结构化学第1章 量子力学基础和原子结构-1-01
- 格式:ppt
- 大小:250.50 KB
- 文档页数:24
结构化学复习提纲第一章量子力学基础了解量子力学的产生背景−黑体辐射、光电效应、玻尔氢原子理论与德布罗意物质波假设以及海森堡测不准原理,掌握微观粒子的运动规律、量子力学的基本假设与一维势阱中粒子的Schrödinger方程及其解。
重点:微观粒子的运动特征和量子力学的基本假设。
一维势阱中粒子的Schrödinger方程及其解。
1. 微观粒子的运动特征a. 波粒二象性:能量动量与物质波波长频率的关系ε = hνp = h/λb. 物质波的几率解释:空间任何一点物质波的强度(即振幅绝对值的平方)正比于粒子在该点出现的几率.c. 量子化(quantization):微观粒子的某些物理量不能任意连续取值, 只能取分离值。
如能量,角动量等。
d. 定态:微观粒子有确定能量的状态玻尔频率规则:微观粒子在两个定态之间跃迁时,吸收或发射光子的频率正比于两个定态之间的能量差。
即e. 测不准原理: 不可能同时精确地测定一个粒子的坐标和动量(速度).坐标测定越精确(∆x =0),动量测定就越不精确(∆px = ∞),反之动量测定越精确(∆px =0),坐标测定就越不精确 (∆x = ∞)f. 微观粒子与宏观物体的区别: (1). 宏观物体的物理量连续取值;微观粒子的物理可观测量如能量等取分离值,是量子化的。
(2). 微观粒子具有波粒二象性,宏观物体的波性可忽略。
(3). 微观粒子适用测不准原理,宏观物体不必。
(4). 宏观物体的坐标和动量可以同时精确测量,因此有确定的运动轨迹,其运动状态用坐标与动量描述;微观粒子的坐标和动量不能同时精确地测量,其运动没有确定的轨迹,运动状态用波函数描述。
(5). 宏观物体遵循经典力学;微观粒子遵循量子力学。
(6). 宏观物体可以区分;等同的微观粒子不可区分。
2. 微观粒子运动状态的描述a. 品优波函数的三个要求: 单值连续平方可积波函数exp(i mθ) m的取值?b. 将波函数归一化θ = 0~2πc. 波函数的物理意义ψ|(x, y, z, t)|2d x d y d z表示在t时刻在空间小体积元(x~x+d x, y~y+d y, z~z+d z)中找到粒子的几率d. 波函数的单位*3. 物理量与厄米算符每个物理可观测量都可以用一个厄米算符表示a. 线性算符与厄米算符b. 证明id/dx是厄米算符*c. 写出坐标,动量,能量,动能,势能与角动量的算符d. 写出一个N电子原子,或N电子M核的分子的哈密顿算符电子体系的哈密顿算符(在国际单位或原子单位下)。
第一章量子力学基础和原子结构§1-1量子力学建立的实验和理论背景1. 黑体辐射问题和普朗克的量子假说黑体辐射问题:黑体可以吸收全部外来辐射。
黑体受热会辐射能量。
若以Eν表示黑体辐射的能量,Eνdν表示频率在ν到v+d(范围内、单位时间、单位表面积上辐射的能量。
以E(对(作图,得到能量分布曲线。
从经典物理推出的公式无法解释黑体辐射的能量分布曲线:1)从粒子角度,由经典热力学得到维恩公式,只适用于高频范围;2)从波动角度,由经典电动力学和统计物理理论得到瑞利-金斯公式,只适用于低频范围。
普朗克的量子假说:普朗克首先提出一个经验公式,和实验结果一致。
在寻求理论上的解释时,发现经典物理学是无法解决这个问题。
要使新的公式成立,必须假设能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。
而经典物理认为一切自然的过程都是连续不断的。
= 1 \* GB3 ①假设黑体内的分子、原子以不同的频率做简谐振动,这种做简谐振动的分子、原子称为谐振子。
= 2 \* GB3 ②对于振动频率为(0的谐振子,能量具有最小单位(0,该谐振子的能量E只能是(0的整数倍,而不能是其它值,即E=nε0n=1,2,3…(1-1-1)③能量的最小单位ε0称为能量子,或量子,它和振动频率ν0有如下关系:ε0=hν0(1-1-2)其中h为常数,大小为6.626×10-34J⋅s,称为普朗克常数,④谐振子吸收或发射能量时,能量的变化为∆E=|E1-E2|=|n1ε0-n2ε0|=|n1-n2|ε0(1-1-3)即,能量的吸收和发射不是连续的,必须以量子的整数倍一份一份的进行。
这种物理量的不连续变化称为量子化。
2. 光电效应和爱因斯坦的光量子论光电效应:光照在金属表面上,金属发射出电子的现象。
金属中的电子从光获得足够的能量而逸出金属表面,称为光电子,由光电子组成的电流叫光电流。
光电效应的实验事实:①对于特定的金属,电子是否逸出,决定于光的频率,与光的强度无关。
福师《结构化学》第一章量子力学基础和原子结构课堂笔记◆主要知识点掌握程度了解测不准关系,掌握和的物理意义;掌握一维势箱模型方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。
