ACB={1},则B=()A.{1,-3}答案c2.(2016四川,1,5分)设集合gxl-20W2},Z为整数集,则集合AQZ中元素的个数是()A.3B.4C.5D.6答案C3.(2013山东,2,5分)已知集合A二{0,1,2},则集合B={x-y lx^A,yWA}中元素的个数是()A.lB.3C.5D.9答案C4.(2017江苏,1,5分)已知集合A二{l,2},B={a,a*3}.若ACB={1},则实数a的值为 __________答案1考点二集合间的基本关系1.(2015重庆,1,5分)已知集合A二{123}后{2,3},则( )A.A=BB.Ai^B=nC.AOBD.BOA答案D2.(2013江苏,4,5分)集合{・1,0,1}共有_______ 个子集.答案8考点三集合的基本运算1.(2017课标全国I ,1,5分)已知集合A={xlx<l},B={xl3x<l} )A.AHB=(xlx<0}B.AUB=RC.AUB=(xlx>l}D.AnB=D答案A2.(2017 课标全Bin,1,5 分)已知集合A={(x,y)lx2+y=l}»B={(x,y)ly=x},则ACB 中元素的个数为(A.3B.2C.lD.O答案B3.(2017 天津,1,5 分)设集合A={l,2,6)»B={2,4),C={xeR|-l<x<5} JU(AUB)nc=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{xERI・lWxW5}答案B4.(2016 课标全国I ,1,5 分)设集合A={x I x2-4x+3<0},B={x 12x-3>0},则ACB=( )A. B. C. D.答案D5.(2016课标全国U ,2,5 分)已知集合A={l,2,3),B={xl(x+l)(x-2)<0,xez},MAUB=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C6.(2016 天津,1,5 分)已知集合A={l,2,3,4),B={yly=3x-2,xeA},J!!lAnB=( )A.{1}B.{4}C.{1,3}D.{1,4}答案D7.(2014课标I ,1,5 分)已知集合A={xlx2-2x-3^0},B={xl-2^x<2),则ACB=( )A.[-2,-1]B.[-l,2)C.[-l,l]D.[l,2)答案A教师用书专用(8—24)8.(2017北京,1,5分)若集合A={xl-2<x<l},B={xlx<-1 或x>3},则AAB=( )A.(xl-2<x<-l}B.(xl-2<x<3)C.{xl-1<X<1}D.{xll<x<3}答案A9.(2017浙江,1,5 分)已知集合P={xl-l<x<l} ,Q={xl0<x<2},则PUQ=( )A.(-1,2)B.(0,l)C.(-l,0)D.(l,2)答案A10.(2017山东,1,5分)设函数y二的定义域为A,函数y=ln(l -x)的定义域为B,则AAB=()A.(1,2)B.(l,2]C.(-2,l)D.[-2,l)答案D11.(2016课标全国皿,1,5分)设集^S={xl(x-2)(x-3)>0},T={xlx>0},则S(1T=()A.[2,3]B.(-°O,2]U[3,+OO)C.[3,+S)D.(0,2]U[3,+B)答案D12.(2016 北京,1,5 分)已知集合A={xllxl<2},B={-l,0,l,2,3},则AQB=( )A.(0,1)B.(0,l,2}C.{-1,0,1}D.{-1,0,1,2}答案C13.(2016 浙江,1,5 分)已知集合P二{xURIlWxW3},Q={xWRIx2p4}、则PU((R Q)=( )A.[2,3]B.(・2,3]C.[l,2)D.(・8,-2]U[1,+OO)答案B14.(2016 山东,2,5分)设集合A二{yly二2x,xER},B={xlx2-l<0},则AUB=( )A.(-1,1)B.(0,l)C.(-l,+°°)D.(0,+8)答案C15.(2015 课标n, 1,5 分)已知集合A={-2,-l,0,l,2),B={xl(x-l)(x+2)<0},则AQB=( )A.{-1,0} C.{-1,0,1} D.(0,l,2}答案A16.(2015 天津,1,5 分)已知全集U二{1,2,3,4,5,6,7,8},集合A二{2,3,5,6},集合,3,4,6,7},则集合 A 门血()A.{2,5}B.(3,6}C.(2,5,6}D.{2,3,5,6,8}答案A17.(2015福建,1,5分)若集合AMi,i2,i',r}(i是虚数单位),隹{1,・1},则人门3等于()A.{-1}B.{1}C.(l,-1}D.口答案C18.(2015 四川,1,5 分)设集合A二{xl(x+l)(x-2)<0},集合B={xll<x<3),则AUB=( )A.(xI -l<x<3}B.(xI -1<X<1}C.(xIl<x<2}D.(xl2<x<3)答案A19.