Competition of Zener and polaron phases in doped CMR manganites
- 格式:pdf
- 大小:283.12 KB
- 文档页数:8
辩题整理:当今世界竞争高于合作英文回答:In the labyrinthine tapestry of the modern world, the question of whether competition or cooperation holds sway is a perennial debate. I firmly believe that cooperation is the cornerstone of progress and prosperity in our globalized society.Firstly, collaboration fosters innovation. When individuals and organizations pool their knowledge, skills, and resources, they can achieve milestones that would be impossible to reach in isolation. The Manhattan Project, which produced the world's first atomic bomb, is a prime example of the collaborative power of science. By bringing together the brightest minds from various disciplines, the U.S. government was able to harness their collective intellect to develop a groundbreaking technology.Secondly, cooperation promotes economic growth. Trade,commerce, and investment thrive when nations work together to reduce barriers and establish common standards. The European Union, for instance, has created a single market of over 27 countries, facilitating seamless movement of goods, services, and people. By cooperating, EU member states have boosted their economies and improved their citizens' quality of life.Thirdly, collaboration fosters social cohesion. When people work together towards shared goals, they develop a sense of belonging and purpose. Community initiatives, such as neighborhood clean-ups or volunteer programs, strengthen social bonds and create a more positive and inclusive environment for all.Moreover, competition can be destructive. It can lead to cutthroat tactics, sabotage, and exploitation. In the business world, for example, intense competition can drive companies to cut corners, compromise on quality, and harm the environment. This ultimately undermines the long-term sustainability of the economy and society.In contrast, cooperation creates a virtuous cycle of trust, reciprocity, and shared success. By working together, individuals and nations can build relationships based on mutual respect and understanding. This foundation of trust enables them to collaborate effectively, innovate fearlessly, and overcome challenges together.In conclusion, I firmly believe that cooperation is the superior force in our globalized world. It fosters innovation, promotes economic growth, strengthens social cohesion, and ultimately leads to a more prosperous and fulfilling society for all.中文回答:现今世界,竞争与合作孰重孰轻,一直是争论不休的问题。
More informationPhase Noise and Frequency Stability in OscillatorsPresenting a comprehensive account of oscillator phase noise and frequency stability,this practical text is both mathematically rigorous and accessible.An in-depth treatmentof the noise mechanism is given,describing the oscillator as a physical system,andshowing that simple general laws govern the stability of a large variety of oscillatorsdiffering in technology and frequency range.Inevitably,special attention is given to am-plifiers,resonators,delay lines,feedback,andflicker(1/f)noise.The reverse engineeringof oscillators based on phase-noise spectra is also covered,and end-of-chapter exercisesare given.Uniquely,numerous practical examples are presented,including case studiestaken from laboratory prototypes and commercial oscillators,which allow the oscillatorinternal design to be understood by analyzing its phase-noise spectrum.Based on tuto-rials given by the author at the Jet Propulsion Laboratory,international IEEE meetings,and in industry,this is a useful reference for academic researchers,industry practitioners,and graduate students in RF engineering and communications engineering.Additional materials are available via /rubiola.Enrico Rubiola is a Senior Scientist at the CNRS FEMTO-ST Institute and a Professorat the Universit´e de Franche Comt´e.With previous positions as a Professor at theUniversit´e Henri Poincar´e,Nancy,and in Italy at the University Parma and thePolitecnico di Torino,he has also consulted at the NASA/Caltech Jet PropulsionLaboratory.His research interests include low-noise oscillators,phase/frequency-noisemetrology,frequency synthesis,atomic frequency standards,radio-navigation systems,precision electronics from dc to microwaves,optics and gravitation.More informationThe Cambridge RF and Microwave Engineering SeriesSeries EditorSteve C.CrippsPeter Aaen,Jaime Pl´a and John Wood,Modeling and Characterization of RF andMicrowave Power FETsEnrico Rubiola,Phase Noise and Frequency Stability in OscillatorsDominique Schreurs,M´a irt´ın O’Droma,Anthony A.Goacher and Michael Gadringer,RF Amplifier Behavioral ModelingFan Y ang and Y ahya Rahmat-Samii,Electromagnetic Band Gap Structures in AntennaEngineeringForthcoming:Sorin V oinigescu and Timothy Dickson,High-Frequency Integrated CircuitsDebabani Choudhury,Millimeter W aves for Commercial ApplicationsJ.Stephenson Kenney,RF Power Amplifier Design and LinearizationDavid B.Leeson,Microwave Systems and EngineeringStepan Lucyszyn,Advanced RF MEMSEarl McCune,Practical Digital Wireless Communications SignalsAllen Podell and Sudipto Chakraborty,Practical Radio Design TechniquesPatrick Roblin,Nonlinear RF Circuits and the Large-Signal Network AnalyzerDominique Schreurs,Microwave Techniques for MicroelectronicsJohn L.B.Walker,Handbook of RF and Microwave Solid-State Power AmplifiersPhase Noise and Frequency