一次函数复习要点
- 格式:doc
- 大小:304.00 KB
- 文档页数:6
第二十一章 一次函数总复习【基础知识汇总】1、正比例函数:一般表达式y=kx (k 为常数且k ≠0);图像为过(0,0)与(1,k )的一条直线2、一次函数:一般表达式y=kx+b (k 、b 为常数,且k ≠0);图像是一条经过(0,k b -)与(0,b )的直线。
其中(0,kb -)为直线与x 轴交点,(0,b )为直线与y 轴交点。
对一次函数(包括正比例函数)的基本要求:必须为整式函数,自变量项的系数k 不为0,自变量的最高指数为1。
3、一次函数图像与坐标轴围成的三角形的面积:如右图所示: S △AOB=2OBOA ⋅=2b kb ⋅- 4、k 、b 与图像所在象限及增减性:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.若两直线k 值相同,则两直线平行。
6、图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。
一次函数知识点一次函数知识网络图考点一:变量、常量及函数定义1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。
※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应典型例题:1、下列函数关系式中不是函数关系式的是( )A. B. C. D. 21y x =+21y x =+1y x x=+22y x =2、下列各图中表示y 是x 的函数图像的是 ( )考点二、自变量取值范围:一般的,一个函数的自变量允许取值的范围。
确定函数自变量取值范围的方法: (1)必须使关系式成立。
①当关系式为整式时,自变量取值范围为全体实数;②当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零;ABDo③关系式含有二次根式时,自变量取值范围必须使被开方的式子不小于零;④当关系式中含有指数为零或负数的式子时,自变量取值范围要使底数不等于零; (2)当函数关系表示实际问题时,自变量的取值范围还要符合实际情况,使之有意义。
(3)当函数关系表示一个图形的变化关系时,自变量的取值范围必须使图形存在。
典型例题:1、函数的自变量x 的取值范围是 31-=x y 2、函数的自变量x 的取值范围是3-=x y 3、函数的自变量x 的取值范围是()220xy x -=++4、小强在劳动技术课中要制作一个周长为10cm 的等腰三角形.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并写出自变量的取值范围.考点三、函数的图像与解析式的关系1、函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。
在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。
斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。
从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。
一次函数的定义域为实数集R,值域也为实数集R。
它的图象可以延伸到整个坐标平面上。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。
而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。
2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。
一次函数的函数值可以用来描述一根直线上的点的位置。
3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。
这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。
4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。
递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。
三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。
它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。
1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。
2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。
中考考点复习之一次函数专题考点精讲1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
2.会利用待定系数法确定一次函数的表达式。
3.能画出一次函数的图象,根据一次函数的图象和表达式()0≠+=k b kx y 探索并理解0>k 和0<k 时,图象的变化情况。
4.理解正比例函数。
5.体会一次函数和二元一次方程的关系。
