圆和圆的位置关系2-应用
- 格式:ppt
- 大小:1.54 MB
- 文档页数:23
圆与圆的位置关系是怎样的?圆与圆的位置关系是怎样的?圆与圆的位置关系:外离、相切(内切和外切)、相交、内含。
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
一、圆与圆的位置关系的判断方法1、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:1、d>R+r 两圆外离; 两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r 两圆外切; 两圆的圆心距离之和等于两圆的半径之和。
3、d=R-r 两圆内切; 两圆的圆心距离之和等于两圆的半径之差。
4、d<R-R p 两圆内含;两圆的圆心距离之和小于两圆的半径之差。
<>5、d<R+R p 两园相交;两圆的圆心距离之和小于两圆的半径之和。
<>2、圆和圆的位置关系,还可用有无公共点来判断:1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
二、扩展资料1、点和圆位置关系①P在圆O外,则 PO>r。
②P在圆O上,则 PO=r。
③P在圆O内,则 PO<R。
< p>反之亦然。
平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:①如果(x0-a)²+(y0-b)²<R²,则P在圆内。
< p>②如果(x0-a)²+(y0-b)²=r²,则P在圆上。
③如果(x0-a)²+(y0-b)²>r²,则P在圆外。
2、直线和圆位置关系①直线和圆无公共点,称相离。
AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB与⊙O相交,d<R。
< p>③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
圆与圆的位置关系圆与圆的位置关系是几何学中的重要概念,研究圆与圆之间的相对位置关系,可以帮助我们理解几何形状的性质,并在实际应用中发挥重要作用。
本文将通过介绍不同圆与圆之间的位置关系,探讨它们的特点和应用。
一、相离关系1. 外离关系当两个圆完全不相交,并且它们的外部也没有交集时,称这两个圆为外离的。
此时,两个圆的半径之和小于两个圆心之间的距离。
外离关系的应用十分广泛。
例如,在城市规划中,我们需要合理分配公园、建筑等设施的位置,如果我们希望两个公园不重叠,可以将它们设计成外离关系的圆形。
2. 内离关系当两个圆完全不相交,并且其中一个圆完全位于另一个圆的内部时,称这两个圆为内离的。
此时,两个圆的半径之差小于两个圆心之间的距离。
内离关系的应用也比较常见。
例如,在机械设计中,我们需要将一个轴固定在另一个轴上,为了防止两个轴互相干扰,可以设计成内离的圆形。
二、相切关系当两个圆恰好有一个公共点时,称这两个圆为相切的。
此时,两个圆的半径之和等于两个圆心之间的距离。
相切关系的应用较多。
例如,在建筑设计中,我们常常将两个房间相切,以便使得空间利用更加充分。
三、相交关系1. 外交关系当两个圆相交,但是没有一个圆完全位于另一个圆的内部时,称这两个圆为外交的。
此时,两个圆的半径之和大于两个圆心之间的距离,但小于两个圆的半径之和。
外交关系的应用较为广泛。
例如,在交通规划中,我们需要规划交叉口的位置,如果我们希望两条道路在交叉口处不干扰到彼此的行驶,可以根据两条道路的半径和距离确定交叉口外交的关系。
2. 内交关系当两个圆相交,并且一个圆完全位于另一个圆的内部时,称这两个圆为内交的。
此时,两个圆的半径之和大于两个圆心之间的距离,且小于两个圆的半径之差。
内交关系也有一定的应用场景。
例如,在水资源规划中,我们需要规划水井的位置,为了确保每个水井覆盖的区域相对独立,可以将水井设计成内交的圆形。
综上所述,圆与圆的位置关系是几何学中的重要内容。
圆圆的位置关系知识点总结圆的位置关系是几何学中一个重要的概念,涉及到圆与直线、圆与圆之间的相对位置关系。
下面是关于圆的位置关系的知识点总结。
一、圆与直线的位置关系:1.外切:当直线与圆相切于圆的一点时,我们称这条直线与圆外切。
2.内切:当直线与圆只在圆的内部与圆相切时,我们称这条直线与圆内切。
3.交于两点:当直线与圆相交并有两个交点时,我们称这条直线与圆相交于两点。
4.不相交:当直线与圆没有交点时,我们称这条直线与圆不相交。
