平行线分线段成比例定理
- 格式:ppt
- 大小:646.00 KB
- 文档页数:22
平行线分线段成比例定理证明方法平行线分线段成比例定理是数学中的一条重要定理,它描述了当两条平行线与一条横切线相交时,所形成的线段之间的比例关系。
本文将通过证明该定理,来展示其严谨的数学推导过程。
我们先来描述一下该定理的内容:设有两条平行线l和m,它们被一条横切线n相交于A、B、C三点。
如果在l上任取一点D,并且连接BD和AC,那么我们有以下结论:\(\frac{AD}{DB} = \frac{AC}{BC}\)接下来,我们将通过严格的证明来验证这一结论。
证明过程如下:假设在平行线l上任取一点D,并连接BD和AC。
根据平行线的性质,我们可以得到以下两个对应角相等的等角关系:∠ACB = ∠DBC (对应角相等)∠ADC = ∠BCD (对应角相等)由于三角形ABC和三角形DBC中有两个角相等,根据三角形的基本性质,我们可以得到这两个三角形是相似的。
根据相似三角形的性质,我们可以得到下面的比例关系:\(\frac{AD}{DB} = \frac{AC}{BC}\)从上述推导过程可以看出,平行线分线段成比例定理是由两个等角关系推导得到的,而等角关系是由平行线的性质所决定的。
因此,该定理的证明是严谨而准确的。
值得注意的是,平行线分线段成比例定理的证明过程中没有使用到具体的数值,而仅仅是通过等角关系和相似三角形的性质进行了推导。
因此,该定理具有普适性,适用于任意情况下的平行线。
通过平行线分线段成比例定理,我们可以解决很多实际问题。
例如,在建筑工程中,我们可以利用该定理来计算建筑物的高度。
通过测量建筑物的影子长度和测量仪的高度,我们可以利用平行线分线段成比例定理来计算建筑物的实际高度。
在几何学的研究中,平行线分线段成比例定理也是解决一些复杂问题的重要工具。
通过应用该定理,我们可以得到一些关于平行线和三角形的性质,进而推导出更多的几何定理。
总结起来,平行线分线段成比例定理是数学中的一条重要定理,它描述了当两条平行线与一条横切线相交时,所形成的线段之间的比例关系。
AB C E F平行线分线段成比例定理【知识要点】导入:如图分别与321221,////l l l b a l l l 交于A,B,G ,D,E,F 则1. 假设21,l l 分别被同一组平行线截得线段;,;,,2121n n b b b a a a 则n n b b b b a a a a ::::::321321 = 或nn b a b a b a b a ==== 332211这就是平行线分线段成比例定理。
2. 平行线分线段成比例定理可简记为:⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛==∴全上全上全下全下下上下上DF DE AC AB DF EF AC BC EF DE BC AB l l l 321////特别地,当A 与D 重点时: 当B 与E 重点时:AF AEAC AB EFAEBC AB ==DFDB ACABBFDB BC AB== 3.推论: A 型CEBDAE AD AC AB DE ADBC AB === a b A BCFE D 1l 2l3lA B 1l2l CFE D 3l ADBF C1l2l 1b 1a 2a 2b na n bX 型ECADBE DB BC AB ==【典型例题】例1 已知:如图,a//b//c ,时BD=2AB ,EF=3cm,HF=5cm,求FG 和HQ 的长;例2 如图:在ABC ∆中,DE//BC ,EF//C (1)求证:AF:AD=AD:AB (2)若AF=4,FB=5,求FD 的长。
例3 如图:N 为□ABCD 一边AD 的中点,BM 多AC 于点P ,若AC=6cm,求PC 的值?EADBCA E HB FP Q GDA M PB C例4 如图:若DE//AB,FD//BC,,32=AC AD AB=9cm,BC=6cm,求□BEDF 的周长?例5 如图:再ABC ∆中,D 为AC 上一点,E 为CB 延长先上一点,且FDEFBC AC =求证:AD=EB 。
平行线分线段成比例定理是初中数学中的重要概念之一,也是几何学中的基础知识。
在我们探讨这个定理的证明过程之前,首先让我们了解一下平行线分线段成比例定理的概念。
一、平行线分线段成比例定理的概念平行线分线段成比例定理是指:如果一条直线被两条平行线截断,那么它们所截取的线段成比例。