(2015 广东,1,5 分)若集合M={xl(x+4)(x+l)=0},N={xl(x-4)(x-l)=0},则MCN=( )A.{1,4}B.{-l,-4}C.{0}D.口答案D20.(2014课标II ,1,5 分)设集合归{0,l,2},N={xlx2.3x+2W0},5!!lMCN=( )A.{1}B.{2}C.(0,l}D.{1,2)答案D21.(2014 辽宁,1,5 分)已知全集U二R,A二{xlxW0},B={xlxMl},则集合]u(AUB)=( )A. {x 1x^0} BjxlxWl}C.{xlOWxWl}D.(xl0<x<l}答案D22.(2014 浙江,1,5 分)设全集U二{xWNIxM2},集合A二{x^NIx 空5},则[山二( )A.口B.{2}C.{5}D.{2,5}答案B23.(2015江苏,1,5分)已知集合A二{1,2,3}后{2,4,5},则集合人餌中元素的个数为_________ .答案524.(2016 江苏,1,5 分)已知集合A={-l,2,3,6},B={xl-2<x<3},则AAB= ___________ .答案{-1,2}三年模拟A组2016—2018年模拟•基础题组考点一集合的含义与表示1.(2018 广东茂名化州二模」)设集合A二{・101},B={xlx>0,xWA}^!lB=( )A.(-LO) C.(OJ) D.{1}答案D2・(2017河北冀州第二次阶段考试J)若集合A=(xlx2-7x<0, x丘N)则集合匸中元素的个数为()A.lB.2C.3D.4答案D考点二集合间的基本关系3.(2018四川成都龙泉一中月考,2)已知集合A=,B= {xIax+1 =0},且BUA,则a的取值组成的集合为()AJ-3,2} BJ-3,O,2} C.{3,・2} D・{3,0,・2}答案D4.(2017河南南阳、信阳等六市一模,1)已知集合A={ (x, y) I y • =0},B={ (x, y) I x2+y2= 1},C=A C B,则C的子集的个数是( )A.OB.lC.2D.4答案c考点三集合的基本运算5.(2018豫南豫北第二次联考,1)已知集合A二{yIy二2*},B二{xIy=},则A门B=(A・{yly>l}答案BB.{yly>l}C.{yly>0} D・{ylyP0}6.(2018江西重点中学第一次联考,1 )已知集合归,则帥二()A.(XI - 1<X<1}B. {x I - l<x^l}C. {xlx<-l 或xMl}D.{xlxW・l 或xMl}答案C7.(2017广东惠州第三次调研,1)已知全集hR,集合A二{1,2,3,4,5},B= {x丘RIx鼻2},则图中阴影部分所表示的集合为(A.(0,l,2)B.(0,l)C.{1,2)D.{1)答案D8.(2017河南濮阳第二次检测,13)已知集合A=(-l,a},B={3a,b},gAUB={-l,0,l},则& _____________答案0B组2016—2018年模拟•提升题组(满分:35分时间:20分钟)一、选择题(每小题5分,共30分)1.(2018 广东茂名化州二模,1)若集合A二{0,1}后{yly 二2x,x^A},则(bA)QB=()AJO} B•⑵ C.{2,4} D.{0丄2}答案B2.(2018吉林榆树第一高级中学第三次模拟J)设全集U二{1,3,5,6,9},A二{3,6,9}、则图中阴影部分表示的集合是()A・{1,3,5}答案D3.(2018 四川南充一诊,2)已知集合A二{(x,y)ly=f(x)},B={(x,y)lx=l},则ACB 中的元素有()A.1个B.1个或2个C.至多1个D.可能2个以上答案C4.(2017湖南永州二模,2)已知集合P二{xl JWxWl},归心},若PQM二□,则a的取值范围是()C.[-l,l]D.(4,-1)U(1,+8)答案D5.(2017河北唐山摸底,1)已知集合AC (1,2,3,4,5},且AC{1,2,3}={1,2},则满足条件的集合A的个数为()A.2B.4C.8D.16答案B6.(2016江西南昌十所省重点中学二模,2)设集合A=,B={xly=ln(x2-3x)},5!!jAnB中元素的个数是()A.lB.2C.3D.4答案A 二、填空题(共5分)7.(2017江西九江地区七校联考,14)设A, B是非空集合淀义A®B={ x I x丘A U B且x电⑴B},已知壯{y I y=・x'+2x,0<x<2}, N二{y I y二2’ 则M®N二.答案U(l,+<XjC组2016—2018年模拟•方法题组方法1与集合元素有关问题的解题方略1.(2016湖南衡阳八中一模,1)已知集合A二{0,1} ,B={zlz二x+y,xWA,yWA},则集合B的子集个数为()A・3 B.4 C.7 D.8答案D方法2集合间的基本关系的解题方法2.(2017河北衡水中学七调,1)已知集合A二{x11 og2X<l},B={xl0<x<c},若AUB=B,则c的取值范围是()A.(0,1]B.[l,+oo)C.(0,2]D.[2,+oo)答案D3.