考点解读考点1:一次函数图像与性质(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b /k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.(3)一次函数与坐标轴交点坐标1.求一次函数与x 轴的交点,只需令y =0,解出x 即可;2.求与y 轴的交点,只需令x =0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是)0,(kb -,与y 轴的交点是(0,b ); 3.正比例函数y =kx (k ≠0)的图象恒过点(0,0).考点2:一次函数解析式的确定(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y =kx +b (k ≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k 与b 的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y =2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.考点3:一次函数图像的平移规律:“左加右减,上加下减”①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同. ②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h .考点4:一次函数与方程不等式的关系(1)一次函数与方程:一元一次方程kx +b =0的根就是一次函数y =kx +b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.(2)一次函数与方程组:二元一次方程组⎩⎨⎧+=+=bx k y b x k y 21的解⇔两个一次函数b x k y +=1和b x k y +=2图象的交点坐标.(3)一次函数与不等式(1)函数y =kx +b 的函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集(2)函数y =kx +b 的函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集 考点5:一次函数的应用.1.一般步骤:(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.考点突破1.(2021秋•驻马店期末)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.(2021秋•中原区校级期末)下列问题中,两个变量之间成正比例关系的是()A.圆的面积S(cm2)与它的半径r(cm)之间的关系B.某水池有水15m3,现打开进水管进水,进水速度为5m3/h,xh后这个水池有水ym3C.三角形面积一定时,它的底边a(cm)和底边上的高h(cm)之间的关系D.汽车以60km/h的速度匀速行驶,行驶路程y与行驶时间x之间的关系3.(2021秋•驿城区校级期末)在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.(2021春•新蔡县期末)正比例函数y=kx(k≠0)和一次函数y=k(1﹣x)在同一个直角坐标系内的图象大致是下图中的()A.B.C.D.5.(2021秋•白银期末)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.(2021春•巨野县期末)已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.7.(2021秋•任城区校级期末)两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B.C.D.8.(2021秋•驿城区期末)一次函数y=﹣2x+6的图象与两坐标轴围成的三角形的面积是()A.6B.9C.12D.189.(2021秋•新郑市期末)若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.10.(2021秋•驿城区校级期末)当k=时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.11.(2021春•舞阳县期末)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是.(填字母代号)A.B.C.D.12.(2019春•安阳期末)函数y=2x与y=6﹣kx的图象如图所示,则k=.13.(2021秋•东城区校级期末)请写出一个图象经过第一、第三象限的一次函数关系式.(写出一个即可).14.(2021•河南)请写出一个图象经过原点的函数的解析式.15.(2018春•确山县期末)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OP A的面积为S.(1)用含x的解析式表示S为,其中x的范围是.(2)画出函数S的图象.(3)当点P的横坐标为5时,△OP A的面积为.(4)△OP A的面积能大于24吗?为什么?16.(2021春•会昌县期末)先完成下列填空,再在同一平面直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数y=2x的图象过(0,)和(1,);(2)一次函数y=﹣x+3的图象过(0,)和(,0).17.(2021秋•金水区校级期末)请根据学习“一次函数”时积累的经验和方法研究函数y =﹣|x|+2的图象和性质,并解决问题.(1)填空:①当x=0时,y=﹣|x|+2=;②当x>0时,y=﹣|x|+2=;③当x<0时,y=﹣|x|+2=;(2)在平面直角坐标系中作出函数y=﹣|x|+2的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,方程﹣|x|+2=0有个解;②方程﹣|x|+2=2有个解;③若关于x的方程﹣|x|+2=a无解,则a的取值范围是.18.