理论力学 平面任意力系例题
- 格式:ppt
- 大小:1.63 MB
- 文档页数:42
平面任意力系习题答案平面任意力系是指作用在物体上的力不满足平面力偶系或平面共面力系的条件,即力的作用线不在同一平面上,也不互相平行。
解决这类问题通常需要应用静力学的基本原理,如力的平衡条件、力矩平衡等。
习题1:已知一平面任意力系作用在刚体上,力F1=50N,方向为水平向右;力F2=30N,方向为竖直向上;力F3=40N,方向为与水平面成30度角斜向上。
求力系的合力。
答案:首先,将力F3分解为水平分量和竖直分量:- 水平分量:F3x = F3 * cos(30°) = 40 * (√3/2) = 20√3 N- 竖直分量:F3y = F3 * sin(30°) = 40 * (1/2) = 20 N然后,计算合力的水平分量和竖直分量:- 水平合力:Fx = F1 + F3x = 50 + 20√3 N- 竖直合力:Fy = F2 + F3y = 30 + 20 N最后,计算合力的大小和方向:- 合力大小:F = √(Fx^2 + Fy^2) = √((50 + 20√3)^2 + (30 + 20)^2) N- 方向:与水平面夹角θ满足tan(θ) = Fy / Fx习题2:一个平面任意力系作用在刚体上,已知力F1=60N,作用点A;力F2=40N,作用点B;力F3=50N,作用点C。
A、B、C三点不共线。
求力系的合力矩。
答案:首先,计算各力对任意一点(如A点)的力矩:- 力矩M1 = 0(因为力F1作用在A点,力矩为0)- 力矩M2 = F2 * (B到A的距离)- 力矩M3 = F3 * (C到A的距离)然后,计算合力矩:- 合力矩M = M1 + M2 + M3由于题目没有给出具体的距离,我们无法计算出具体的数值。
但是,上述步骤提供了计算合力矩的方法。
习题3:已知一平面任意力系作用在刚体上,力F1和F2的合力为100N,方向与F1相反,求F1和F2的大小。
答案:设F1的大小为xN,F2的大小为yN。
第二章平面力系一、是非题1.一个力在任意轴上投影的大小一定小于或等于该力的模,而沿该轴的分力的大小则可能大于该力的模。
()2.力矩与力偶矩的单位相同,常用的单位为牛·米,千牛·米等。
()3.只要两个力大小相等、方向相反,该两力就组成一力偶。
()4.同一个平面内的两个力偶,只要它们的力偶矩相等,这两个力偶就一定等效。
()5.只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应。
()6.作用在刚体上的一个力,可以从原来的作用位置平行移动到该刚体内任意指定点,但必须附加一个力偶,附加力偶的矩等于原力对指定点的矩。
()7.某一平面力系,如其力多边形不封闭,则该力系一定有合力,合力作用线与简化中心的位置无关。
()8.平面任意力系,只要主矢R≠0,最后必可简化为一合力。
()9.平面力系向某点简化之主矢为零,主矩不为零。
则此力系可合成为一个合力偶,且此力系向任一点简化之主矩与简化中心的位置无关。
()10.若平面力系对一点的主矩为零,则此力系不可能合成为一个合力。
()11.当平面力系的主矢为零时,其主矩一定与简化中心的位置无关。
()12.在平面任意力系中,若其力多边形自行闭合,则力系平衡。
()二、选择题1.将大小为100N的力F沿x、y方向分解,若F在x轴上的投影为86.6N,而沿x方向的分力的大小为115.47N,则F在y轴上的投影为。
①0;②50N;③70.7N;④86.6N;⑤100N。
2.已知力F的大小为F=100N,若将F沿图示x、y方向分解,则x向分力的大小为N,y向分力的大小为N。
①86.6;②70.0;③136.6;④25.9;⑤96.6;3.已知杆AB长2m,C是其中点。
分别受图示四个力系作用,则和是等效力系。
①图(a)所示的力系;②图(b)所示的力系;③图(c)所示的力系;④图(d)所示的力系。
4.某平面任意力系向O点简化,得到如图所示的一个力R 和一个力偶矩为Mo的力偶,则该力系的最后合成结果为。
平面任意力系(一)一、填空题1、平面任意力系的主矢RF '与简化中心的位置 无 关,主矩o M 一般与简化中心的位置 有 关,而在__主矢为零___的特殊情况下,主矩与简化中心的位置 无 __ 关.2、当平面力系的主矢等于零,主矩不等于零时,此力系合成为_一个合力偶.3、如右图所示平面任意力系中,F F F F 1234===,此力系向A 点简化的结果是 0R F '≠,0A M ≠ ,此力系向B 点简化的结果是0RF '≠,0A M = . 4、如图所示x 轴与y 轴夹角为α,设一力系在oxy 平面内对y 轴和x轴上的A ,B 点有∑A m 0)(=F ,∑B m 0)(=F ,且∑=0y F ,但∑≠0x F ,l OA =,则B 点在x 轴上的位置OB =___/cos l θ ____.(题4图) (题5图)5、折杆ABC 与CD 直杆在C 处铰接,CD 杆上受一力偶m N 2⋅=M 作用,m 1=l ,不计各杆自重,则A 处的约束反力为___2N___. 