使用SPSS 进行两组独立样本的t检验、F检验、显著性差异、计算p值
- 格式:doc
- 大小:1.65 MB
- 文档页数:6
spss结果中,F值,t值及其显著性(sig)的解释用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的?一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t 分布。
统计显著性(sig)就是出现目前样本这结果的机率。
至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?为此,我们进行t检定,算出一个t检定值,与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。
若显著性sig值很少,比如<0.05(少xx5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。
虽然还是有5%机会出错,但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,xx,总体应该存在著差异。
SPSS统计分析教程-独立样本T检验.docSPSS统计分析教程:独立样本T检验一、简介独立样本T检验(Independent Sample T-test)是统计分析中常见的一种方法,主要用于比较两组数据的均值是否存在显著差异。
这种检验的前提假设是,两组数据来自正态分布的独立样本。
独立样本T检验在SPSS中的实现相对简单,下面将详细介绍其操作步骤和解读结果。
二、数据准备在进行独立样本T检验之前,需要准备好数据。
数据通常存储在Excel或SPSS数据文件中。
为了方便起见,我们将使用SPSS数据文件进行说明。
三、操作步骤1.打开SPSS软件,点击“分析”(Analyze)菜单,然后选择“比较均值”(Compare Means)中的“独立样本T检验”(Independent Sample T-test)。
2.在弹出的对话框中,将左侧的“组别”(Grouped By)字段设置为一组变量,如“性别”(Gender),将右侧的“组1”(Group 1)和“组2”(Group 2)字段设置为另一组变量,如“年龄”(Age)。
3.点击“确定”(OK)按钮开始进行独立样本T检验。
四、结果解读1.假设检验(Hypothesis Test):在结果中,可以看到假设检验的结果。
如果p值小于显著性水平(通常为0.05),则拒绝原假设(即两组数据的均值无显著差异),认为两组数据的均值存在显著差异。
反之,如果p值大于显著性水平,则接受原假设,认为两组数据的均值无显著差异。
2.均值(Mean):在结果中,可以看到每组数据的均值。
如果两组数据的均值存在显著差异,则可以通过均值的大小来判断哪组数据更好或更优。
3.标准差(Standard Deviation):在结果中,还可以看到每组数据的标准差。
标准差反映了数据分布的离散程度,标准差越大,说明数据分布越不集中。
4.t统计量(t-statistic):t统计量是用来衡量两组数据之间差异大小的一个指标。
SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种在统计学中常用于比较两个或多个独立样本的方法。
与参数检验不同,非参数检验不需要对数据的分布进行假设,并且适用于非正态分布的数据。
SPSS(统计软件包for社会科学)是一个广泛使用的统计分析软件,它提供了许多非参数检验的功能。
本文将以一个案例为例,解析如何使用SPSS进行两独立样本的非参数检验。
案例描述:一家公司正在评估一个新的培训课程对员工的绩效是否有显著影响。
为了评估培训课程的效果,研究人员随机选择了两组员工,一组接受了培训课程(实验组),另一组没有接受培训课程(对照组)。
研究人员想要比较两组员工在绩效上的差异。
步骤一:导入数据首先,将实验组和对照组的数据分别导入SPSS中。
假设每个样本中有n个观测值。
在SPSS中,每一组数据应该是一个独立的变量(或列),并且每个观测值应该占据矩阵中的一个单元格。
步骤二:选择非参数检验方法在SPSS中,可以使用Mann-Whitney U检验来比较两组独立样本的绩效差异。
该检验的原假设是两组样本来自同一个总体,备择假设是两组样本来自不同的总体。
步骤三:运行非参数检验在SPSS的菜单栏中,依次选择"分析" - "非参数检验" - "独立样本检验(Mann-Whitney U)"。
将实验组和对照组的变量分别输入到"因子1"和"因子2"中。
在"可选"选项中,可以选择在报告中包含各种统计量。
步骤四:解读结果SPSS将输出很多统计信息,包括推断统计、置信区间、效应大小等。
其中,最重要的是U值和显著性。
U值是用来检验两组样本是否来自同一个总体的统计量,显著性则是用来判断差异是否显著。
如果显著性小于0.05,则可以拒绝原假设,认为两组样本在绩效上存在显著差异。
总结:通过上述步骤,我们可以利用SPSS进行两独立样本的非参数检验。
spss结果中,F值,t值及其显著性(sig)的解释用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的?一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?为此,我们进行t检定,算出一个t检定值,与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。