◆知识点整理一、波粒二象性和薛定谔方程1.物质波的证明德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为:对于低速运动,质量为m的粒子:其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过常数h联系起来,普朗克常数焦尔·秒。
实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。
λν量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。
如微观体系的能量和角动量等物理量就是量子化的,能量的改变为ν的整数倍。
2.测不准关系:内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”:(y、z方向上的分量也有同样关系式)ΔX是物质位置不确定度,Δ为动量不确定度。
该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。
对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。
3.波函数的物理意义——几率波实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。
1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。
这规律表明:对大量电子而言,在衍射强度大的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。
结构化学基础总结第一章:量子力学基础知识一、3个实验1、黑体辐射实验:(1)黑体:被认为是可以吸收全部外来辐射的物体,是理想的辐射体。
理想黑体可以吸收所有照射到它表面的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该黑体的温度有关,与黑体的材质无关。
可见光:400-700nm(2)假设:黑体吸收或发射辐射的能量是不连续的,而是分子一份一份的,即,量子化的。
E=hμ2、光电效应实验和Einstein光子学说:光量子化和光的波粒二象性本质。
(1)Einstein提出来了光量子(光子)。
波的性质:衍射、干涉。
E=hμ粒子的性质:反射、折射。
P=h/λ光子的动能与入射光的频率成正比,与光的强度无关。
(2)Heisenberg不确定度关系:Δq∙Δp≥ℏΔq坐标不确定量;Δp动量不确定量;q广义坐标单缝衍射:某粒子坐标确定得愈精确,其相应动量就愈不确定。
h可作为区分宏、微观粒子的标准:宏观h=0,微观h不能看作0。
3、氢原子光谱与Born氢原子模型:(1)氢原子光谱:指的是氢原子内之电子在不同能级跃迁时所发射或吸收不同波长、能量之光子而得到的光谱。
氢原子光谱为不连续的线光谱,自无线电波、微波、红外光、可见光、到紫外光区段都有可能有其谱线。
根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。
(2)在卢瑟福模型的基础上,玻尔提出了电子在核外的量子化轨道,解决了原子结构的稳定性问题,描绘出了完整而令人信服的原子结构学说。
定态假设:原子的核外电子在轨道上运行时,只能够稳定地存在于具有分立的、固定能量的状态中,这些状态称为定态(能级),即处于定态的原子能量是量子化的。
此时,原子并不辐射能量,是稳定的。
激发态:原子受到辐射、加热或通电时,获得能量后电子可以跃迁到离核较远的轨道上去,即电子被激发到高能量的轨道上,这时原子处于激发态。
处于激发态的电子不稳定,可以跃迁到离核较近的轨道上,同时释放出光子。
二、量子力学基本假设1、假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。
福师《结构化学》第一章量子力学基础和原子结构课堂笔记◆主要知识点掌握程度◆了解测不准关系, 掌握和的物理意义;掌握一维势箱模型方程的求解以与该模型在共轭分子体系中的应用;理解量子数n, l, m的取值与物理意义;掌握波函数和电子云的径向分布图, 原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。
◆知识点整理一、波粒二象性和薛定谔方程1. 物质波的证明德布罗意假设: 光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质, 即波粒二象性, 其基本公式为:对于低速运动, 质量为m的粒子:其中能量E和动量P反映光和微粒的粒性, 而频率ν和波长λ反映光和微粒的波性, 它们之间通过常数h联系起来, 普朗克常数焦尔·秒。
实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。
λν量子化是指物质运动时, 它的某些物理量数值的变化是不连续的, 只能为某些特定的数值。