形式化表示就是:设直线l被两条平行线m和n截断,截线段分别为AB和CD,那么有AD/DB=AC/CB。
二、证明过程接下来,我们来探讨平行线分线段成比例定理的证明过程。
1. 利用证明过程所需的前提条件我们需要利用欧几里得几何学的基本公设和定理来证明这个定理。
其中,我们需要用到的包括平行线的性质、相似三角形的性质等。
2. 构造辅助线在证明过程中,我们通常会构造一些辅助线来帮助我们证明定理。
我们可以根据已知条件,构造出一些三角形或平行四边形来辅助证明。
3. 利用相似三角形性质在证明中,我们需要利用到相似三角形的性质。
我们可以利用相似三角形的对应边成比例的性质来帮助我们证明线段的成比例关系。
4. 利用平行线的性质平行线具有许多特殊的性质,其中之一就是平行线与被它们截取的直线所成的各对应角相等。
我们可以利用这一性质来帮助我们证明定理。
5. 运用数学归纳法在证明过程中,我们可能需要通过数学归纳法来确保定理对于所有情况都成立。
6. 总结通过以上的证明过程,我们可以得出平行线分线段成比例定理的证明结果。
三、个人观点和理解从证明过程中,我们可以看到,数学证明不仅需要逻辑思维,还需要创造性地构造辅助线、利用相似三角形等方法来解决问题。
平行线分线段成比例定理的证明过程,让我深刻体会到数学的美妙之处,也让我更加深入地理解了相关概念和定理。
总结通过本文对平行线分线段成比例定理的证明过程的探讨,我们不仅了解了这一定理的基本概念,还深入探讨了其证明的具体步骤和相关思想。
通过这样的学习和探讨,我们不仅可以掌握知识,还能够培养良好的逻辑思维能力和解决问题的能力。
平行线分线段成比例定理(一)一、学习目标1.在理解的基础上掌握平行线分线段成比例定理,并会灵活应用。
2.通过学习定理,再一次培养同学们类比的数学思想。
3.渗透理解从特殊到一般的辩证唯物主义观点。
二、重点、难点、疑点及解析1.重点是平行线分线段成比例定理及其应用。
2.难点是平行线分线段成比例定理的正确性的说明。
3.疑点是由定理可得到六个比例,如图5-5而言,与横线段无关,这里要知道。
定理中“能得的对应线段成比例”,是“被截得的”,要分清是谁截谁。
三、学习过程(一)复习自己叙述平行线等分线段定理。
(二)讲解新课在四边形一章里,我们学过平行线等分线段定理,今天,在此基础上,我们来研究平行线平分线段成比例定理。
首先复习一下平行线等分线段定理,如图5-5:∵l1∥l2∥l3,且AB=BC,∴DE=EF。
自己可以画三条平行线,并作出两条直线分别与这些平行线相交,用尺子进行测量并计算。
(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过测量计算可以得到比例仍成立)由比例性质,还可得到:平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
平行线等分线段定理可看作是这个定理的特例。
根据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可根据情况选用其中任何一个参见图5-6~图5-7。
∵l1∥l2∥l3,其中图5-8,图5-9两种情况仍然成立,下一节我们会学习这部分更具体的内容。
例1 已知:如图5-6,l1∥l2∥l3,若AB=3,DE=2,EF=4,求:BC。
解:自己来完成。
注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以减少错误,如例1可列比例式为:自己来完成。
提示:设DE=m,EF=n。
小结:(1)熟练掌握由定理得出的六个比例式。
(2)灵活运用定理解决问题。
平行线分线段成比例定理(二)一、学习目标1.在巩固平行线等分线段定理的基础上掌握其推论及推论的应用。
平行线分线段成比例定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.例1、如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=.l 3l 2l 1FE D CB A例2、如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCDEED C B A例3、如上图,如果有BCDEAC AE AB AD ==,那么DE ∥ BC 。
练习1、如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。