(2021•禹州市模拟)如图1,在菱形ABCD中,AB=5,某数学兴趣小组从函数的角度对菱形ABCD的对角线长度进行如下探究:利用几何画板,测量出以下几组值:AC 1.00 2.00 3.00 4.00 5.00 6.007.008.009.009.549.809.95 BD9.959.809.549.168.668.007.14a 4.36 3.00 2.00 1.00(1)表格中a的值为.(2)设AC的长为自变量x,BD的长是关于自变量x的函数,记为y BD,现已在图2所示的平面直角坐标系中描出了表格中各组数据的对应点(x,y BD).①画出函数y BD的图象;②请在同一平面直角坐标系中画出直线y=x,结合所绘制的函数图象,写出函数y BD的一条性质.(3)在平面直角坐标系中,将三角板(含30°角的直角三角板)按如图3所示方式放置,顶点和坐标原点重合,斜边在x轴上,画出射线OA.若OA与绘制的函数图象交于点M,则此时菱形ABCD的面积为.。
《一次函数》单元知识复习知识点一:变量与常量例1:已知鬪的半径为R,则圆的面积S与半径R Z间的函数关系式为 _______________ ,其中常量为________ ,变量为________ ;知识点二:函数的概念例1:下列图象屮,y不表示兀的函数的是( )知识点三:求函数值;例1: (1)当x=~2时,函数y=―的值为_______________________ ;x +1(2)_____________ 当兀= 时,函数= -2x + 4的值为0;知识点四:函数自变量的取值范围例1: (1)函数y = -2x2+l的口变量的収值范围为_______________ ;(2)函数y =—-—的自变量的取值范围为______________ ;2x4-1(3)函数)=后刁的自变量的取值范围为________________ ;(4)函数y= / 1 -的自变量的取值范围为_______________ ;如-1例2:—个正方形的边长为5沏,它的各边长减少x cm得到的新正方形的周长为yew;(1)求y与兀的函数关系式;(2)指出自变量的取值范围;(3)当x = 2cm时,新正方形的周氏是多少?知识点五:函数的图象X12346y注:x能取0吗?为什么例用列表法曲出函数y=- ((x > 0)的图象;2 2例2:判断点(0,2), (2,—), (3,1)是否都在函数)匸——(x>0)的图像上;3 x + \例3:已知点(2,0)在函数y = -2x + Z?的图像上,求方的值;例4:小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10 分钟后,用15分钟返回家里•下面图形屮表示小红爷爷离家的时间与外出距离之间的关系是( )例5:小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s (米)耳散步所用吋间t (分)Z间的函数关系.你能根据图象说岀小明散步过程中的一些具体信息吗?(1)小明什么时候开始看报,看了多少时间?(2)小明看完报后,往前走了多少米?平均速度是多少?(3)小明回家的平均速度是多少?知识点六:正比例函数1.正比例函数的解析式:y = kx(£工0)2.正比例函数的图象:经过原点的一条直线;3•正比例函数的性质:(1)_____________________________ 当£>0时,直线经过_______ 象限;图象从左到右_____ , y随兀的增人而______________________(2)____________________________ 当kvO时,直线经过 ______ 象限;图彖从左到右 _____ , y随兀的增大而_____________________ 例(1)己知正比例函数的图象经过点(-1,3),则正比例函数的x解析式为_________:(2)已知正比例函数的图象如图所示,则正比例函数的解析式为_________;例2:写出一条满足条件的正比例函数的解析式: (1) ________________________________ 图象经过第一、三象限: ________________ : (2) y 随兀的增大而减小: _______________________ ;(3) _____________________________ 经过点(一1, —1): ;例3、若y + 3与3工一 2成正比例,且当兀=一2时,j = 17 ,求y 与x 的函数关系式 知识点七:一次函数1.一次函数的解析式:y = kx + b ( k , b 为常数,k ^0) 2•—次函数的图象:经过点(0小)的一条直线;3•- •次函数的性质:求图象与兀轴、y 轴的交点处标; 求图象与坐标轴围成的三角形的面积; 例2: (1)函数y = -2x + 5和y = -2兀的位置关系是 ________ ;(2) ______________________ 直线y = -3兀+1向 平移 个单位,得到y = -3x ;(3) __________________________________________________ 宜线y = *兀一 3向上平移4个单位得到直线 _________________________________________ :例3: (1)—次苗数y = 2x-6与x 轴的交点地标为 ____________ ,与y 轴的交点处标为 ______ : (2) 一次函数y = -2x + 3的图象不经过第 _____ 彖限;(3) 由函数y = 4x-1的图彖町知:①y 的值随x 的增大而 __________ ;②图彖打兀轴的交点坐标(1) 当£〉0时,图象从左到右(2) 当EvO 时,图象从左到右,y 随兀的增人而(3) k. b 的符号和人致图象分布:k>O,b>dAXAX :k>0,b<0RvO 上 vO例1: (1) (2)画出函数y = -2x + 2的图象; y yXk<O,b>OAX为_________ ,与y轴的交点坐标为________ :③若一个正比例两数的图象与y = 4x-l的图象相互平行,贝眦正比例函数的解析式是 _________ ;例4:根据下列要求写出一个一次函数:(1)),的值随兀的增大而减小:_________________ : (2)经过第一、三象限:______________ ; (3)不经过第二象限: ______________ ;(4)____________________________ 与y = _3兀平行:;例5:求一次函数的解析式:(1)已知一次函数的图象经过点A(-2,1), B(0,-2),求一次函数的解析式;(2)已知直线y = kx + b的图象经过点(3,3)和(1,-1),求直线的解析式;(3)Q知一次函数的图象如下图,写岀这个函数的关系式。
一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.1、已知一次函数kx k y )1(-=+3,则k = . 2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
【例题讲解】知识点一:函数的概念1. 函数: 一般地,在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。
2. 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),①分式(分母不为0)、②二次根式(被开方数为非负数)、③实际意义几方面考虑3. 常量:在某变化过程中不发生改变的量。
变量:在某变化过程中发生改变的量。
4. 函数的表示方法:①列表法;②关系式(解析)法;③图像法。
题型一:函数概念例1:根据函数图象的定义,下列几个图象表示函数的是( )A .B .C .D .例2:下列等式中,是x 的函数的有( )个(1)123=-y x ;(2)122=+y x ;(3)1=xy ;(4)x y =. A .1个 B .2个 C .3个 D .4个 题型二:函数自变量取值范围 例1:(2013•湛江)函数3+=x y 中,自变量x 的取值范围是( )A .3->xB .3-≥xC .3-≠xD .3-≤x例2:(2013•包头)在函数131y x =-中,自变量x 的取值范围是( ) A.13x < B. 13x ≠- C. 13x ≠ D. 13x >例3:(2012•自贡) 函数112-+-=x x y 中,自变量x 的取值范围是 .举一反三:1. (2012•怀化)在函数23y x =-中,自变量x 的取值范围是( )A .x >32B .32x ≤C .32x ≠D .32x ≥2. (2013•眉山)函数12y x =-中自变量x 的取值范围是( )A .2=xB .2≠xC .2>xD .2<x3. (2013•南通)函数21x y x +=-的自变量x 的取值范围是( ) A .1>x B .2-≥x C .1≠x D .1<x 4. (2013•内江)函数112-+=x x y 中自变量x 的取值范围是 。
一次函数知识点汇总一、一次函数的概念。
1. 定义。
- 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。
2. 自变量的取值范围。
- 自变量x的取值范围是全体实数。
但在实际问题中,要根据具体情况确定自变量的取值范围。
例如,在计算长方形周长y = 2(x + 3)(设长为x,宽为3),x的取值范围是x>0。
二、一次函数的图象。
1. 图象的形状。
- 一次函数y = kx + b(k≠0)的图象是一条直线。
- 由于两点确定一条直线,所以画一次函数图象时,只要先描出两点,再连成直线即可。
通常选取(0,b)和(-(b)/(k),0)(k≠0)这两点。
2. 图象的性质。
- k的作用。
- 当k>0时,直线y = kx + b从左向右上升,y随x的增大而增大。
例如y = 2x+1,k = 2>0,当x = 1时,y=3;当x = 2时,y = 5,y随着x的增大而增大。
- 当k<0时,直线y = kx + b从左向右下降,y随x的增大而减小。
例如y=-3x + 2,k=-3<0,当x = 1时,y=-1;当x = 0时,y = 2,y随着x的增大而减小。
- b的作用。
- b是直线y = kx + b与y轴交点的纵坐标。
当b>0时,直线与y轴交于正半轴;例如y = x+3,b = 3,直线与y轴交于点(0,3)。
- 当b<0时,直线与y轴交于负半轴;例如y = 2x - 1,b=-1,直线与y轴交于点(0, - 1)。
- 当b = 0时,直线过原点,此时函数为正比例函数。
例如y = 3x,图象过原点(0,0)。
三、一次函数的解析式的确定。
1. 待定系数法。
- 一般步骤:- 设出含有待定系数的函数解析式,例如设一次函数解析式为y = kx + b。
- 把已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程(组)。
一次函数 复习
一、知识梳理
1、函数:一般地,在某个变化过程中,有两个变量x 和y,如果给定一个x 的值,相应地就确定了一个y 的值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量.