如微观体系的能量和角动量等物理量就是量子化的, 能量的改变为ν的整数倍。
2. 测不准关系:内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等), 不能同时具有确定的坐标和动量, 它们遵循“测不准关系”:(y、z方向上的分量也有同样关系式)ΔX是物质位置不确定度, Δ为动量不确定度。
该关系是微观粒子波动性的必然结果, 亦是宏观物体和微观物体的判别标准。
对于可以把h看作O的体系, 表示可同时具有确定的坐标和动量, 是可用牛顿力学描述的宏观物体, 对于h不能看作O的微观粒子, 没有同时确定的坐标和动量, 需要用量子力学来处理。
3. 波函数的物理意义——几率波实物微粒具有波动性, 其运动状态可用一个坐标和时间的函数来描述, 称为波函数或状态函数。
1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明, 电子的波动性是和微粒的行为的统计性联系在一起的, 波函数正是反映了微粒行为的统计规律。
《量⼦⼒学基础和原⼦、分⼦及晶体结构》习题和思考题《结构化学》课程作业题第⼀部分:《量⼦⼒学基础和原⼦结构》思考题与习题1. 经典物理学在研究微观物体的运动时遇到过哪些困难?举例说明之。
如何正确对待归量⼦论?2. 电⼦兼具有波动性的实验基础是什么?宏观物体有没有波动性?“任何微观粒⼦的运动都是量⼦化的,都不能在⼀定程度上满⾜经典⼒学的要求”,这样说确切吗?3. 怎样描述微观质点的运动状态?为什么?波函数具有哪些重要性质?为什么?4. 简述薛定谔⽅程得来的线索。
求解该⽅程时应注意什么?5. 通过⼀维和三维势箱的解,可以得出哪些重要結論和物理概念?6. 写出薛定谔⽅程的算符表达式。
你是怎样理解这个表达式的? *7. 量⼦⼒学中的算符和⼒學量的关系怎样?8. 求解氢原⼦和类氢离⼦基态和激发态波函数的思想⽅法是怎样的? 9. 通过氢原⼦薛定谔⽅程⼀般解的讨论明确四个量⼦数的物理意义。
10. 怎样根据波函数的形式讨论“轨道”和电⼦云图象?为什么不能说p +1和p -1就是分别代表p x 和p y ? 11. 样来研究多电⼦原⼦的结构?作过哪些近似?⽤过哪些模型?试简单说明之。
12. 电⼦的⾃旋是怎样提出的?有何实验依据?在研究原⼦内电⼦运动时,我们是怎样考虑电⼦⾃旋的?*13. 哈特⾥-福克SCF 模型考虑了⼀些什么问题?交换能有何意义?14. 怎样表⽰原⼦的整体状态?光谱项、光谱⽀项各代表什么含义?洪特规则、选择定则⼜是讲的什么内容?15. 原⼦核外电⼦排布的规律是什么?现在哪些问题你⽐过去理解得更加深⼊了?通过本部分的学习,你对微观体系的运动规律和特点掌握了多少?在思想⽅法上有何收获?16. 巴尔末起初分析氢原⼦光谱是⽤波长)(422-=n n c λ,其中c 为常数,n 为⼤于2的正整数,试⽤⾥德伯常数H R ~求出c 值。
17. 试计算氢原⼦中电⼦处于波尔轨道n = 1和n = 4时的动能(单位:J )和速度(单位:m·s -1)。
《结构化学》课程重点难点Part1第一章量子力学基础和原子结构第一节经典物理学的困难和量子论的诞生本节重点:1.与经典物理学理论相矛盾的实验现象,旧量子理论的内容与优缺点;2.量子论的建立;3.德布罗依关系式;4.不确定关系。
本节难点:1.区分旧量子论和量子论。
旧量子论本质上仍属于经典物理学分范畴。
2.光和微观实物粒子都有波动性(波性)和微粒性(粒性)两重性质。
第二节实物微粒运动状态的表示法及态叠加原理本节重点:1.波函数的性质;2.量子力学态叠加原理。
本节难点:量子力学是描述微观粒子运动规律的科学,它包含若干基本假设。
由此出发可以建立一个体系,推导出许多重要结论,解释和预测实验。
这些假设不能用逻辑方法加以证明,其正确性只能由实践检验。
其中波函数和量子力学态叠加原理都属于量子力学的基本假设。
第三节实物微粒的运动规律-薛定谔方程本节重点:1.Schrödinger方程;2.箱中粒子的Schrödinger方程及其解。
本节难点:以一维势箱粒子为例,用量子力学原理去求解其状态函数Ψ及其性质,以了解用量子力学解决问题的途径和方法。
由一维势箱粒子实例及量子力学基本原理可得到受一定势场束缚的微观粒子的共同特性,即量子效应:(1)粒子可存在多种运动状态Ψi;(2)能量量子化;(3)存在零点能;(4)粒子按几率分布,不存在运动轨道;(5)波函数可为正值、负值和零值,为零值的节点越多,能量越高。
第四节定态Schrödinger 的算符表达式本节重点:1.算符和力学量的算符表示;2.能量算符本征方程、本征值和本征函数。
本节难点:假设:在量子力学中每一个力学量和一个算符Â相应,当ÂΨ=a Ψ时,则Ψ所代表的状态,对于力学量A 来说具有确定的数值,反之,则无。
a 称为物理量算符Â的本征值,Ψ称为Â的本征态或本证函数。
在这一假设中把量子力学数学表达式的计算值与实验测量的数值沟通起来,当Ψ是Â的本征态,在这个状态下,实验测定的数值将与Â的本征值a 对应。