EDCBA2、如图,已知ΔABC 中,DE ∥BC,AD 2=AB •AF,求证∠1=∠23、如图 已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.DOECB AABC DEF124、如图,在Rt△ABC中,090=∠C ,E、F、G分别在边AB、BC、AC上,且四边形EFCG是矩形,若AC=3cm ,BC=4cm ,CG=1cm ,求AE、BF、CF的值.5、已知:如图,AB AD AE ⋅=2,DF∥EC.求证:EF∥BC.6、已知:如图,∠1=∠2,且AM/BM=AN/NC,AM=4cm,AN=3cm,AC=5cm,求MN的长7、已知:如图,点M是平行四边形ABCD的边AB的延长线上的任意一点,DM分别交BC、AC于点N、P,求证: DC/AM =CN/AD8、已知:如图,点M为平行四边形ABCD的边AB的中点,点N在BC上,且BN/CN=1/3,MN交BD于点E.求BE:ED的值.9、如图,点F是平行四边形ABCD的边DC的延长线上一点,AF交BC于点E,AB=5cm,AD=7cm,BE=4cm.求CF的长.10、如图,AD∥EF∥BC,AE∶EB=1∶2,若AD=3cm,BC=6cm,求EF的长11、如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在AB上AE∶EB=1∶3.DE交AC于点F.求AF∶FO∶OC的值12、已知:如图,在△ABC中,MN∥BC,四边形MNPQ是平行四边形,BQ,CP的延长线相交于点D.求证:AD∥NP.13、设点P是△ABC的中线AD上一点,过P作AB,AC的平行线EP,FP分别交BC于点E、F.求证:BE=CF.。
若,则,(或;或) 图1-1 定理的证明定理的证明过A 点作AN ∥DF ,交l 2于M ,交l 3于N 点,连接点,连接 BN 、CM(如图(1-2) 图1-2 ∵∴AM=DE MN=EF 在△ACN 中,有. ∵BM ∥CN ∴S △BCM =S △BMN∴ 亦即亦即如何理解定理结论中“所得对应线段成比例”呢?呢? “对应”是数学的基本概念,图1-1中,在的条件下,可分别推出如下结论之一:名师堂八年级数学第九讲 平行线分线段成比例平行线分线段成比例定理平行线分线段成比例定理是研究平行线分线段成比例定理是研究相似三角形相似三角形的最重要和最基本的理论.它一方面可直接判定线段成比例,另一方反面也可用辅助平行线转移比例. 1.平行线分线段成比例定理:平行线分线段成比例定理:三条平行线截两条三条平行线截两条直线直线所得的对应线段成比例. 如图1-1(1) 简称“上比下”等于“上比下”(2) 简称“上比全”等于“上比全”. (3) 简称“下比全”等于“下比全”把这个定理运用于三角形中就得到它的重要推论. 2.平行于三角形一边的平行于三角形一边的直线直线的判定和性质(“A”、“X”型) 主要的基本图形:主要的基本图形:(图1) 平行线分线段成比例分线段成比例 (图2) 图1、2中,有定理:平行于三角形一边的直线截其他两边或延长线,所得的对应线段成比例(可看作性质1).及其及其逆定理逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边(可看作判定). 以及定理:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线所截得的三角形与原三角形的三边对应成比例(可看作性质2). 对“A”、“X”型的特征分析:A 点是两相交直线的点是两相交直线的交点交点,D 、E 和B 、C 是两平行线和相交直线的交点,(共5点),其中作比的三点在一条直线上(AD :AB=AE :AC 中,A 、D 、B 在一条直线上,A 、E 、C 在一条直线上.)在作辅助线的时候我们可以观察这些特征.而可以作比的六个点中如果有两个点是同一个点,那么过这个点作平行线往往可以一举多得. 注意点:(1)平行线分线段成比例没有逆定理(2)判断平行线的条件中,只能是被截的两条直线的对应线段成比例(被判断的被判断的 平行线本身不能参与作比例) (3)有些时候我们也要注意图3,DE//BC ,则DF :FE=BG :GC (4)由于平行线分线段成比例定理中,平行线本身没有参与作比例,因此,有关 平行线段的计算问题通常转化到“A”、“X”型中. 典型例题典型例题例1.