理论力学3-平面任意力系的简化与求解
- 格式:ppt
- 大小:1.39 MB
- 文档页数:33
第 4 讲教案第4讲平面任意力系简化第三章 平面任意力系力的作用线分布在同一平面内的力系称为平面力系。
(简易吊车梁)当物体所受的力对称于某一平面时,也可简化为在对称平面内的平面力系。
本章将讨论平面任意力系(简称平面力系)的简化和平衡问题。
§3-1 力线平移定理实际工程与实际生活中与力线平移有关的例子是很多的。
例如、驾船划桨,若双桨同时以相等的力气划,船在水面只前进不转动;若单桨划,船不仅有向前的运动,而且有绕船质心的转动。
此外,乒乓球运动中的各种旋转球也都与力线平移有关。
F A xF AyG 1 G 2F BABα设计: 1、用图片(课件中的简易吊车梁受力)引入平面任意力系。
2、启发学员思考分析任意力系合成和平衡问题的方法:化复杂问题为简单问题。
3、由分析方法引出力线平移设计: 1、用动画讲解力线平移定理。
ABCα定理:作用在刚体上某点的力F可平行移到任一点,平移时需附加一个力偶,附加力偶的力偶矩等于原力F对新作用点的矩。
如图。
证明:在点B上加一平衡力系(F',F"),令F'=-F"=F。
则力F与力系(F',F",F)(图b)等效或与力系[F',(F,F")](图c)等效。
后者即为力F向B点平移的结果。
附加力偶(F,F’)的力偶矩M=Fd=M B(F)证毕。
·该定理指出,一个力可等效于一个力和一个力偶,或一个力可分解为作用在同平面内的一个力和一个力偶。
其逆定理表明,在同平面内的一个力和一个力偶可等效或合成一个力。
·该定理既是复杂力系简化的理论依据,又是分析力对物体作用效应的重要方法。
例1、如单手攻丝时(图),由于力系(F',M O)的作强调:1、该定理表明一个力可分解为同平面内的一个力和一个力偶。
2、其逆定理表明,在同平面内的一个力和一个力偶可合用,不仅加工精度低,而且丝锥易折断。
第三章平面任意力系3.1 平面任意力系的简化·主矢与主矩3.2 平面任意力系的平衡条件与平衡方程3.3 物体系统的平衡·静定与静不定问题3.4 平面简单桁架的内力计算3.1 平面任意力系的简化·主矢与主矩所谓平面任意力系是指力系中各力的作用线在同一平面内且任意分布的力系,简称平面力系。
在实际工程中经常会遇到平面任意力系的情形,例如,下图所示的曲柄连杆机构,受力F ,矩为M 1,M 2的力偶以及支座反力F Ax ,F Ay 和F N 的作用,这些力及力偶构成平面任意力系。
3、固定端(或插入端)约束FAxFAyM AA4、平面任意力系的简化结果分析(1)简化为一个力偶当F R = 0,M O ≠0则原力系合成为合力偶,其矩为∑=)(i O O M M F 此时主矩与简化中心选择无关,主矩变为原力系合力偶。
由此很容易证得平面任意力系的合力矩定理:平面任意力系的合力对作用面内任一点的矩等于力系中各力对同一点的矩的代数和。
即∑=)()(R i O O M M F F 当F R ’= 0,M O = 0则原力系平衡。
(3)平面力系平衡例题3-3考虑一小型砌石坝的1m长坝段,受重力和的静水压力作用。
已知h = 8 m,a= 1.5 m,b= 1 m,P1=600 kN,P2=300 kN,单位体积的水重γ = 9.8 kN/m3。
求(1)将重力和水压力向O点简化的结果,(2)合力与基线OA的交点到点O的距离x,以及合力作用线方程。
解:(1)以点O 为简化中心,求主矢∑=′x RxF F ()()kNF F yxR1.95322=+=′∑∑F 329.0cos =′=∑RxF F θ944.0cos −=′=∑RyF F β°±=79.70θ°±°=21.19180β故主矢在第四象限内,与x 轴的夹角为°−79.70F R ’M O θβkN 6.313=22121h qh γ==kN P P F F y Ry 90021−=−−==′∑(2)以点O 为简化中心,求主矩F R ’M O θβ()()()q M P M P M M O O O O ++=21bP a P hh 212321−+×−=γmkN ⋅−= 27.236表明主矩的方向与假设方向相反,及主矩的方向为顺时针。