理论力学-力的分解与力的投影以及平面力系中的力矩
- 格式:ppt
- 大小:589.50 KB
- 文档页数:15
理论力学中的力矩与力的计算与分析力矩是力在物体上产生转动的效果。
在理论力学中,力矩是一种重要的物理量,它可以帮助我们分析和计算物体的平衡状态和运动情况。
本文将介绍力矩的概念、计算方法以及力和力矩的关系,并通过一些实际例子来说明它们的应用。
1. 力与力矩的定义和计算力是物体受到的作用,可以引起物体的形变或运动。
力的大小用牛顿(N)来表示,方向用箭头表示。
在力的作用下,物体会产生力矩。
力矩的计算公式是:力矩 = 力 x 杠杆臂。
杠杆臂是力矩的重要参数,它是指力线与转轴之间的垂直距离。
力的方向和杠杆臂的方向相互垂直时,力矩最大,力对物体的转动效果最明显。
力矩的单位是牛顿米(N·m)。
2. 力矩与平衡条件在物体处于平衡状态时,力矩的总和为零。
这是力学中的一个基本原理,即力矩平衡条件。
根据力矩平衡条件,我们可以计算出物体所受力的大小和方向。
例如,一个杆上挂着两个质量相同的物体A和B,物体A与支点的垂直距离为d1,物体B与支点的垂直距离为d2。
在物体A和B的重力作用下,杆会受到一个向下的重力(由于重力的作用点在杆的中心)。
根据力矩平衡条件,我们可以得到:物体A产生的力矩:M1 = m·g·d1物体B产生的力矩:M2 = m·g·d2杆受到的重力产生的力矩:M3 = 2m·g·(d1 + d2)由于处于平衡状态,力矩总和为零,即M1 + M2 + M3 = 0。
通过解方程可以计算出物体A和B所受重力的大小和方向。
3. 力矩在静力学中的应用力矩在静力学中有广泛的应用。
例如,我们可以使用力矩来分析平衡悬挂物体的情况。
考虑一个悬挂在两个绳子上的物体,绳子的夹角为θ。
当物体处于平衡状态时,绳子所受张力的大小和方向可以通过力矩平衡条件来计算。
假设绳子A的张力为T1,绳子B的张力为T2,物体的重力为G。
根据力矩平衡条件,我们可以得到:绳子A产生的力矩:M1 = T1·d1绳子B产生的力矩:M2 = T2·d2物体的重力产生的力矩:M3 = G·h在平衡状态下,力矩总和为零,即M1 + M2 + M3 = 0。
理论力学下知识点总结一、静力学1. 作用力和反作用力作用力是指物体之间相互作用的力,它是使物体产生变化的原因。
而反作用力是作用力的作用对象对作用力的作用体产生的一种力,大小相等、方向相反。
2. 牛顿定律牛顿第一定律:一个物体如果受到平衡力的作用,将保持原来的状态,即匀速直线运动或静止状态。
牛顿第二定律:一个物体所受的合外力等于它的质量与加速度的乘积,即F=ma。
牛顿第三定律:相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。
3. 力的分解在斜面上,对一个斜面上的物体,可以将它的重力分为垂直于斜面的力和平行于斜面的力,然后分解力的作用,得到物体的加速度和受力情况。
4. 力矩力矩是力偶对物体的作用引起的旋转效果,是物体受力的结果。
力矩的大小等于力乘以力臂的长度,方向垂直于力和力臂所在平面。
二、动力学1. 动量和冲量动量是物体运动时固有的属性,它等于物体的质量乘以速度。
而冲量是力对物体加速度的积分,是描述力的作用效果的物理量。
牛顿第二定律可以表示为动量定理:FΔt=Δp。
2. 动能和动能定理动能是物体运动时所具有的能量,它等于物体的质量乘以速度的平方再乘以1/2。
动能定理表明外力对物体做功,使得物体的动能发生改变。
动能定理可以表示为W=ΔK。
3. 力和功功是力对物体做的功,它等于力乘以位移,力与位移方向一致时做正功,反之做负功。
功可以用来表示物体的动能的变化。
4. 动量守恒定律动量守恒定律指的是在一个封闭系统中,如果系统内部没有受到外力的作用,系统内部各个物体的总动量保持不变。
5. 动能守恒定律动能守恒定律指的是在一个封闭系统中,如果系统内部没有受到非弹性碰撞和外力的作用,系统内部各个物体的总动能保持不变。
三、运动学1. 加速度和速度加速度是物体运动过程中速度变化的快慢程度的物理量,它等于速度的变化量除以时间。
速度是物体在单位时间内移动的距离。
在直线运动中,加速度可以表示为v=at。
2. 弹性碰撞和非弹性碰撞在弹性碰撞中,碰撞前后物体的总动能保持不变;而在非弹性碰撞中,碰撞前后物体的总动能发生改变,一部分能量转化为其他形式。
理论力学一 静力学(平衡问题)01力的投影与分力 02约束与约束力 03二力构件04平面汇交力系的简化 05力矩与力偶理论06平面一般力系的简化:主矢和主矩 07平面一般力系的平衡方程 08零杆的简易判断方法 09刚体系统的平衡问题 10考虑摩擦时的平衡问题01力的投影与分力 基本概念:刚体:在力的作用下大小和形状都不变的物体。
平衡:物体相对于惯性参考系保持静止或均速直线运动的状态 力的三要素:力的大小、方向、作用点。
集中力:力在物体上的作用面积很小,可以看做是一个作用点,单位:N 。
分布力:小车的重力均匀分布在桥梁上面,这种力称为分布力(也称为均布荷载),常用q 表示,单位N/m ,若均布荷载q 作用的桥梁的长度是L ,则均布荷载q 的合力就等于q ×L ,合力的作用点就在桥梁的中点位置。