二、圆与圆的位置关系:1.相切:当两个圆相切于圆的一点时,我们称这两个圆相切。
2.相交:当两个圆有交点时,我们称这两个圆相交。
3.重合:当两个圆的圆心和半径完全相同时,我们称这两个圆重合。
4.内含:当一个圆完全在另一个圆内部时,我们称这个圆在另一个圆内含。
5.相离:当两个圆没有交点,且一个圆的外部不与另一个圆的内部相交时,我们称这两个圆相离。
三、判别圆与直线的位置关系的方法:1.利用距离:计算直线上一点到圆心的距离,根据距离与圆的半径的大小关系来判断圆与直线的位置关系。
-当直线上一点到圆心的距离等于圆的半径时,这条直线与圆相切。
-当直线上一点到圆心的距离大于圆的半径时,这条直线与圆相交。
-当直线上一点到圆心的距离小于圆的半径时,这条直线与圆不相交。
2.利用方程:通过圆的方程和直线的方程来求解相交的点,根据求解得到的交点的数量来判断圆与直线的位置关系。
四、判别圆与圆的位置关系的方法:1.利用距离:计算两个圆心之间的距离,根据距离与两个圆的半径之和、之差的大小关系来判断圆与圆的位置关系。
-当两个圆心之间的距离等于两个圆的半径之和时,这两个圆相交。
-当两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。
-当两个圆心之间的距离等于两个圆的半径之差的绝对值时,一个圆完全包含在另一个圆内即一个圆内含于另一个圆。
-当两个圆心之间的距离大于两个圆的半径之差的绝对值,但小于两个圆的半径之和时这两个圆相交于两个交点。
2.2.3 圆和圆的位置关系(2)【教学目标】1.掌握圆与圆的位置关系,会选用代数或几何的方法判定圆与圆的位置关系;2.理解圆系;3.会解与圆相关的轨迹问题和综合问题.【教学过程】:1.圆和圆的位置关系:相交、相切(外切、内切)、相离(内含、外离),由圆心距与两个半径来实行区分。
设圆心为O 1和O 2,半径为 r 1和r 2,则圆心距为21O O , 2121r r O O += ⇔两圆 ;2121r r O O -= ⇔两圆 ; 212121r r O O r r +<<- ⇔两圆 ;2121r r O O -< ⇔ ; 2121r r O O +> ⇔两圆 。
2.常见的圆系方程:(1)已知直线l :0=++C By Ax 及圆C 1:011122=++++F y E x D y x ,则经过直线l 和C 1的交点的圆系的方程为:(2)已知圆C 1:011122=++++F y E x D y x 和C 2:022222=++++F y E x D y x ,则经过C 1和C 2的交点的所有圆的方程都能够表示成: 的形式。
两圆的公共弦方程为 。
(3)圆心为(a ,b )的同心圆系的方程为 。
一、典型例题:例1.已知圆04422=-++y x y x 和圆 03222=-++x y x 相交于A 、B 两点,(1)若圆C 经过A 、B 及原点,求圆C 的方程;(2)求经过A 、B 两点且半径为 2 的圆的方程;(3)求经过A 、B 两点中面积最小的圆的方程;(4)求两圆的公共弦AB 的方程。
例2.⊙O 1的方程为:4)1(22=++y x ,⊙O 2的圆心O 2(2,1);(1)若⊙O 2与⊙O 1外切,求⊙O 2的方程,并求内公切线的方程;(2)若⊙O 2与⊙O 1交于A 、B 两点,且|AB|=22,求⊙O 2的方程。
例3.已知动圆C :0sin 2cos 222=--+θθry rx y x ,求证:(1)动圆恒过一定点;(2)若r 为常数,θ为参数,则动圆圆心在另一定圆上,且和此定圆的公共弦长为定值;(3)若θ为常数,r 为参数,则动圆圆心在一定直线l 上,且和另一定直线'l 相切。
圆和圆的位置关系圆形是几何学中最基本的图形之一,它由平面上所有到一个固定点的距离相等的点组成。
当涉及到两个或多个圆时,它们的位置关系成为一个有趣而重要的话题。
本文将探讨圆与圆之间的各种位置关系,并介绍这些关系在几何学和实际生活中的应用。
1. 包含关系当一个圆完全包含另一个圆时,称为包含关系。
在这种情况下,大圆被称为外切圆,小圆被称为内切圆。
外切圆和内切圆之间的关系可以通过观察它们的半径和圆心之间的距离来确定。
如果两个圆的圆心之间的距离等于两个圆的半径之差,则为外切关系;如果距离等于两个圆的半径之和,则为内切关系。
包含关系在工程、建筑和几何学中经常被使用,例如制作不同大小的齿轮。
2. 相离关系当两个圆之间没有任何交点时,称为相离关系。
相离关系可以进一步分为两种情况:外离和内离。
对于外离关系,两个圆的圆心之间的距离大于两个圆的半径之和。