(2018河北衡水中学模拟,13)已知含有三个实数的集合既可表示成,又可表示成{a2,a+b,0},则a20,W0,7等于________答案方法3集合的基本运算的解题方法4.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={ x I x+2诈0} ,N={xll ogi( x・1 )<1}、若集合M C ((uN)二{x I x二1或x M 3},那么a的取值为()A. a=B.aWC. a=-D.aM答案C5.(人教 A 必1,—,1・1A,7,变式)设全集U={xWNIxW8},集合4{1,3,7},B={2,3,8},则(CuA)门(应)=()A.{1,2,7,8}B.{4,5,6}C.{0,4,5,6}D.{0,3,456}答案C方法4求解集合新定义问题的技巧6.(2018陕西西安长安质检,2)若x & A,且& A侧称A是伙伴关系集合,集合归的所有非空子集中具有伙伴关系的集合的个数是A.31B.7C.3D.1答案B7.(2017湖北武昌一模,1)设A,B是两个非空集合淀义集合A・B={xlxUA,且x年B}.若A二{x£NI0WxW5> ,B={xl/・7x+l(kO},则4 B=()A.(0,1)B.{1,2)C.(0,l,2)D.(0,1,2,5}答案D。
2019-2020学年高考数学一轮复习讲义 第11课时 函数的周期性理考纲要求:了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 教材复习()1 周期函数:对于函数()y f x =,如果存在非零常数T ,使得当x 取定义域内的任何值时,都有 ,那么就称函数()y f x =为周期函数,称T 为这个函数的一个周期.()2最小正周期:如果在周期函数()f x 的所有周期中 的正数,那么这个最小正数就叫作()f x 的最小正周期. 基本知识方法1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得 ()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; ③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x是以()4b a -为周期的周期函数;3.判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的x 恒有()()f x T f x +=; 二是能找到适合这一等式的非零常数T ,一般来说,周期函数的定义域均为无限集. 4.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值.问题1.(06山东)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为 .A 1- .B 0 .C 1 .D 2问题2.()1(00上海) 设()f x 的最小正周期2T =且()f x 为偶函数,它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上,()f x =()2已知函数()f x 是周期为2的函数,当11x -<<时,2()1f x x =+,当1921x << 时,()f x 的解析式是()3 ()x f 是定义在R 上的以2为周期的函数,对k Z ∈,用k I 表示区间(]21,21k k -+,已知当0x I ∈时,()2f x x =,求()x f 在k I 上的解析式。
问题3.()1(04福建)定义在R 上的函数()x f 满足()()2+=x f x f ,当[]5,3∈x 时,()42--=x x f ,则 .A sin cos 66f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭; .B ()()sin1cos1f f >;.C 22cos sin 33f f ππ⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭.D ()()cos2sin 2f f >()2(05天津文) 设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减, 且()y f x =的图像关于直线3x =对称,则下面正确的结论是 .A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f << .C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f <<问题4.定义在R 上的函数()x f ,对任意R x ∈,有()()()()y f x f y x f y x f 2=-++,且()00≠f ,()1求证:()10=f ;()2判断()x f 的奇偶性;()3若存在非零常数c ,使02=⎪⎭⎫⎝⎛c f ,①证明对任意R x ∈都有()()x f c x f -=+成立; ②函数()x f 是不是周期函数,为什么?