若显著性sig值很少,比如<0.05(少xx5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。
虽然还是有5%机会出错,但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,xx,总体应该存在著差异。
SPSS两个独立样本秩和检验步骤例表:
分组动物数病变
组织
各组病变严重程度分级/动物数(只)数字
评分病变不明显病变轻度病变中度病变显著
正常组14 心11 2 0 1 5 肝14 0 0 0 0 脑14 0 0 0 0 主动脉14 0 0 0 0
模型组16 心 4 7 5 0 17 肝 1 3 9 3 30 脑10 6 0 0 6 主动脉8 4 1 3 15
对正常组及模型组各脏器病变差异进行统计分析:
1、打开SPSS,点变量视图,进行定义,注意都选择数值类型。
2、点数据视图,组别以1、2代替,病变程度0(不明显)、1(轻度)、2(中度)及3(显著),例数以模型及正常组心脏例数为例填上。
3、点数据→加权个案,频率变量选择例数,点确定,弹出输出数据对话框,可以选择不保存。
4、点击分析→非参数检验→2个独立样本,检测变量列表选择病变,分组变量选择组别,点定义组,写上1和2,再选择Mann-Whitney U检验,点确定。
5、分析结果看双侧P值,示例结果为0.008,P<0.01,具有显著性差异。
spss结果中,F值,t值及其显著性(sig)的解释用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同为此,我们进行t检定,算出一个t检定值,与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。
若显著性sig值很少,比如<(少於5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。
虽然还是有5%机会出错,但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在著差异。
spss结果中,F值,t值及其显著性sig的解释spss 结果中,F 值、t 值及其显著性 sig 的解释在进行数据分析时,我们常常会遇到SPSS 软件给出的一系列结果,其中 F 值、t 值以及显著性 sig 是非常重要的指标。
这些指标对于我们理解数据之间的关系、判断假设的成立与否以及得出有意义的结论都起着关键作用。
接下来,让我们用通俗易懂的方式来深入了解一下它们。
首先,我们来谈谈F 值。
F 值通常出现在方差分析(ANOVA)中。
方差分析主要用于比较两个或多个组之间的均值是否存在显著差异。
那么,F 值到底是怎么来的呢?简单来说,它是通过比较组间方差和组内方差得到的。
组间方差反映了不同组之间的差异程度,组内方差则反映了组内个体之间的差异程度。
如果组间方差相对于组内方差足够大,那么 F 值就会较大,这意味着不同组之间的均值差异很可能不是由随机因素造成的,而是存在真正的差异。
举个例子,假如我们想研究不同教学方法对学生成绩的影响,将学生分为 A、B、C 三种不同的教学方法组。
通过计算,我们得到了一个F 值。
如果这个 F 值较大,并且对应的显著性 sig 小于我们设定的阈值(通常是 005),那么我们就可以得出结论:这三种教学方法对学生成绩的影响是显著不同的。
接下来,我们说说 t 值。
t 值主要用于两个总体均值的比较,比如独立样本 t 检验和配对样本 t 检验。
在独立样本 t 检验中,我们比较两个独立组的均值。
t 值的计算考虑了两组数据的均值差异、标准差以及样本量等因素。
如果 t 值较大,且对应的显著性 sig 较小,就表明这两个组的均值存在显著差异。
比如说,我们想比较男性和女性的平均身高。
通过收集数据和计算,得到一个 t 值。
如果这个 t 值对应的显著性 sig 小于 005,我们就可以说男性和女性的平均身高有显著差异。
在配对样本 t 检验中,我们比较的是同一组对象在不同条件下的均值差异。
例如,测量一组学生在接受培训前后的成绩,看看培训是否有效果。
spss结果中,F值,t值及其显著性(sig)的解释用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的?一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?为此,我们进行t检定,算出一个t检定值,与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。
若显著性sig值很少,比如<0.05(少xx5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。
虽然还是有5%机会出错,但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,xx,总体应该存在著差异。
使用SPSS 进行两组独立样本的t 检验、F 检验、显著性差异、计算p 值SPSS 版本为 SPSS 20.如有以下两组独立的数据,名称分别为“111 ”,“ 222111 组:4、5、6、6、4 222 组:1、2、3、7、7怵更D 訓制苗1 111 4211153 r 伯64 r 讣65 in46 i7 22216 「 22229 222J10 「 2221112227| 12Ji r| t4| 15[16娈量视图变量视图如下,名称可以改成“分组嗷嗷嗷” “体重喵喵喵”等111组的就不要输入到 222首先打开SPSS ,输入数据,命名分组,体重和组名要对应, 组了。