即使两个圆的边缘相接触或靠近,它们也没有任何交点。
对于内离关系,两个圆的圆心之间的距离小于两个圆的半径之差。
相离关系在可视化设计和物体的布局中经常被使用,以确保对象之间有足够的空间。
3. 相交关系当两个圆有一个或多个交点时,称为相交关系。
相交关系可以进一步分为两种情况:外交和内交。
对于外交关系,两个圆的圆心之间的距离小于两个圆的半径之和,但大于两个圆的半径之差。
这种情况下,两个圆有两个交点。
对于内交关系,两个圆的圆心之间的距离小于两个圆的半径之和,且小于两个圆的半径之差。
这种情况下,两个圆有两个交点。
相交关系在建筑设计、路径规划和汽车制造等领域中具有重要的应用。
4. 切线关系当两个圆之间只有一条公共切线时,称为切线关系。
切线是一条与圆正好相切的直线。
当两个圆互相切线时,它们的切线相互平行。
切线关系在光学、天文学和工程设计中都有着广泛的应用,例如用于设计太阳能集热器的反射面。
总结:在几何学中,两个圆之间的位置关系可以是包含关系、相离关系、相交关系或切线关系。
这些关系在工程、建筑、可视化设计和其他领域中都有重要的应用。
圆与圆的位置关系知识要点:1.圆与圆的位置关系设两圆半径为R和r,圆心距为d,则两圆的位置关系如下:2.分切线定义:和两个圆都相切的直线叫做两圆的公切线。
当两圆在公切线同旁时,这样的公切线叫做外公切线;当两圆在公切线两旁时,这样的公切线叫做内公切线。
公切线长:公切线上的两个切点间的距离叫做公切线的长。
定理:两圆的两条外分切线长相等,两圆的两条内公切线长也相等。
外公切线的长为;内公切线的长为。
3.相交两圆的性质定理:相交两圆的连心线垂直平分两圆的公共弦。
4.相切两圆的性质定理:相切两圆的连心线经过切点。
1.圆和圆的位置关系(设两圆半径分别为R和r,同心距为d)(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r。
(同心圆(6)是一种内含的特例)2.有关性质:(1)连心线:通过两圆圆心的直线。
如果两个圆相切,那么切点一定在连心线上。
(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦。
(3)公切线:和两个圆都相切的直线,叫做两圆的公切线。
两个圆在公切线同旁两个圆在公切线两旁3.已知两圆半径分别为R、r,同心距为d,填定下表:名称公共点数圆心距半径关系公切线条数内外外离d=R+r相交d=R-r内含一星级题:1.如果两圆有且只有两条公切线,那么这两圆的位置关系是()A.外离 B.外切 C.相交 D.内含2.如果两圆半径分别为3㎝和5㎝,圆心距为2㎝,则两个圆的位置关系为()。
A.外离 B.外切 C.相交 D.内切3.已知⊙O1和⊙O2内切,它们的半径分别为2㎝和3㎝,则两圆圆心距O1O2= ㎝。
4.半径分别为3㎝和4㎝的两圆外切,那么这两圆的圆心距为㎝。
5.已知半径为R的两个等圆的圆心距为d,那么当两圆外切时,d与R满足的关系式是。
6.已知两圆半径分别为5㎝和2㎝,它们的圆心距为7㎝,则两圆位置关系为。
7.已知:两圆⊙O1与⊙O2的圆心距O1O2=5㎝,两圆的半径分别为㎝和㎝,则这两圆的位置关系是。
2.5.2圆与圆的位置关系一、圆和圆的位置关系1.圆与圆的五种位置关系的定义 两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离. 两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点. 两圆相交:两个圆有两个公共点时,叫做这两圆相交. 两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点. 两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系: 设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则: 两圆外离d>r1+r2 两圆外切d=r1+r2 两圆相交r1-r2<d<r1+r2(r1≥r2) 两圆内切d=r1-r2(r1>r2) 两圆内含d<r1-r2(r1>r2)要点: (1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交; (2) 内切、外切统称为相切,唯一的公共点叫作切点; (3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.A .2种B .3种C .4种D .5种【答案】A 【解析】由图形可以看出,有两种位置关系,相交和内切.