Stability in OscillatorsENRICO RUBIOLAProfessor of Electronics FEMTO-ST Institute CNRS and Universit´e de Franche Comt´e Besanc ¸on,FranceMore informationMore informationCAMBRIDGE UNIVERSITY PRESSCambridge,New Y ork,Melbourne,Madrid,Cape Town,Singapore,S˜a o Paulo,DelhiCambridge University PressThe Edinburgh Building,Cambridge CB28RU,UKPublished in the United States of America by Cambridge University Press,New Y orkInformation on this title:/9780521886772C Cambridge University Press2009This publication is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.First published2009Printed in the United Kingdom at the University Press,CambridgeA catalog record for this publication is available from the British LibraryISBN978-0-521-88677-2hardbackCambridge University Press has no responsibility for the persistence oraccuracy of URLs for external or third-party internet websites referred toin this publication,and does not guarantee that any content on suchwebsites is,or will remain,accurate or appropriate.More informationContentsForeword by Lute Maleki page ixForeword by David Leeson xiiPreface xv How to use this book xviSupplementary material xviii Notation xix 1Phase noise and frequency stability11.1Narrow-band signals11.2Physical quantities of interest51.3Elements of statistics91.4The measurement of power spectra131.5Linear and time-invariant(LTI)systems191.6Close-in noise spectrum221.7Time-domain variances251.8Relationship between spectra and variances291.9Experimental techniques30Exercises33 2Phase noise in semiconductors and amplifiers352.1Fundamental noise phenomena352.2Noise temperature and noisefigure372.3Phase noise and amplitude noise422.4Phase noise in cascaded amplifiers492.5 Low-flicker amplifiers522.6 Detection of microwave-modulated light62Exercises65 3Heuristic approach to the Leeson effect673.1Oscillator fundamentals673.2The Leeson formula72More informationvi Contents3.3The phase-noise spectrum of real oscillators753.4Other types of oscillator824Phase noise and feedback theory884.1Resonator differential equation884.2Resonator Laplace transform924.3The oscillator964.4Resonator in phase space1014.5Proof of the Leeson formula1114.6Frequency-fluctuation spectrum and Allan variance1164.7 A different,more general,derivation of the resonatorphase response1174.8 Frequency transformations1215Noise in delay-line oscillators and lasers1255.1Basic delay-line oscillator1255.2Optical resonators1285.3Mode selection1305.4The use of a resonator as a selectionfilter1335.5Phase-noise response1385.6Phase noise in lasers1435.7Close-in noise spectra and Allan variance1455.8Examples1466Oscillator hacking1506.1General guidelines1506.2About the examples of phase-noise spectra1546.3Understanding the quartz oscillator1546.4Quartz oscillators156Oscilloquartz OCXO8600(5MHz AT-cut BV A)156Oscilloquartz OCXO8607(5MHz SC-cut BV A)159RAKON PHARAO5MHz quartz oscillator162FEMTO-ST LD-cut quartz oscillator(10MHz)164Agilent10811quartz(10MHz)166Agilent noise-degeneration oscillator(10MHz)167Wenzel501-04623(100MHz SC-cut quartz)1716.5The origin of instability in quartz oscillators1726.6Microwave oscillators175Miteq DRO mod.D-210B175Poseidon DRO-10.4-FR(10.4GHz)177Poseidon Shoebox(10GHz sapphire resonator)179UWA liquid-N whispering-gallery9GHz oscillator182More informationContents vii6.7Optoelectronic oscillators185NIST10GHz opto-electronic oscillator(OEO)185OEwaves Tidalwave(10GHz OEO)188 Exercises190Appendix A Laplace transforms192References196Index202More informationForeword by Lute MalekiGiven the ubiquity of periodic phenomena in nature,it is not surprising that oscillatorsplay such a fundamental role in sciences and technology.In physics,oscillators are thebasis for the understanding of a wide range of concepts spanningfield theory and linearand nonlinear dynamics.In technology,oscillators are the source of operation in everycommunications system,in sensors and in radar,to name a few.As man’s study ofnature’s laws and human-made phenomena expands,oscillators have found applicationsin new realms.Oscillators and their interaction with each other,usually as phase locking,and withthe environment,as manifested by a change in their operational parameters,form thebasis of our understanding of a myriad phenomena in biology,chemistry,and evensociology and climatology.It is very difficult to account for every application in whichthe oscillator plays a role,either as an element that supports understanding or insight oran entity that allows a given application.In all thesefields,what is important is to understand how the physical parametersof the oscillator,i.e.its phase,frequency,and amplitude,are affected,either by theproperties of its internal components or by interaction with the environment in whichthe oscillator resides.The study of oscillator noise is fundamental to understanding allphenomena in which the oscillator model is used in optimization of the performance ofsystems requiring an oscillator.Simply stated,noise is the unwanted part of the oscillator signal and is unavoidablein practical systems.Beyond the influence of the environment,and the non-ideality ofthe physical elements that comprise the oscillator,the fundamental quantum nature ofelectrons and photons sets the limit to what may be achieved in the spectral purity of thegenerated signal.This sets the fundamental limit to the best performance that a