2、函数的三种表示方法:列表法、表达式法、图像法.
3、函数的图像及画法
把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标内描出它的对应点,所用这些点组成的图形,叫做该函数的图像.
画函数图像的一般步骤:(1)列表,(2)描点,(3)连线.
4、一次函数:若两个变量x,y 间的关系式可以表示成y=kx+b (k 、b 为常数,k ≠0)的形式,则称y 是x 的一次函数. 当两个变量x,y 满足表达式y=kx(k ≠0),则称y 是x 的正比例函数.
5、一次函数图像及画法
(1)一次函数y=kx+b 的图像是一条直线,这条直线经过(0,b).画一次函数的图像只要确定满足表达式y=kx+b 的两个简单的点即可.
(2)正比例函数y=kx 的图像是一条经过(0,0)和(1,k)点的直线.
6、一次函数的性质:
在一次函数y=kx+b 中,
(1) 当k>0时,y 的值随x 值的增大而增大;
(2) 当k<0时,y 的值随x 值的增大而减小.
(3)当k>0,b>0时,直线y=kx+b 经过一、二、三象限;当k>0,b<0时,直线y=kx+b 经过二、三、四象限;当k<0,b>0时,直线y=kx+b 经过一、二、四象限;当k<0,b<0时,直线y=kx+b 经过二、三、四象限. 等等(多看上课笔记) (对于函数的性质,同学们在记忆时借助图像去理解记忆!)
7、一次函数y=kx+b 与x 轴、y 轴的交点坐标:
(1)与x 轴的交点坐标为(-k
b ,0); (2)与y 轴的交点坐标(0,b). 8、一次函数y=kx+b 与一元一次方程kx+b=0之间的关系.
一次函数y=kx+b 的图像与x 轴交点的横坐标的对应值即为一元一次方程kx+b=0的根.
9、一次函数y=k 1 x+b 1与y=k 2 x+b 2的交点横纵坐标值为二元一次方程组: k 1 x+b 1=0
k 2 x+b 2=0 的解的x 、y 的值;
10、一次函数y=kx+b 与不等式的关系:若有kx+b>0,则此不等式的解集为位于x 轴上方的图像所对应的x 的所有取值;若有kx+b<0,则此不等式的
解集为位于x 轴下方的图像所对应的x 的所有取值;
11、关于函数图像的平移问题:y=kx+b的图像向上平移h个单位后,则平移后的函数解析式为y=kx+b+h;y=kx+b的图像向下平移h个单位后,则平移后的函数解析式为y=kx+b-h等等,其它情况见上课时的笔记;
12、关于两个(或多个)一次函数图像的位置关系(平行,垂直,相交),其最主要的决定因素在于b/k的值的关系,具体情况见上课时的笔记!13、待定系数法是求函数解析式最常用的方法,所以找关键点的坐标是最主要的步骤,一般的一次函数找两个关键点(正比例函数只需找一点),其依据是“两点决定一条直线”!除此而外还有其它求函数解析式的方法,望同学们根据已知条件灵活处理!
※借助函数图像解决有关函数的实际问题是非常必要的,所以同学们应该养成良好的作图习惯!
二、重点、难点、考点
重点:理解一次函数的概念,掌握一次函数的图像、性质,能利用函数的图像求函数值,求一次函数关系式,利用函数图像解决实际生活中的为问题.
难点:对函数的理解,从实际问题中建立函数模型以及根据图像分析和两个函数图像相关的实际问题.
考点:一次函数在中考中占有重要的地位,在中考试题中常出现贴近生活,反映时代气息的一次函数考题.多数以选择题,解答题的形式出现.涉及到一次函数的性质、图像的实际应用是中考的重要考点.
三、易混、易忽视概念
1.函数的两个变量之间的对应关系,不能说某一个量是函数.如:在路程、速度和时间关系中,只有当速度一定时,路程是时间的函数,不能笼统地说路程是函数.