力的投影和分力 1)在直角坐标系: 投影(标量):cos x F F α= cos y F F β=分力(矢量)cos x F F i α=u u r r cos y F F j β=u u r r2)在斜坐标系: 投影(标量):cos x F F α= cos()y F F ϕα=-分力(矢量)(cos sin cot )x F F F i ααϕ=-u u r rsin sin y F F j αβ=u u r r02约束与约束力约束:对于研究对象起限制作用的其他物体。
约束力方向:总是与约束所能阻止物体运动的方向相反,作用在物体和约束的接触点处。
约束力大小:通常未知,需要根据平衡条件和主动力求解。
(1)柔索约束:柔索约束:由绳索、皮带、链条等各种柔性物体所形成的约束,称为柔索约束。
特点:只能承受拉力,不能承受压力。
约束力:作用点位接触点,作用线沿拉直方向,背向约束物体。
(2)光滑面约束光滑面约束:由光滑面所形成的约束称为光滑面约束。
约束性质:只能限制物体沿接触面公法线趋向接触面的位移。
特点:只能受压不能受拉,约束力F 沿接触面公法线指向物体。
.Word 资料机械设计基础(含工程力学)课程标准课程代码:课程性质:必修课课程类型:B类课(一)课程目标《工程力学》是机械设计与制造专业的一门重要的主干课程。
在整个教学过程中应从高职教育培养目标和学生的实际情况出发,在教学内容的深广度、教学方法上都应与培养高技能人才目标接轨。
通过本课程的学习,使学生达到以下目标:1、深刻理解力学的基本概念和基本定律,熟练掌握解决工程力学问题的定理和公式。
能将实际物体简化成准确的力学模型,应用力学基本概念和定理解决相关力学问题;2、能对静力学问题进行分析和计算,对刚体、物系进行受力分析和平衡计算;3、正确应用公式对受力不很复杂的构件进行强度、刚度和稳定性的计算;4、通过应力状态分析建立强度理论体系。
5、步掌握材料的力学性能及材料的相关力学实验。
掌握基本实验的操作及测试方法(二)课程内容与要求工程力学分为理论力学和材料力学部分。
理论力学部分以静力学为主,包括静力学基础、力系的简化、力系的平衡。
材料力学部分包括杆件的四种基本变形(轴向拉伸与压缩、剪切与挤压、扭转、弯曲)的内力、应力和变形,应力状态与强度理论,组合变形杆的强度和压杆稳定。
第一篇静力学静力学主要内容有:力的概念,约束与约束反力,受力分析和受力图;力对点的矩,力对轴的矩,力偶与力偶系的简化,力的平移,力系的简化;平衡条件与平衡方程,特殊力系的平衡,空间一般力系的平衡,物体系的平衡,平面静定桁架的内力,考虑摩擦时的平衡。
第二篇材料力学材料力学主要内容有:材料的力学性能,拉伸与压缩时的力学性能,构件的强度、刚度和稳定性,强度条件、刚度条件,应力状态分析与四种强度理论。
课程要求:熟练掌握静力学的基本概念:四个概念、六个公理及推论、一个定理。
能应用静力学的基本理论对刚体进行受力分析;明确平面任意力系的简化;熟练掌握平面力系的平衡方程及其应用;掌握材料力学的基本概念;掌握四种变形方式的内力、应力、内力图;学会四种载荷作用方式下强度、刚度、稳定性计算;理解应力状态与强度理论。
理论力学考试知识点归纳第二十五讲静力学一、内容提要:本讲主要是讲解静力学的基本概念、力的分解、力的投影、力对点的矩与力对轴的矩、平面汇交力系的合成与平衡、力偶理论等问题。
二、本讲的重点是:静力学公理、常见的约束类型、力对点的矩、平面汇交力系、平面力偶系的合成与平衡本讲的难点是:受力图分析、平面力偶系的合成与平衡三、内容讲解:1、静力学的基本概念:(一)质点、刚体及质点系质点——具有几何位置,不计大小形状而有一定质量的物体。
刚体——形状大小都要考虑的,但在任何受力情况下体内任意两点的距离保持不变的物体。
质点系——由一些相互联系着的质点组成,又称为系统或机械系统。
平衡的概念——平衡是指物体相对于周围物体(惯性参考系)保持其静止或作匀速直线运动的状态。
(二)力力是物体之间的相互作用,这种作用使物体的运动状态或形状发生变化。
在理力中仅讨论力的运动效应,不讨论变形效应。
力对物体的作用效果取决于力的大小、方向和作用点三要素,因此力是矢量,它符合矢量运算法则。
经验表明,作用于刚体的力可沿其作用线移动而不致改变其对于刚体的运动效应。
力的这种性质称为力的可传性,所以力是滑动矢量。
(三)静力学公理公理一(二力平衡公理):作用在同一刚体的两个力成平衡的必要与充分条件为等量、反向、共线。
只受两个力作用并处于平衡的物体称为二力体,如果物体是个杆件,也称二力杆。
公理二(加减平衡力系公理):在任一力系中加上或减去一个平衡力系,不改变原力系对刚体的运动效应。
公理三(力的平行四边形法则):作用于同一质点或刚体上同一点的两个力,可以按平行四边形法则合成。
公理四(作用与反作用定律):两物体间相互作用力同时存在,且等量、反向、共线,分别作用在这两个物体上。
此处应注意:虽然作用力与反作用力大小相等,方向相反,但分别作用在两个不同的物体上。
因此决不可认为这两个力相互平衡。
这与公理一有本质区别,不能混同。
公理五(刚化原理):如变形体在已知力系作用下处于平衡状态,则将此变形体转换成刚体,其平衡状态不变。