如图2-1 已知△ABC 中AB=AC ,AD ⊥BC ,M 是AD 的中点,CM 交AB 于P ,DN ∥CP 交AB 于N ,若AB=6cm ,求AP 的值例2.(如图2-2)图2-3 已知已知直线直线截△ABC 三边所在的直线分别于E 、F 、D 三点且AD=BE. 求证:EF :FD=CA :CB. 图2-2 证法(二) 过E 作EP ∥BA 交CA 的延长线于P 是解决此问题的第二种辅助线作法. 证法(三) 过D 作DN ∥BC 交AB 于N 也可解决此问题. 例3.AM 是△ABC 的中线,P 是AM 上任意一点,BP 、CP 的延长线分别交AC 、AB 于E 、D 两点. 求证:DE ∥BC. 分析:如图2-3 练习1.选择题:.选择题:(1)如图,AB∥CD∥EF,则在图中下列关系式一定成立的是( ) A.B.C.DA.2 B.3C.DA.B.C.D.(4)在△ABC中,点D在AB上,点E在AC上,且DE∥BC ,,则等于( ) A.B.C.D..(2)如图,△ABC中,G是BC中点,E是AG中点,CE的延长线交AB于D,则EC:DE的值为( ) .(3)如图,在△ABC中,DE∥BC,则下列,则下列比例比例式成立的是( ) (5)如图,△ABC中,DE∥AC交AB、BC于D、E,如果AB=7cm,AC=5cm,AD=3cm,则DE=( ) A.B.C.DA.B.C.D的面积的,求EC的长. .(6)如图,在△ABC中,如果DE∥BC,DF∥AC,则下列,则下列比例比例式中不正确的是( ) .2.已知:如图,△ABC中,CD是∠ACB的平分线,DE∥BC,AD:DB=2:3,AC=a,求DE的长. 3.已知:如图,△ABC为等边三角形,边长为2,DE∥BC,△BCD的面积是△ABC4.如图,△ABC中,AD是中线,点F在AD上,且AF:FD=1:2,BF的延长线交AC于E,求AE:EC=?能力提升例1 已知:如图5-195-19,,AD 为△ABC 的角平分线,求证:AB∶AC=BD∶DC.例2 求证:求证:等腰三角形等腰三角形底边上任意一点到两腰距离的和等于一腰上的高.即图5-20中,中,AB=AC AB=AC AB=AC,,P 为底边BC 上任意一点,PR⊥AB 于点R ,PQ⊥AC 于点Q ,BH 为腰上的高.求证:证:PQ+PR=BH PQ+PR=BH PQ+PR=BH..分析一 参阅例3的分析一.的分析一.分析二 如图5-225-22,△ACP ,△ACP 和△DCQ 应该全等,反之,只要证明了它们全等,问题就解决了.在这两个三角形中,个三角形中,AC=DC AC=DC AC=DC,∠ACP=60°,∠DCQ=180°-∠A ,∠ACP=60°,∠DCQ=180°-∠A CD CD-∠BCE=180°-60°-60°=60°,从而-∠BCE=180°-60°-60°=60°,从而例3 已知:如图5-215-21,△ABC ,△ABC 中,∠A 为直角.以AB AB,,AC 分别为边向外侧作分别为边向外侧作正方形正方形ABDE ABDE,,ACFG ACFG,线,线段CD CD,,BF 分别与AB AB,,AC 相交于点X ,Y .求证:.求证:AX=AY AX=AY AX=AY..分析一 如图5-215-21((a ),由于AX∥ED,AY∥GF,所以出现了两组成AX∥ED,AY∥GF,所以出现了两组成比例线段比例线段,在这些成比例的线段中,除AX AX,,AY 外,其余的线段都是两个已知正方形的边,因此AX=AY 应该能用应该能用平行线平行线分线段成比例定理得到证明.到证明.分析二 如图5-215-21((b ),连结线段EX EX,,GY GY,得到△CEX ,得到△CEX 和△BGY.这两个三角形的边CE=BG CE=BG,又,又AX 实际等于AY AY,所以△CEX ,所以△CEX 和△BGY 应该有相等的应该有相等的面积面积.反过来,如果证明了这两个三角形面积相等,问题也就解决了.而要证明这两个三角形面积相等,需要进行等积变形.这只要连结线段AD AD,,AF AF,,那么S △ACD =S △CEX ,S △BAF =S △BGY ,所以只需证明S △ACD =S △BAF .但这.但这很简单很简单了.了.例4 已知:如图5-225-22,,C 为线段AB 上任意一点,以AC AC,,BC 分别为边在AB 同侧作等边△ACD 和等边△BCE,线段AE AE,,CD 相交于点P ,线段BD BD,,CE 相交于点Q .求证:.求证:CP=CQ CP=CQ CP=CQ..。