故选A.题型2:根据圆与圆的位置关系求半径4.已知1O e 与2O e 相切,若1O e 的半径为3cm ,127cm O O =,,则2O e 的半径为( )A .4cm 或12cmB .10cm 或6cmC .4cm 或10cmD .6cm 或12cm【答案】C【分析】根据圆与圆的位置关系,内切时()2121d r r r r =->,外切时12d r r =+,计算即可.【解析】解:两圆内切时,2O e 的半径7310=+=(cm),外切时,2O e 的半径734=-=(cm),∴2O e 的半径为4cm 或10cm .故选:C .【点睛】本题考查了圆与圆的位置关系,熟练掌握知识点是解题的关键.5.如果两圆有两个交点,且圆心距为13,那么此两圆的半径可能为( )A .1、10B .5、8C .25、40D .20、30【答案】D【分析】先由两圆有两个交点得到两圆相交,然后根据半径与圆心距之间的关系求解即可.【解析】∵两圆有两个交点,∴两圆相交,∵圆心距为13∴两圆的半径之差小于13,半径之和大于13.A .1101113+=<,故不符合题意;B .5813+=,故不符合题意;【点睛】此题重点考查圆与圆的位置关系、线段的垂直平分线的性质、勾股定理以及数形结合与分类讨论数学思想的运用等知识与方法,正确地作出所需要的辅助线是解题的关键.9.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距A.0<d<3B.0<d<7C.3<d<7A.45°B.30°【答案】B【分析】连接O1O2,AO2,O1B,可得【解析】解:连接O1O2,AO2,O∵O 1B = O 1A∴112112O AB O BA AO O Ð=Ð=Ð ∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO O 是等边三角形,【点睛】本题考查了相交两圆的性质以及等边三角形的判定与性质,得出21AO O D 是等边三角形是解题的关键.题型5:分类讨论13.已知圆1O 、圆2O 的半径不相等,圆1O 的半径长为5,若圆2O 上的点A 满足15AO =,则圆1O 与圆2O 的位置关系是( )A .相交或相切B .相切或相离C .相交或内含D .相切或内含【答案】A【分析】根据圆与圆的位置关系,分类讨论.【解析】解:如图所示:当两圆外切时,切点A 能满足15AO =,当两圆相交时,交点A 能满足15AO =,当两圆内切时,切点A 能满足15AO =,当两圆相离时,圆2O 上的点A 不能满足15AO =,所以,两圆相交或相切,故选:A .【点睛】本题考查了由数量关系来判断两圆位置关系的方法.14.如图,长方形ABCD 中,4AB =,2AD =,圆B 半径为1,圆A 与圆B 外切,则点C 、D 与圆A 的位置关系是( )A .点C 在圆A 外,点D 在圆C .点C 在圆A 上,点D 在圆【答案】A 【分析】先根据两圆外切求出圆A 的半径,连接【解析】解:∵4AB =,圆B 半径为【点睛】本题考查了点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.15.如图,1O e ,2O e 的圆心 1O ,128cm O O =.1O e 以 1cm /s 的速度沿直线A .外切B .相交C .内切D .内含【答案】D 【分析】先求出7s 后,两圆的圆心距为1cm ,结合两圆的半径差即可得到答案.【解析】解:∵1O e 的半径为 2cm ,2O e 的半径为 3cm ,128cm O O =.1O e 以 1cm /s 的速度沿直线 l 向右运动,7s 后停止运动.∴7s 后,两圆的圆心距为1cm ,此时两圆的半径差为321cm -=,∴此时两圆内切,∴在此过程中,1O e 与 2O e 没有出现的位置关系是:内含,故选D .【点睛】本题主要考查圆与圆的位置关系,掌握d R r =+,则两圆外切,d R r =-,则两圆外切,是关键.题型6:圆的位置关系综合16.如图,∠MON =30°,p 是∠MON 的角平分线,PQ 平行ON 交OM 于点Q ,以P 为圆心半径为4的圆ON 相切,如果以Q 为圆心半径为r 的圆与P Q 相交,那么r 的取值范围是( )A .4<r <12B .2<r <12C .4<r <8D .r >4【答案】A 【分析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,得到四边形ABPQ 是矩形,QA=PB=4,根据∠MON =30°求出OQ=2QA=8,根据平行线的性质及角平分线的性质得到PQ=8,再分内切与外切两种求出半径r ,即可得到两圆相交时的半径r 的取值范围.