practicaloscillator can produce,and it is remarkable that advanced oscillators can reach it.The practitioners who strive to advance thefield of oscillators in time-and-frequencyapplications cannot be content with knowledge of physics alone or engineering alone.The reason is that oscillators and clocks,whether of the common variety or the advancedtype,are complex“systems”that interact with their environment,sometimes in waysthat are not readily obvious or that are highly nonlinear.Thus the physicist is needed toidentify the underlying phenomenon and the parameters affecting performance,and theengineer is needed to devise the most effective and practical approach to deal with them.The present monograph by Professor Enrico Rubiola is unique in the extent to which itsatisfies both the physicist and the engineer.It also serves the need to understand bothMore informationx Forewordsthe fundamentals and the practice of phase-noise metrology,a required tool in dealingwith noise in oscillators.Rubiola’s approach to the treatment of noise in this book is based on the input–output transfer functions.While other approaches lead to some of the same results,this treatment allows the introduction of a mathematical rigor that is easily tractable byanyone with an introductory knowledge of Fourier and Laplace transforms.In particular,Rubiola uses this approach to obtain a derivation,fromfirst principles,of the Leesonformula.This formula has been used in the engineering literature for the noise analysisof the RF oscillator since its introduction by Leeson in1966.Leeson evidently arrivedat it without realizing that it was known earlier in the physics literature in a differentform as the Schawlow–Townes linewidth for the laser oscillator.While a number ofother approaches based on linear and nonlinear models exist for analyzing noise inan oscillator,the Leeson formula remains particularly useful for modeling the noisein high-performance oscillators.Given its relation to the Schawlow–Townes formula,it is not surprising that the Leeson model is so useful for analyzing the noise in theoptoelectronic oscillator,a newcomer to the realm of high-performance microwave andmillimeter-wave oscillators,which are also treated in this book.Starting in the Spring of2004,Professor Rubiola began a series of limited-timetenures in the Quantum Sciences and Technologies group at the Jet Propulsion Labo-ratory.Evidently,this can be regarded as the time when the initial seed for this bookwas conceived.During these visits,Rubiola was to help architect a system for themeasurement of the noise of a high-performance microwave oscillator,with the sameexperimental care that he had previously applied and published for the RF oscillators.Characteristically,Rubiola had to know all the details about the oscillator,its principleof operation,and the sources of noise in its every component.It was only then that hecould implement the improvement needed on the existing measurement system,whichwas based on the use of a longfiber delay in a homodyne setup.Since Rubiola is an avid admirer of the Leeson model,he was interested in applyingit to the optoelectronic oscillator,as well.In doing so,he developed both an approachfor analyzing the performance of a delay-line oscillator and a scheme based on Laplacetransforms to derive the Leeson formula,advancing the original,heuristic,approach.These two treatments,together with the range of other topics covered,should makethis unique book extremely useful and attractive to both the novice and experiencedpractitioners of thefield.It is delightful to see that in writing the monograph,Enrico Rubiola has so openlybared his professional persona.He pursues the subject with a blatant passion,andhe is characteristically not satisfied with“dumbing down,”a concept at odds withmathematical rigor.Instead,he provides visuals,charts,and tables to make his treatmentaccessible.He also shows his commensurate tendencies as an engineer by providingnumerical examples and details of the principles behind instruments used for noisemetrology.He balances this with the physicist in him that looks behind the obvious forthe fundamental causation.All this is enhanced with his mathematical skill,of which healways insists,with characteristic modesty,he wished to have more.Other ingredients,missing in the book,that define Enrico Rubiola are his knowledge of ancient languagesMore informationForewords xi and history.But these could not inform further such a comprehensive and extremelyuseful book on the subject of oscillator noise.Lute MalekiNASA/Caltech Jet Propulsion Laboratoryand OEwaves,Inc.,February2008More informationForeword by David LeesonPermit me to place Enrico Rubiola’s excellent book Phase Noise and Frequency Stabilityin Oscillators in context with the history of the subject over the pastfive decades,goingback to the beginnings of my own professional interest in oscillator frequency stability.Oscillator instabilities are a fundamental concern for systems tasked with keeping anddistributing precision time or frequency.Also,oscillator phase noise limits the demod-ulated signal-to-noise ratio in communication systems that rely on phase modulation,such as microwave relay systems,including satellite and deep-space parablyimportant are the dynamic range limits in multisignal systems resulting from the mask-ing of small signals of interest by