章3 量子力学初步(1)
- 格式:ppt
- 大小:2.65 MB
- 文档页数:28
半导体重点总结(1-7章)绪论1. 制作pn 结的基本步骤。
(重点,要求能够画图和看图标出步骤)第一章. 固体晶体结构1. 半导体基本上可以分为两类:位于元素周期表IV 元素半导体材料和化合物半导体材料。
大部分化合物半导体材料是III 族和V 族化合形成的。
2. 元素半导体,如:Si 、Ge ; 双元素化合物半导体,如:GaAs (III 族和V 族元素化合而成)、InP 、ZnS 。
类似的也有三元素化合物半导体。
3. 固体类型:(a )无定形(b )多晶(c )单晶 图见P6 多晶:由两个以上的同种或异种单晶组成的结晶物质。
多晶没有单晶所特有的各向异性特征 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性。
似晶非晶。
4. 原胞和晶胞:原胞是可以通过重复形成晶格的最小晶胞。
晶胞就是可以复制出整个晶体 的小部分晶体。
5. (a )简立方 1 个原子(b )体心立方 2 个原子(c )面心立方 4 个原子计算方法:顶点的一个原子同时被8个晶胞共享,因此对于所求晶胞而言只占有了该原子的1/8;边上、面心和体心原子分别同时被4,2,1个晶胞共享,对于所求晶胞而言分别占有了该原子的1/4,1/2,1/2.如此计算。
例如(c )图中8*1/8+6*1/2=1+3=4. 6. 晶格常数:所取的立方体晶胞的边长。
单位为A ,1A=10^-8cm. 7. 原子体密度:原子个数/体积。
比如上图(c )假设晶格常数为5A 。
求原子体密度。
8.密勒指数(取面与x,y,z 平面截距的倒数):密勒指数描述晶面的方向,任何平行平面都有相同的密勒指数。
9. 特定原子面密度:原子数/截面面积。
计算方法:计算原子面密度时求原子个数的方法与求体密度时的方法类似,但是应当根据面的原子共用情况来计算。
其中有一种较为简便的算法:计算该面截下该原子的截面的角度除处以360,即为该面实际占有该原子的比例。
举例1:计算下图(a )中所显示面所拥有的原子个数和原子面密度:该面截取了顶角四个原子和体心一个原子,顶角每个原子与面的截面角度为90度,90/360=1/4,体心原子与面的截面角度为360度,360/360=1,所以原子总数,1+1+1/4*4=2()223384 3.210510cm ρ-==⨯⨯个原子/举例2:第一次作业中有一道小题是计算硅晶体在晶面(1,1,1)的面密度,晶格常数为a ,如下图可以知道如图所示的等边三角形的边长为√2*a,三个角顶点截面角度为60度,所以该面实际占据这个三个点的比率都为1/6,三个面心点截面角度为180度,所以该面实际占据这个三个点的比率都为1/2.所以该面拥有原子数为3*1/6+3*1/2=1/2+3/2=2.等边三角形面积为√3/2*a^2,所以可以算出面密度为4/(√3a^2).10. 晶向:与晶面垂直的矢量(在非简立方体晶格中不一定成立)。
原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。
《原子物理》课程教学大纲课程名称:原子物理课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56学时 3.5学分其中实验学时:0 学时一、课程性质、教学目标原子物理学属普通物理范畴,是力学、电磁学和光学的后续课程,是物理专业的一门重要基础课。
本课程着重从物理实验规律出发,引进近代物理关于微观世界的重要概念和原理,探讨原子的结构和运动规律,介绍在现代科学技术上的重大应用。
通过本课程的教学,使学生建立丰富的微观世界的物理图象和物理概念。
通过对重要实验现象以及理论体系逐步完善过程的分析,培养学生分析问题和解决问题的能力。
本课程是量子力学、固体物理学、原子核物理学、近代物理实验等课程的基础课。
课程教学目标如下:课程教学目标1:使学生初步了解并掌握原子的结构和运动规律,了解物质世界的原子特性,原子层次的基本相互作用,为今后继续学习量子力学、固体物理学、近代物理实验等课程打下坚实基础。
课程教学目标2:使学生了解并适当涉及一些正在发展的原子物理学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。
的支撑强度来定性估计,H表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求理解原子壳式结构,了解原子物理学的发展和学习方法。
掌握原子能量级概念和光谱的一般情况。
理解氢原子的波尔理论,了解富兰克-赫兹实验。
了解氢原子能量的相对论效应。
了解盖拉赫实验,理解原子的空间取向量子化,理解物质的波粒二象性了解不确定原则。
理解波函数及其物理意义和薛定谔方程。
了解碱金属光谱的精细结构,电子自旋轨道的相互作用。
理解两个价电子的原子态,了解泡利原理。
理解原子磁矩及外磁场对原子的作用,了解顺磁共振和塞曼效应,掌握原子的壳层结构和原子基态的电子组态。
了解康普顿效应,理解X 射线的衍射。
执行本大纲应注意的问题:1.原子物理学是一门实验性很强的学科,关于原子结构的一切知识均建立在实验的基础上,学生在学习过程中应特别注重这一点。