【解析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,∵PQ ∥ON ,∴PQ ⊥PB ,∴∠QAB=∠QPB=∠PBA=90°,∴四边形ABPQ 是矩形,∴QA=PB=4,∵∠MON =30°,∴OQ=2QA=8,∵OP 平分∠MON ,PQ ∥ON ,∴∠QOP=∠PON=∠QPO ,∴PQ=OQ=8,当以Q 为圆心半径为r 的圆与P Q 相外切时,r=8-4=4,当以Q 为圆心半径为r 的圆与P Q 相内切时,r=8+4=12,∴以Q 为圆心半径为r 的圆与P Q 相交,4<r<12,故选:A.【点睛】此题考查角平分线的性质,平行线的性质,矩形的判定及性质,两圆相切的性质.17.如图,在Rt ABC V 中,90C Ð=°,4AC =,7BC =,点D 在边BC 上,3CD =,A e 的半径长为3,D e 与A e 相交,且点B 在D e 外,那么D e 的半径长r 可能是( )A .1r =B .3r =C .=5r D .7r =【答案】B 【分析】连接AD 交A e 于E ,根据勾股定理求出AD 的长,从而求出DE DB 、的长,再根据相交两圆的位置关系得出r 的范围即可.【解析】解:连接AD 交A e 于E ,如图1,在Rt ACD V 中,由勾股定理得:则532DE AD AE =-=-=,73BC CD ==Q ,,734BD \=-=,\D e A eA .142r <<B .52r <<【答案】C【分析】过点O 作OE AD ^,勾股定理求得11,OE AB OF AD ==,根据题意,画出相应的图形,即可求解.当圆O 与CD 相切时,过点O 作OF CD ^于点F ,如图所示,则162OF AD ==则1325622r =+=∴O e 与直线AD 相交、与直线CD 相离,且D e 与O e 内切时,作AD⊥BC,以A为圆心,以AD为半径画圆一、单选题1.如果两圆的半径长分别为5和3,圆心距为8,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切【答案】D【分析】根据两圆半径的和与圆心距,即可确定两圆位置关系.【解析】解:∵两圆的半径长分别为5和3,圆心距为8,538+=,∴两圆外切,故选:D .【点睛】本题考查了圆与圆的位置关系,解题的关键是掌握:外离,则d R r >+;外切,则d R r =+;相交,则R r d R r -<<+;内切,则d R r =-;内含,则d R r <-.2.两圆的半径分别为2和3,圆心距为7,则这两个圆的位置关系为( )A .外离B .外切C .相交D .内切【答案】A【分析】本题直接告诉了两圆的半径及圆心距,根据它们数量关系与两圆位置关系的对应情况便可直接得出答案.【解析】解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选A .【点睛】本题主要考查了圆与圆的位置关系,解题的关键在于能够准确掌握相关知识进行求解.3.已知直径分别为6和10的两圆没有公共点,那么这两个圆的圆心距的取值范围是( )A .d >2B .d >8C .d >8或0≤d <2D .2≤d <8【答案】C【分析】分两种情况讨论:当两圆外离时,两圆没有公共点时,当两圆内含时,两圆没有公共点时,从而可得答案.【解析】解:Q 直径分别为6和10的两圆没有公共点,\ 两圆的半径分别为3和5,当两圆外离时,两圆没有公共点时,8,d >当两圆内含时,两圆没有公共点时,02,d £<综上:所以两圆没有公共点时,8d >或0 2.d £<故选C【点睛】本题考查的是两圆的位置关系,熟练的运用两圆外离与内含的定义解题是解本题的关键.4.已知点()4,0A ,()0,3B ,如果⊙A 的半径为2,⊙B 的半径为7,那么⊙A 与⊙B 的位置关系( )【点睛】本题考查了两圆外切的条件,两圆相交的条件,等腰直角三角形的性质和对称性,熟练掌握两圆D .当⊙1O 与⊙2O 没有公共点时,1202O O <≤.【答案】D【分析】根据圆与圆位置关系的性质,对各个选项逐个分析,即可得到答案.