数据视图如下:点击“分析”-“比较均值”-“独立样本T 检验”SP55 Statrsttcs 数曙茱辑器F 换(D 分祈〔9 頁销观;图形吃)宾用理序〔3 窗口{空)帮助表CT ) 比较均<a (M ) 一股线性模型© 广义线性模型混會模型隹) 相 ^(C ) 回归迟) 对数线性模型© 神疑网络 分类旧 降维来到这里,分组变量为“分组嗷嗷嗷”,检验变量为“体重喵喵喵”。
报告 描建统计□均值(MK盯单样本T 楡验逻几 臣I 独立拝本T 检验⑴亠 日配对样本T 检验巴… 单因素i,NOV<..【关键的一步】点击分组嗷嗷嗷,进行“定义组”【关键的一步】输入对应的两组数据的组名: 111”和“ 222”:__S妲走文绘迭项0〕…Bootstrap(B;..©使用指定值切\ ____ __[继续]I取消丨丨帮助\\ ______________重置迟)]、耽肖”帮助]点击确定,可见数据与组名对应上了。
文科40编辑(目观图电】数据世}转换辽)分析〔出直誚迦•團形世}实用程序理讶口辿】群闡______ 井殂嗷嗷做悴重喘唯唯娈量建娈甦娈量娈量1 [ 111 410 1114 15111 111 111 111222 222 222 22216点击“确定”,生成T检验的报告,即将大功告成!by 20150120深大医学院FG■+[rmi] C s\Use r3\ff gg4422\AppData\Local\Te3p\3€0zlp$Te2^\36OS1X0-2 ・5l I I I i ITLBmv第一个表都知道什么回事就不缩了,excel都能实现的。
用SPSS进行T检验什么是T检验?T检验是统计学中的常用方法之一,用于检验两组样本的均值是否有显著差异。
它是通过计算样本的t值来确定两组样本均值差异是否显著。
因此,如果两组样本的t值越大,则它们之间的差异就越明显。
在进行T检验之前,我们首先需要明确两组样本是否满足正态分布的要求。
如果样本呈正态分布,则我们可以使用独立样本T检验或配对样本T检验进行检验。
如果不符合正态分布条件,我们需要使用非参数检验方法,例如Wilcoxon符号秩检验或Mann-Whitney U检验。
如何用SPSS进行T检验?下面我们将演示如何使用SPSS进行独立样本T检验和配对样本T检验。
独立样本T检验独立样本T检验用于检验两个独立样本的均值是否有差异。
例如,我们想知道男性和女性在身高上是否有显著差异,则可以使用独立样本T检验来验证。
我们使用一个示例数据集来展示如何进行独立样本T检验。
该数据集包含两组样本:一组是男子的身高,另一组是女子的身高。
在SPSS中,我们可以按照以下步骤进行独立样本T检验:1.打开SPSS软件并载入数据集。
2.单击菜单栏中的“分析”(Analyze),然后选择“比较均值”(CompareMeans),再选“独立样本T检验”(Independent-Samples T Test)。
3.在“独立样本T检验”对话框中,将男性身高和女性身高变量分别放到“变量1”和“变量2”框中。
4.点击“OK”按钮,SPSS将自动计算并输出T检验的结果和描述性统计数据。
下面是一个示例的SPSS的输出:执行男子控制女子均值174.609 161.164标准差 6.971 6.098标准误差均值 1.760 1.53595% CI(下限)171.023 158.126T 17.915df 38Sig。
(双尾).000T检验结果显示,在本例中,男性和女性的身高之间存在显著差异。
T值为17.915,df值为38,Sig值小于0.05,表明这两组数据的差异不是由于随机因素导致的,而是由于不同的性别所导致的。
使用SPSS 进行两组独立样本的t检验、F检验、显著性差异、计算p值
SPSS版本为SPSS 20.
如有以下两组独立的数据,名称分别为“111”,“222”。
111组:4、5、6、6、4
222组:1、2、3、7、7
首先打开SPSS,输入数据,命名分组,体重和组名要对应,111组的就不要输入到222组了。
数据视图如下:
变量视图如下,名称可以改成“分组嗷嗷嗷”“体重喵喵喵”等
点击“分析”-“比较均值”-“独立样本T检验”
来到这里,分组变量为“分组嗷嗷嗷”,检验变量为“体重喵喵喵”。
【关键的一步】点击分组嗷嗷嗷,进行“定义组”
【关键的一步】输入对应的两组数据的组名:“111”和“222”
点击确定,可见数据与组名对应上了。
点击“确定”,生成T检验的报告,即将大功告成!
第一个表都知道什么回事就不缩了,excel都能实现的。
第二个表才是重点,不然用SPSS干嘛。
F检验:在两样本t检验中要用到F检验,F检验又叫方差齐性检验,用于判断两总体方差是否相等,即方差齐性。
如图:F旁边的Sig的值为.007 即0.007,<0.01, 即两组数据的方差显著性差异!
看到“假设方差相等”和“假设方差不相等”了么?
此时由于F检验得出Sig <0.01,即认为假设方差不相等!因此只关注红框中的数据即可。
如图,红框内,Sig(双侧),为.490即0.490,也就是你们要求的P值啦,
Sig ( 也就是P值) >0.05,所以两组数据无显著性差异。
PS:同理,如果F检验的Sig >.05(即>0.05),则认为两个样本的假设方差相等。
所以相应的t检验的结果就看上面那行。
by 20150120 深大医学院FG。