oscillator phase noise on adjacent large signals.Forexample,Doppler radar targets are masked by ground clutter noise.These infrastructure systems have been well served by what might now be termedthe classical theory and measurement of oscillator noise,of which this volume is acomprehensive and up-to-date tutorial.Rubiola also exposes a number of significantconcepts that have escaped prior widespread notice.My early interest in oscillator noise came as solid-state signal sources began to beapplied to the radars that had been under development since the days of the MIT RadiationLaboratory.I was initiated into the phase-noise requirements of airborne Doppler radarand the underlying arts of crystal oscillators,power amplifiers,and nonlinear-reactancefrequency multipliers.In1964an IEEE committee was formed to prepare a standard on frequency stability.Thanks to a supportive mentor,W.K.Saunders,I became a member of that group,whichincluded leaders such as J.A.Barnes and L.S.Cutler.It was noted that the independentuse of frequency-domain and time-domain definitions stood in the way of the develop-ment of a common standard.To promote focused interchange the group sponsored theNovember1964NASA/IEEE Conference on Short Term Frequency Stability and editedthe February1966Special Issue on Frequency Stability of the Proceedings of the IEEE.The context of that time included the appreciation that self-limiting oscillators andmany systems(FM receivers with limiters,for example)are nonlinear in that theylimit amplitude variations(AM noise);hence the focus on phase noise.The modestfrequency limits of semiconductor devices of that period dictated the common usage ofnonlinear-reactance frequency multipliers,which multiply phase noise to the point whereit dominates the output noise spectrum.These typical circuit conditions were secondnature then to the“short-term stability community”but might not come so readily tomind today.More informationForewords xiii Thefirst step of the program to craft a standard that would define frequency stabilitywas to understand and meld the frequency-and time-domain descriptions of phaseinstability to a degree that was predictive and permitted analysis and optimization.Bythe time the subcommittee edited the Proc.IEEE special issue,the wide exchange ofviewpoints and concepts made it possible to synthesize concise summaries of the workin both domains,of which my own model was one.The committee published its“Characterization of frequency stability”in IEEE Trans.Instrum.Meas.,May1971.This led to the IEEE1139Standards that have served thecommunity well,with advances and revisions continuing since their initial publication.Rubiola’s book,based on his extensive seminar notes,is a capstone tutorial on thetheoretical basis and experimental measurements of oscillators for which phase noiseand frequency stability are primary issues.In hisfirst chapter Rubiola introduces the reader to the fundamental statistical de-scriptions of oscillator instabilities and discusses their role in the standards.Then in thesecond chapter he provides an exposition of the sources of noise in devices and circuits.In an instructive analysis of cascaded stages,he shows that,for modulative or parametricflicker noise,the effect of cascaded stages is cumulative without regard to stage gain.This is in contrast with the well-known treatment of additive noise using the Friisformula to calculate an equivalent input noise power representing noise that may originateanywhere in a cascade of real amplifiers.This example highlights the concept that“themodel is not the actual thing.”He also describes concepts for the reduction offlickernoise in amplifier stages.In his third chapter Rubiola then combines the elements of thefirst two chapters toderive models and techniques useful in characterizing phase noise arising in resonatorfeedback oscillators,adding mathematical formalism to these in the fourth chapter.Inthefifth chapter he extends the reader’s view to the case of delay-line oscillators suchas lasers.In his sixth chapter,Rubiola offers guidance for the instructive“hacking”ofexisting oscillators,using their external phase spectra and other measurables to estimatetheir internal configuration.He details cases in which resonatorfluctuations mask circuitnoise,showing that separately quantifying resonator noise can be fruitful and that devicenoisefigure and resonator Q are not merely arbitraryfitting factors.It’s interesting to consider what lies ahead in thisfield.The successes of today’sconsumer wireless products,cellular telephony,WiFi,satellite TV,and GPS,arise directlyfrom the economies of scale of highly integrated circuits.But at the same time thisintroduces compromises for active-device noise and resonator quality.A measure ofthe market penetration of multi-signal consumer systems such as cellular telephonyand WiFi is that they attract enough users to become interference-limited,often fromsubscribers much nearer than a distant base station.Hence low phase noise remainsessential to preclude an unacceptable decrease of dynamic range,but it must now beachieved within narrower bounds on the available circuit elements.A search for new understanding and techniques has been spurred by this requirementfor low phase noise in oscillators and synthesizers whose primary character is integrationand its accompanying minimal cost.This body of