【解析】当1224O O <<时,⊙1O 与⊙2O 相交,有两个公共点,故选项A 描述正确;当⊙1O 与⊙2O 有两个公共点时,1224O O <<,故选项B 描述正确;当1202O O <≤时,⊙1O 与⊙2O 没有公共点,故选项C 描述正确;当⊙1O 与⊙2O 没有公共点时,1202O O <≤或124O O >,故选项D 描述错误;故选:D .【点睛】本题考查了圆与圆位置关系的知识;解题的关键是熟练掌握圆与圆位置关系的性质,从而完成求解.9.如图,矩形ABCD 中,AB=4,BC=6,以A 、D 为圆心,半径分别为2和1画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .5B .6C .7D .8【答案】C 【分析】以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD′交BC 于P ,交⊙A 、⊙D′于E 、F′,连接PD ,交⊙D 于F ,EF′就是PE+PF 最小值;根据勾股定理求得AD′的长,即可求得PE+PF 最小值.【解析】解:如图,以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD’交BC 于P ,则EF′就是PE+PF最小值;∵矩形ABCD中,AB=4,BC=6,圆A的半径为2,圆D的半径为1,∴A′D′=BC=6,AA′=2AB=8,AE=2,D′F′=DF=1,∴AD′=10,EF′=10-2-1=7∴PE+PF=PF′+PE=EF′=7,故选C.【点睛】本题考查了轴对称-最短路线问题,勾股定理的应用等,作出对称图形是解答本题的关键.10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1【答案】A【解析】试题分析:利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.解:如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,∴OO′=×2=.由题意可知,∠ACB=∠ABC=∠AOD=30°,∴∠ACB=∠AO′D,∴点C在半径为1的⊙O′上运动.由图可知,OC长度的取值范围是:﹣1≤OC≤+1.故选A.考点:相交两圆的性质;轴对称的性质.二、填空题当1O e 位于2O e 外部,且P ,1O ,2O 位于同一条直线上时,如图所示,min 121523r O O PO =-=-=.故答案为:37r ££.【点睛】本题主要考查圆与圆的位置关系,能采用数形结合的方法和分类讨论的思想分析问题是解题的关键.16.在矩形ABCD 中,5AB =,8AD =,点E 在边AD 上,3AE =图),点F 在边BC 上,以点F 为圆心、CF 为半径作F e .如果F e【答案】4116【分析】连接EF ,作FH 股定理得到()(235r r +=-【解析】解:连接EF ,作BQe过点A,且7AB=,由函数图象可知,当即不等式①的解集为同理可得:不等式②【点睛】此题主要考查了相交两圆的性质以及勾股定理,熟练利用正三角形以及正方形的性质是解题关键.20.已知A e ,B e ,C e 【答案】A e 的半径为2厘米,(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 【答案】(1)22111422a ax x p p p -+11求:(1)弦AC的长度;(2)四边形ACO1O2的面积.【答案】(1)8(2)21(2)解:在2Rt AO E △中,由勾股定理得:∴1212426O O O E O E =+=+=∴1111831222O AC S AC O D ==´´=g △,S ∴四边形ACO 1O 2的面积为:S S +(1)如图1所示,已知,点()02A ,,点()32B ,.①在点()()()123011141P P P -,,,,,中,是线段AB 的“对称平衡点”的是___________②线段AB 上是否存在线段AB 的“对称平衡点”?若存在,请求出符合要求的 “对称平衡点若不存在,请说明理由;(2)如图2,以点()02A ,为圆心,1为半径作A e .坐标系内的点C 满足2AC =,再以点作C e ,若C e 上存在A e 的“对称平衡点”,直接写出C 点纵坐标C y 的取值范围.【答案】(1)①1P ,3P ;②不存在,理由见解析(2)02c y ££∴线段AB的“对称平衡点”的是1P,故答案为:1P,3P;②不存在设P为线段AB上任意一点,则它与线段££,PA PB33点P关于x轴的对称点为P¢,它到线段,是线段AB上的任意两点,即若M N∵()()0,2,0,0A O ∴02c y ££【点睛】本题考查了对称平衡点.两圆的位置关系,点与圆的位置关系等知识,解题的关键是理解题意,学会取特殊点特殊位置解决问题.。