2.注意区分一次函数和正比函数,正比例函数是一次函数,是一次函数的特殊形式.不能说一次函数是正比例函数.
3.在y=kx+b中一定要强调k≠0,k,b为常数时,y才是x的一次函数,否则,y 就不一定是x的一定函数.
4.函数y=kx+b(k≠0,k,b为常数)在x取任意数时,它的图像是一条直线,注意当x在某个范围内取值时,函数的图像可能是线段、射线.
中考题赏析:
一、选择题
1. (2007陕西课改,3分)如图,一次函数图象
经过点A,且与正比例函数y x
点B,则该一次函数的表达式为()
A .2y x =-+
B .2y x =+
C .2y x =-
D .2y x =-- 2. (2007福建福州课改,3分)已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范
围是( )
A .1a >
B .1a <
C .0a >
D .0a < 3. (2007广西河池课改,3分)已知正比例函数y kx =(0k ≠)的函数
值y 随x 的增大而增大,则一次函数y kx k =+的图象大致是( )
4. (2007四川乐山课改,3分)已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )
A.2
0y -<<
B.40y -
<<
C.2y <- D.4y <-
5. (2007浙江金华课改,4分)一次函数1y kx b =+与
2y x a =+的图象如图,
则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )
A .0
B .1
C .2
D .3
6.(2007浙江舟山课改,4分)如果函数y =ax +b (a <0,b <O )
和y =kx (k >0)的图象交于点P ,那么点P 应该位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题
a +
b +
7.(2007江苏泰州课改,3分)直线y x =-,直线2y x =+与x 轴围成图形的周长是 (结果保留根号).
8. (2007湖南张家界课改,3分)
则函数1y kx =-的图象不经过第 象限.
三、应用题
9. (2007甘肃陇南非课改,10分) 如图,两摞相同规格的饭碗整齐地叠
放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的
一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
10. (2007甘肃白银7市课改,10分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:
若日销售量y 是销售价x 的一次函数.
(1)求出日销售量y (件)与销售价x (元)的函数关系式;
(2)求销售价定为30元时,每日的销售利润.
11. (2007广东梅州课改,6分)在市区内,我市乘坐出租车的价格y (元)与路程x (km )的函数关系图象如图所示.
(1)请你根据图象写出两条信息;
(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.
附中考题赏析答案:
一、选择题
1. B ;
2. A;
3. A ;
4. C;
5. B ;
6. C
二、填空题
7. 2+;8. 二
三、应用题
9.解:(1)设y kx b =+. ……………………………………2分 由图可知:当4x =时,10.y =;当7x =时,15y =. ……………………………………4分
把它们分别代入上式,得 10.54,
157.k b k b =+⎧⎨=+⎩ …………………6分
解得 1.5k =, 4.5b =.
∴ 一次函数的解析式是 1.5 4.5y x =+. ……………………………8分 说明:只要求对 1.5k =, 4.5b =,不写最后一步,不扣分.
(2)当4711x =+=时, 1.511 4.521y =⨯+=.
即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm . ……………………………10分
说明:只要求对y =21,不写最后一步,不扣分.
10. 解:(1)设此一次函数解析式为.y kx b =+ ………………2分
则1525,
2020.k b k b +=⎧⎨+=⎩ …………………………………………4分
解得k =-1,b =40.
即一次函数解析式为40y x =-+. ………………………6分
说明:只要求对k=-1,b =40,无最后一步不扣分.
(2)每日的销售量为y =-30+40=10件, …………8分
所获销售利润为(30-10)×10=200元. ………………10分
11. 解:(1)在0到2km 内都是5元;2km 后,每增加0.625km 加1元. 2分
(答案不唯一)
(2)设射线的表达式为y kx b =+.依题意,得 526 2.625.k b k b =+⎧⎨=+⎩, 解得:8955k b ==,.得8955y x =+. 5分 将13y =代入上式,得7x =.
所以小明家离学校7km .
6分。