问题5.(01全国)设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称,对任意的121,0,2x x ⎡⎤∈⎢⎥⎣⎦,都有1212()()()f x x f x f x +=⋅.()1设(1)2f =,求1()2f 、1()4f ;()2证明:()f x 是周期函数. ()3记⎪⎭⎫ ⎝⎛+=n n f a n 212,求lim(ln )n n a →∞.课后作业:1.(2013榆林质检)若已知()f x 是R 上的奇函数,且满足(4)()f x f x +=,当()0,2x ∈时,2()2f x x =,则(7)f 等于 .A 2- .B 2 .C 98- .D 982.设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则.A 2a > .B 2a <- .C 1a > .D 1a <-3.函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0-上是减函数,那么()f x 在[]2,3上是.A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数4.设1()1x f x x -=+,记(){[()]}n n ff x f f f f x =⋅⋅⋅个,则2007()f x =5.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+ ⎪⎝⎭,且()23f -=,则(2014)f =6.设偶函数()f x 对任意x R ∈,都有1(3)()f x f x +=-,且当[]3,2x ∈--时, ()2f x x =,则(113.5)f = .A 27- .B 27 .C 15- .D 157.设函数()f x 是定义在R 上的奇函数,对于任意的x R ∈,都有1()(1)1()f x f x f x -+=+,当0x <≤1时,()2f x x =,则(11.5)f = .A 1- .B 1 .C 12 .D 12-8.已知()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,且[0,2]x ∈时,2()2f x x x=-.()1求证:()f x 是周期函数;()2当[2,4]x ∈时,求()f x 的表达式; ()3计算(1)(2)(3)(2013)f f f f ++++.9.(05朝阳模拟)已知函数()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,且满足3()()2f x f x =-+,又(1)1f -=,(0)2f =-,求(1)(2)(3)f f f +++…(2006)f +的值走向高考:1.(05福建))(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间()0,6内解的个数的最小值是 .A 2 .B 3 .C 4 .D 52.(2012山东)定义在R 上的函数()f x 满足(6)()f x f x +=,当3-≤1x <-时,()2()2f x x =-+,当1-≤3x <时,()f x x =,则(1)(2)(3)(2012)f f f f +++= .A 335 .B 338 .C 1678 .D 20123. (96全国)已知函数)(x f 为R 上的奇函数,且满足(2)()f x f x +=-, 当0≤1x <时,()f x x =,则(7.5)f 等于.A 0.5 .B 0.5- .C 1.5 .D 1.5-4.(06安徽)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15f =-, 则()()5f f =5. (06福建文)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则.A a b c << .B b a c << .C c b a << .D c a b <<6.(04天津)定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则53f π⎛⎫⎪⎝⎭的值为.A 21-.B21 .C 23-.D23 7.(05天津)设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称,则(1)(2)(3)(4)(5)f f f f f ++++=8.★(05广东)设函数()f x 在(,)-∞+∞上满足(2)(2f x f x -=+,(7)(7)f x f x -=+,且在闭区间[]0,7上,只有(1)(3)0f f ==. (Ⅰ)试判断函数()y f x =的奇偶性;(Ⅱ)试求方程()0f x =在闭区间[]2005,2005-上的根的个数,并证明你的结论.。