2.5.2 圆与圆的位置关系(人教A 版普通高中教科书数学选择性必修第一册第二章)一、教学目标1.知识与技能(1)圆与圆的位置关系的判断方法.(2)圆与圆的位置关系的应用(3)轨迹方程培养学生“数形结合”的意识.2.过程与方法几何法:设两圆的连心线长为,则判断圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;(5)当时,圆与圆内含.代数法: 有两组不相同的实数解⇔ 两圆相交 ;有两组相同的实数解⇔两圆相切(内切或外切);无实数解⇔两圆相离(外离或内含).3.情态与价值观 (1)动点圆的轨迹问题,数形结合的思想.,培养数学抽象能力.(2)根据圆的方程判断圆与圆的位置关系.培养数学运算能力.(3)综合应用圆与圆的位置关系解决问题.培养学生逻辑推理能力.二、教学重难点重点:掌握圆与圆的位置关系的判断方法难点:能综合应用圆与圆的位置关系解决问题.l 21r r l +>1C 2C 21r r l +=1C 2C 2121r r l r r +<<-1C 2C 21r r l -=1C 2C 21r r l -<1C 2C ⎩⎨⎧=++++=++++0022********F y E x D y x F y E x D y x 方程组:三、教学过程1.1创设情境,引发思考【实际情境】每逢节假日农村集市上套圈游戏盛行,商家圈起来一小片空地,撒满一元,五角和一角的硬币,玩家10元钱可套20环,看似简单套起来却没有那么容易,要求圆环落地后不能触碰硬币,毕竟硬币面值越大,想套中就越难。
问题1:(1)一次套圈中把玩家的目标硬币和圆环看成两个圆,那么这两个圆满足什么位置关系才算套中?(2)为什么硬币面值越大,想套中就越难?(3)两个圆的位置关系和圆心距以及半径存在怎样的数量关系?【预设的答案】(1)内含(2)硬币面值越大,套中时要求两个圆心距离越近,难度越大相交,外切和内切(3)类比研究判断直线与圆的位置关系的方法.【设计意图】问题的提出源于实际生活,结合学生已有的知识经验,启发学生思考,激发学生学习兴趣.【数学情境】尺规作图,请同学们在纸上分别画出半径为3cm 和5cm 的圆,以小组为单位进行汇总,看看可以画出多少种位置关系,并探讨不同位置关系的圆心距满足的条件.【设计意图】创设数学情境,通过动手画图,小组讨论的形式,让学生处于数学学习的主导地位,增强学生的学习兴趣和自主学习能力.【活动预设】学生以小组为单位总结出判断两个圆位置关系的几何法:利用两圆半径的和或差的绝对值与圆心距作比较,满足相应的条件,判断两圆的位置关系.设两圆的圆心距为,则判断圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;d 21r r d +>1C 2C 21r r d +=1C 2C 2121r r d r r +<<-1C 2C 21r r d -=1C 2C(5)当时,圆与圆内含.问题2:如果建立平面直角坐标系,目标硬币和圆环看成两个圆,得到两个圆的方程,类比直线与圆的位置关系,是否可以通过方程组解的个数,来判断两个圆的位置关系?【设计意图】进一步引导学生用代数法判断两个圆的位置关系,把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.1.2探究典例,初步应用活动:已知圆C 1:x 2+y 2-2ax -2y +a 2-15=0(a >0),圆C 2:x 2+y 2-4ax -2y +4a 2=0(a >0).试求a 为何值时,两圆C1,C2的位置关系为: (1)相切;(2)相交;(3)外离;(4)内含【活动预设】根据数学情景总结出的结论,把圆的一般方程化为标准方程,比较两个圆的圆心距与两半径的和或两半径的差的绝对值的大小,满足相应条件,求解参数a.【预设的答案】(1)当a =5时,两圆外切;当a =3时,两圆内切.(2)当3<a <5时,两圆相交.(3)当a >5时,两圆外离.(4)当0<a <3时,两圆内含.【设计意图】理论结合实际,运用几何法判断两圆位置关系.1.3具体感知,理性分析活动:已知圆C1:,圆C 2: 分别用几何法和代数法判断圆C1与圆C2的位置关系.【设计意图】(1)灵活运用判断两圆的位置关系的两种方法:几何法和代数法.(2)比较两种方法判断两个圆位置关系的异同 .