knowledge is advancing througha speculative and developmental phase.Today,numerical nonlinear circuit analysisMore informationxiv Forewordssupports additional design variables,such as the timing of the current pulse in nonlinearoscillators,that have become feasible because of the improved capabilities of bothsemiconductor devices and computers.Thefield is alive and well,with emerging players eager tofind a role on the stage fortheir own scenarios.Professionals and students,whether senior or new to thefield so ablydescribed by Rubiola,will benefit from his theoretical rigor,experimental viewpoint,and presentation.David B.LeesonStanford UniversityFebruary2008More informationPrefaceThe importance of oscillators in science and technology can be outlined by two mile-stones.The pendulum,discovered by Galileo Galilei in the sixteenth century,persistedas“the”time-measurement instrument(in conjunction with the Earth’s rotation period)until the piezoelectric quartz resonator.Then,it was not by chance that thefirst inte-grated circuit,built in September1958by Jack Kilby at the Bell Laboratories,was aradio-frequency oscillator.Time,and equivalently frequency,is the most precisely measured physical quantity.The wrist watch,for example,is probably the only cheap artifact whose accuracy ex-ceeds10−5,while in primary laboratories frequency attains the incredible accuracy ofa few parts in10−15.It is therefore inevitable that virtually all domains of engineeringand physics rely on time-and-frequency metrology and thus need reference oscillators.Oscillators are of major importance in a number of applications such as wireless com-munications,high-speed digital electronics,radars,and space research.An oscillator’srandomfluctuations,referred to as noise,can be decomposed into amplitude noise andphase noise.The latter,far more important,is related to the precision and accuracy oftime-and-frequency measurements,and is of course a limiting factor in applications.The main fact underlying this book is that an oscillator turns the phase noise of itsinternal parts into frequency noise.This is a necessary consequence of the Barkhausencondition for stationary oscillation,which states that the loop gain of a feedback oscillatormust be unity,with zero phase.It follows that the phase noise,which is the integral ofthe frequency noise,diverges in the long run.This phenomenon is often referred to asthe“Leeson model”after a short article published in1966by David B.Leeson[63].Onmy part,I prefer the term Leeson effect in order to emphasize that the phenomenon isfar more general than a simple model.In2001,in Seattle,Leeson received the W.G.Cady award of the IEEE International Frequency Control Symposium“for clear physicalinsight and[a]model of the effects of noise on oscillators.”In spring2004I had the opportunity to give some informal seminars on noise in oscil-lators at the NASA/Caltech Jet Propulsion Laboratory.Since then I have given lecturesand seminars on noise in industrial contexts,at IEEE symposia,and in universities andgovernment laboratories.The purpose of most of these seminars was to provide a tuto-rial,as opposed to a report on advanced science,addressed to a large-variance audiencethat included technicians,engineers,Ph.D.students,and senior scientists.Of course,capturing the attention of such a varied audience was a challenging task.The stimu-lating discussions that followed the seminars convinced me I should write a workingMore informationxvi Prefacedocument1as a preliminary step and then this book.In writing,I have made a seriouseffort to address the same broad audience.This work could not have been written without the help of many people.The gratitudeI owe to my colleagues and friends who contributed to the rise of the ideas containedin this book is disproportionate to its small size:R´e mi Brendel,Giorgio Brida,G.JohnDick,Michele Elia,Patrice F´e ron,Serge Galliou,Vincent Giordano,Charles A.(Chuck)Greenhall,Jacques Groslambert,John L.Hall,Vladimir S.(Vlad)Ilchenko,LaurentLarger,Lutfallah(Lute)Maleki,Andrey B.Matsko,Mark Oxborrow,Stefania R¨o misch,Anatoliy B.Savchenkov,Franc¸ois Vernotte,Nan Yu.Among them,I owe special thanks to the following:Lute Maleki for giving me theopportunity of spending four long periods at the NASA/Caltech Jet Propulsion Labora-tory,where I worked on noise in photonic oscillators,and for numerous discussions andsuggestions;G.John Dick,for giving invaluable ideas and suggestions during numerousand stimulating discussions;R´e mi Brendel,Mark Oxborrow,and Stefania R¨o misch fortheir personal efforts in reviewing large parts of the manuscript in meticulous detail andfor a wealth of suggestions and criticism;Vincent Giordano for supporting my effortsfor more than10years and for frequent and stimulating discussions.I wish to thank some manufacturers and their local representatives for kindness andprompt help:Jean-Pierre Aubry from Oscilloquartz;Vincent Candelier from RAKON(formerly CMAC);Art Faverio and Charif Nasrallah from Miteq;Jesse H.Searles fromPoseidon Scientific Instruments;and Mark Henderson from Oewaves.Thanks to my friend Roberto Bergonzo,for the superb picture on the front cover,entitled“The amethyst stairway.”For more information about this artist,visit the website.Finally,I wish to thank Julie Lancashire and Sabine Koch,of the Cambridge editorialstaff,for their kindness and patience