二、判断题(√ ) 1.若一平面力系对某点之主矩为零,且主矢亦为零,则该力系为一平衡力系.(√ ) 2.在平面力系中,合力一定等于主矢.(× ) 3.在平面力系中,只要主矩不为零,力系一定能够进一步简化.1F 2F 3F 4F AB(√ ) 4.当平面任意力系向某点简化结果为力偶时,如果再向另一点简化,则其结果是一样的.(×) 5.平面任意力系的平衡方程形式,除一矩式,二矩式,三矩式外,还可用三个投影式表示.(× ) 6.平面任意力系平衡的充要条件为力系的合力等于零.(× ) 7.设一平面任意力系向某一点简化得一合力,如另选适当的点为简化中心,则力系可简化为一力偶.(√ ) 8.作用于刚体的平面任意力系主矢是个自由矢量,而该力系的合力(若有合力)是滑动矢量,但这两个矢量等值,同向.( × ) 9.图示二结构受力等效.三、选择题1、关于平面力系与其平衡方程式,下列的表述正确的是_____D_ ___A.任何平面任意力系都具有三个独立的平衡方程。
理论力学部分第一章 静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
( )2.两端用光滑铰链连接的构件是二力构件。
( )3.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
( )4.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
( )5.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
( )6.约束反力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
( )二、选择题1.若作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。
则其合力可以表示为 。
① 1F -2F ;② 2F -1F ;③ 1F +2F ;2.三力平衡定理是 。
① 共面不平行的三个力互相平衡必汇交于一点;② 共面三力若平衡,必汇交于一点;③ 三力汇交于一点,则这三个力必互相平衡。
3.在下述原理、法则、定理中,只适用于刚体的有 。
① 二力平衡原理; ② 力的平行四边形法则;③ 加减平衡力系原理; ④ 力的可传性原理;⑤ 作用与反作用定理。
4.图示系统只受F 作用而平衡。
欲使A 支座约束力的作用线与AB 成30︒角,则斜面的倾角应为________。
① 0︒; ② 30︒;③ 45︒; ④ 60︒。
5.二力A F 、B F 作用在刚体上且0=+B A F F ,则此刚体________。
①一定平衡; ② 一定不平衡;③ 平衡与否不能判断。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
3.作用在刚体上的两个力等效的条件是。
4.在平面约束中,由约束本身的性质就可以确定约束力方位的约束有,可以确定约束力方向的约束有,方向不能确定的约束有(各写出两种约束)。
第三章 平面任意力系3 - 1 在边长m 2=a 的正方形平板OABC 的A 、B 、C 三点上作用有四个位于板平面内的力:31=F kN ,52=F kN ,63=F kN ,44=F kN ,7=M m kN ⋅。
求该力系向点O 简化的结果和最后的简化结果。
y ya题 3 - 2 图题 3 - 1 图题 3 - 3 图FFFFFFFM2cm1m0.5my3 – 2 矩形板OABC 平面内受力和力偶的作用如图。
已知。
求该力系向点O 简化的结果和最后的简化结果,并写出合力作用线的方程。
501=F N ,402=F N ,15=M m N ⋅。
3 - 3 某平面任意力系向O 点简化,得到N 10'=F ,m N 10⋅=O M ,方向如图所示,求将该力系向A 点简化的结果。
3 –4 图示平面任意力系中2401=F N ,N 802=F ,N 403=F ,N 1104=F ,mm N 2000⋅=M 。
各力作用位置如图所示,图中尺寸的单位为mm 。
求:(1)力系向O 点简化的结果;(2)力系的合力。
3 -5在图示刚架中,已知kN/m 3=m q ,kN 26=F ,m kN 10⋅=M ,不计刚架自重。
求固定端A 处的约束力。
3 – 6 无重水平梁的支承和载荷如图a 、b 所示。
已知力F 、力偶矩为M 的力偶和强度为q 的均布载荷。
求支承A 和B 处的约束力。
3 – 7 水平梁AB 由铰接A 和杆BC 所支持,如图所示。
在梁上D 处用销子安装半径为m 1.0=r 的滑轮。
有一跨过滑轮的绳子,其一端水平地系于墙上,另一端悬挂有重N 1800=P 的重物。
如m 2.0=AD ,m 4.0=BD ,045=ϕ,且不计梁、杆、滑轮和绳的重量。
求铰链A 和杆BC 对梁的约束力。
3 – 8 在图示a ,b 两连续梁中,已知q ,M ,l 及ϕ,不计自重,求各连续梁在A 、B 、C 在三处的约束力。
题 3 – 7 题 3 –83-9 由AC 和CD 构成的组合梁通过铰链C 连接。