问题3:用代数法判断两个圆的位置关系时,如果两圆方程联立消元后得到的方程的 ,它说明什么?你能据此确定两圆是内切还是外切吗?如何判断两圆是内切还是外切呢?21r r d -<1C 2C 088222=-+++y x y x 024422=---+y x y x 0=∆【预设的答案】如果,则两圆相切;此时无法判定两圆是内切还是外切,还要根据两圆的半径与连心线的长作进一步判断.【设计意图】(1)更深入的理解判别式对两圆位置关系的影响根源在于交点个数;(2)仅仅由交点个数无法判断两个圆的位置关系.问题4:在平面直角坐标系中画出活动2中两个圆的图像,若将两个圆的方程相减,你发现了什么?并求出圆C1与圆C2的交点坐标.【预设的答案】两相交圆方程相减得公共弦方程,交点坐标.【活动预设】教师引导学生阅读教科书中的相关内容,学生观察图形并思考,发表自己的解题方法.【设计意图】运用数形结合的思想,探究相交的两个圆引出的公共弦方程,以及交点坐标问题.2. 初步应用,理解概念例1.(2021·皖南八校联考)已知圆O1的方程为x2+y2=4,圆O2的方程为(x -a)2+y2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( )A .{1,-1}B .{3,-3}C .{1,-1,3,-3}D .{5,-5,3,-3}【预设的答案】C 两圆只有1个公共点,则两圆外切或内切.如果两圆外切,则|a|=2+1=3,a =±3;如果两圆内切,则|a|=1,a =±1.综上,a∈{1,-1,3,-3}【设计意图】巩固判断两个圆的位置关系的两种方法.A.(1,0)和(0,1)B.(1,0)和(0,-1)C. (-1,0)和(0,-1)D.(-1,0)和(0,1)0=∆012=-+y x )1,3(),1,1(--B A 的交点坐标为()与圆圆例01221.22222=++++=+y x y x y x【预设的答案】C【设计意图】求相交圆的交点坐标:(1)代数法(2)答案带入题目检验例3.已知两圆和.求公共弦的长度.【预设的答案】解法一:两方程联立,得方程组Error!两式相减得x =2y -4 ③,把③代入②得y 2-2y =0,∴y 1=0,y 2=2.∴Error!或Error!∴交点坐标为(-4,0)和(0,2). ∴两圆的公共弦长为(-4-0)2+(0-2)2=25.解法二:两方程联立,得方程组Error!两式相减得x -2y +4=0,即两圆相交弦所在直线的方程;由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心为C 1(1,-5),半径r 1=52.圆心C 1到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35,∴两圆的公共弦长为2r 2-d 2=250-45=25.两圆的公共弦长为.【设计意图】探讨求公共弦长的方法.(1)代数法:求交点的坐标,利用两点间的距离公式求出公共弦长.(2)几何法:利用圆的半径、公共弦的一半、圆心到弦的垂线段构成的直角三角形,根据勾股定理求出公共弦长.02410222=-+-+y x y x 082222=-+++y x y x 52【设计意图】利用中点坐标公式,坐标系解决平面几何问题.3. 归纳小结,文化渗透思考:构成奥运五环中的圆之间有哪些位置关系,生活中的日用百货,建筑学领域,还有哪些涉及两个圆的位置关系?【设计意图】(1)梳理对判断两个圆的位置关系方法的理解和应用;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会学习两个圆位置关系的必要性 .四、归纳小结,课后作业1.判断圆与圆的位置关系的两种方法:几何法和代数法2.求两个相交圆公共弦长的两种方法:几何法和代数法3.满足某种几何条件的动点圆的轨迹问题,用的是坐标法.这种方法建立了几何与代数之间的联系,体现了数形结合思想.例4(1)如图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN(M ,N 为切点),使得|PM|=2|PN|.试建立平面直角坐标系,并求动点P 的轨迹方程.(2)已知圆x 2+y 2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点.①求线段AP 中点的轨迹方程;②若∠PBQ =90°,求线段PQ 中点的轨迹方程.1.教科书130页练习.习题4.2 A组第4、9、10、11题.2.步步高《圆与圆的位置关系》习题。