during the long process of writing this book.How to use this bookLet usfirst abstract this book in one paragraph.Chapter1introduces the language ofphase noise and frequency stability.Chapter2analyzes phase noise in amplifiers,includ-ingflicker and other non-white phenomena.Chapter3explains heuristically the physicalmechanism of an oscillator and of its noise.Chapter4focuses on the mathematics thatdescribe an oscillator and its phase noise.For phase noise,the oscillator turns out to bea linear system.These concepts are extended in Chapter5to the delay-line oscillatorand to the laser,which is a special case of the latter.Finally,Chapter6analyzes indepth a number of oscillators,both laboratory prototypes and commercial products.Theanalysis of an oscillator’s phase noise discloses relevant details about the oscillator.There are other books about oscillators,though not numerous.They can be divided intothree categories:books on radio-frequency and microwave oscillators,which generallyfocus on the electronics;books about lasers,which privilege atomic physics and classical1E.Rubiola,The Leeson Effect–Phase Noise in Quasilinear Oscillators,February2005,arXiv:physics/0502143,now superseded by the present text.PrefacexviideeperreadingbasictheoreticaladvancedtheoreticallegendexperimentalistlecturerdeeperreadingFigure1Asymptotic reading paths:on the left,for someone planning lectures on oscillatornoise;on the right,for someone currently involved in practical work on oscillators.optics;books focusing on the relevant mathematical physics.The present text is uniquein that we look at the oscillator as a system consisting of more or less complex interactingblocks.Most topics are innovative,and the overlap with other books about oscillatorsor time-and-frequency metrology is surprisingly small.This may require an additionaleffort on the part of readers already familiar with the subject area.The core of this book rises from my experimentalist soul,which later became con-vinced of the importance of the mathematics.The material was originally thought anddrafted in the following(dis)order(see Fig.1):3Heuristic approach,6Oscillator hack-ing,4Feedback theory,5Delay-line oscillators.Thefinal order of subjects aims at amore understandable presentation.In seminars,I have often presented the material in the3–6–4–5order.Y et,the best reading path depends on the reader.T wo paths are suggestedin Fig.1for two“asymptotic”reader types,i.e.a lecturer and experimentalist.Whenplanning to use this book as a supplementary text for a university course,the lecturer More information。
华中师范大学物理学院物理学专业英语仅供内部学习参考!2014一、课程的任务和教学目的通过学习《物理学专业英语》,学生将掌握物理学领域使用频率较高的专业词汇和表达方法,进而具备基本的阅读理解物理学专业文献的能力。
通过分析《物理学专业英语》课程教材中的范文,学生还将从英语角度理解物理学中个学科的研究内容和主要思想,提高学生的专业英语能力和了解物理学研究前沿的能力。
培养专业英语阅读能力,了解科技英语的特点,提高专业外语的阅读质量和阅读速度;掌握一定量的本专业英文词汇,基本达到能够独立完成一般性本专业外文资料的阅读;达到一定的笔译水平。
要求译文通顺、准确和专业化。
要求译文通顺、准确和专业化。
二、课程内容课程内容包括以下章节:物理学、经典力学、热力学、电磁学、光学、原子物理、统计力学、量子力学和狭义相对论三、基本要求1.充分利用课内时间保证充足的阅读量(约1200~1500词/学时),要求正确理解原文。
2.泛读适量课外相关英文读物,要求基本理解原文主要内容。
3.掌握基本专业词汇(不少于200词)。
4.应具有流利阅读、翻译及赏析专业英语文献,并能简单地进行写作的能力。
四、参考书目录1 Physics 物理学 (1)Introduction to physics (1)Classical and modern physics (2)Research fields (4)V ocabulary (7)2 Classical mechanics 经典力学 (10)Introduction (10)Description of classical mechanics (10)Momentum and collisions (14)Angular momentum (15)V ocabulary (16)3 Thermodynamics 热力学 (18)Introduction (18)Laws of thermodynamics (21)System models (22)Thermodynamic processes (27)Scope of thermodynamics (29)V ocabulary (30)4 Electromagnetism 电磁学 (33)Introduction (33)Electrostatics (33)Magnetostatics (35)Electromagnetic induction (40)V ocabulary (43)5 Optics 光学 (45)Introduction (45)Geometrical optics (45)Physical optics (47)Polarization (50)V ocabulary (51)6 Atomic physics 原子物理 (52)Introduction (52)Electronic configuration (52)Excitation and ionization (56)V ocabulary (59)7 Statistical mechanics 统计力学 (60)Overview (60)Fundamentals (60)Statistical ensembles (63)V ocabulary (65)8 Quantum mechanics 量子力学 (67)Introduction (67)Mathematical formulations (68)Quantization (71)Wave-particle duality (72)Quantum entanglement (75)V ocabulary (77)9 Special relativity 狭义相对论 (79)Introduction (79)Relativity of simultaneity (80)Lorentz transformations (80)Time dilation and length contraction (81)Mass-energy equivalence (82)Relativistic energy-momentum relation (86)V ocabulary (89)正文标记说明:蓝色Arial字体(例如energy):已知的专业词汇蓝色Arial字体加下划线(例如electromagnetism):新学的专业词汇黑色Times New Roman字体加下划线(例如postulate):新学的普通词汇1 Physics 物理学1 Physics 物理学Introduction to physicsPhysics is a part of natural philosophy and a natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry,and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences, while opening new avenues of research in areas such as mathematics and philosophy.Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.Core theoriesThough physics deals with a wide variety of systems, certain theories are used by all physicists. Each of these theories were experimentally tested numerous times and found correct as an approximation of nature (within a certain domain of validity).For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These theories continue to be areas of active research, and a remarkable aspect of classical mechanics known as chaos was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Isaac Newton (1642–1727) 【艾萨克·牛顿】.University PhysicsThese central theories are important tools for research into more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.Classical and modern physicsClassical mechanicsClassical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics, optics, thermodynamics, and electromagnetism.Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies at rest), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter including such branches as hydrostatics, hydrodynamics, aerodynamics, and pneumatics.Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics the physics of animal calls and hearing, and electroacoustics, the manipulation of audible sound waves using electronics.Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light.Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy.Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.Modern PhysicsClassical physics is generally concerned with matter and energy on the normal scale of1 Physics 物理学observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on the very large or very small scale.For example, atomic and nuclear physics studies matter on the smallest scale at which chemical elements can be identified.The physics of elementary particles is on an even smaller scale, as it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in large particle accelerators. On this scale, ordinary, commonsense notions of space, time, matter, and energy are no longer valid.The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics.Quantum theory is concerned with the discrete, rather than continuous, nature of many phenomena at the atomic and subatomic level, and with the complementary aspects of particles and waves in the description of such phenomena.The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with relative uniform motion in a straight line and the general theory of relativity with accelerated motion and its connection with gravitation.Both quantum theory and the theory of relativity find applications in all areas of modern physics.Difference between classical and modern physicsWhile physics aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking, the laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match their predictions.Albert Einstein【阿尔伯特·爱因斯坦】contributed the framework of special relativity, which replaced notions of absolute time and space with space-time and allowed an accurate description of systems whose components have speeds approaching the speed of light.Max Planck【普朗克】, Erwin Schrödinger【薛定谔】, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales.Later, quantum field theory unified quantum mechanics and special relativity.General relativity allowed for a dynamical, curved space-time, with which highly massiveUniversity Physicssystems and the large-scale structure of the universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed.Research fieldsContemporary research in physics can be broadly divided into condensed matter physics; atomic, molecular, and optical physics; particle physics; astrophysics; geophysics and biophysics. Some physics departments also support research in Physics education.Since the 20th century, the individual fields of physics have become increasingly specialized, and today most physicists work in a single field for their entire careers. "Universalists" such as Albert Einstein (1879–1955) and Lev Landau (1908–1968)【列夫·朗道】, who worked in multiple fields of physics, are now very rare.Condensed matter physicsCondensed matter physics is the field of physics that deals with the macroscopic physical properties of matter. In particular, it is concerned with the "condensed" phases that appear whenever the number of particles in a system is extremely large and the interactions between them are strong.The most familiar examples of condensed phases are solids and liquids, which arise from the bonding by way of the electromagnetic force between atoms. More exotic condensed phases include the super-fluid and the Bose–Einstein condensate found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials,and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.Condensed matter physics is by far the largest field of contemporary physics.Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields. The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group—previously solid-state theory—in 1967. In 1978, the Division of Solid State Physics of the American Physical Society was renamed as the Division of Condensed Matter Physics.Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.Atomic, molecular and optical physicsAtomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions on the scale of single atoms and molecules.1 Physics 物理学The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of the energy scales that are relevant. All three areas include both classical, semi-classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).Atomic physics studies the electron shells of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions, low-temperature collision dynamics and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see, e.g., hyperfine splitting), but intra-nuclear phenomena such as fission and fusion are considered part of high-energy physics.Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light.Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects, but on the fundamental properties of optical fields and their interactions with matter in the microscopic realm.High-energy physics (particle physics) and nuclear physicsParticle physics is the study of the elementary constituents of matter and energy, and the interactions between them.In addition, particle physicists design and develop the high energy accelerators,detectors, and computer programs necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally, but are created only during high-energy collisions of other particles.Currently, the interactions of elementary particles and fields are described by the Standard Model.●The model accounts for the 12 known particles of matter (quarks and leptons) thatinteract via the strong, weak, and electromagnetic fundamental forces.●Dynamics are described in terms of matter particles exchanging gauge bosons (gluons,W and Z bosons, and photons, respectively).●The Standard Model also predicts a particle known as the Higgs boson. In July 2012CERN, the European laboratory for particle physics, announced the detection of a particle consistent with the Higgs boson.Nuclear Physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.University PhysicsAstrophysics and Physical CosmologyAstrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the solar system, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy.Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble's discovery that the universe was expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang.The Big Bang was confirmed by the success of Big Bang nucleo-synthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein's general relativity and the cosmological principle (On a sufficiently large scale, the properties of the Universe are the same for all observers). Cosmologists have recently established the ΛCDM model (the standard model of Big Bang cosmology) of the evolution of the universe, which includes cosmic inflation, dark energy and dark matter.Current research frontiersIn condensed matter physics, an important unsolved theoretical problem is that of high-temperature superconductivity. Many condensed matter experiments are aiming to fabricate workable spintronics and quantum computers.In particle physics, the first pieces of experimental evidence for physics beyond the Standard Model have begun to appear. Foremost among these are indications that neutrinos have non-zero mass. These experimental results appear to have solved the long-standing solar neutrino problem, and the physics of massive neutrinos remains an area of active theoretical and experimental research. Particle accelerators have begun probing energy scales in the TeV range, in which experimentalists are hoping to find evidence for the super-symmetric particles, after discovery of the Higgs boson.Theoretical attempts to unify quantum mechanics and general relativity into a single theory1 Physics 物理学of quantum gravity, a program ongoing for over half a century, have not yet been decisively resolved. The current leading candidates are M-theory, superstring theory and loop quantum gravity.Many astronomical and cosmological phenomena have yet to be satisfactorily explained, including the existence of ultra-high energy cosmic rays, the baryon asymmetry, the acceleration of the universe and the anomalous rotation rates of galaxies.Although much progress has been made in high-energy, quantum, and astronomical physics, many everyday phenomena involving complexity, chaos, or turbulence are still poorly understood. Complex problems that seem like they could be solved by a clever application of dynamics and mechanics remain unsolved; examples include the formation of sand-piles, nodes in trickling water, the shape of water droplets, mechanisms of surface tension catastrophes, and self-sorting in shaken heterogeneous collections.These complex phenomena have received growing attention since the 1970s for several reasons, including the availability of modern mathematical methods and computers, which enabled complex systems to be modeled in new ways. Complex physics has become part of increasingly interdisciplinary research, as exemplified by the study of turbulence in aerodynamics and the observation of pattern formation in biological systems.Vocabulary★natural science 自然科学academic disciplines 学科astronomy 天文学in their own right 凭他们本身的实力intersects相交,交叉interdisciplinary交叉学科的,跨学科的★quantum 量子的theoretical breakthroughs 理论突破★electromagnetism 电磁学dramatically显著地★thermodynamics热力学★calculus微积分validity★classical mechanics 经典力学chaos 混沌literate 学者★quantum mechanics量子力学★thermodynamics and statistical mechanics热力学与统计物理★special relativity狭义相对论is concerned with 关注,讨论,考虑acoustics 声学★optics 光学statics静力学at rest 静息kinematics运动学★dynamics动力学ultrasonics超声学manipulation 操作,处理,使用University Physicsinfrared红外ultraviolet紫外radiation辐射reflection 反射refraction 折射★interference 干涉★diffraction 衍射dispersion散射★polarization 极化,偏振internal energy 内能Electricity电性Magnetism 磁性intimate 亲密的induces 诱导,感应scale尺度★elementary particles基本粒子★high-energy physics 高能物理particle accelerators 粒子加速器valid 有效的,正当的★discrete离散的continuous 连续的complementary 互补的★frame of reference 参照系★the special theory of relativity 狭义相对论★general theory of relativity 广义相对论gravitation 重力,万有引力explicit 详细的,清楚的★quantum field theory 量子场论★condensed matter physics凝聚态物理astrophysics天体物理geophysics地球物理Universalist博学多才者★Macroscopic宏观Exotic奇异的★Superconducting 超导Ferromagnetic铁磁质Antiferromagnetic 反铁磁质★Spin自旋Lattice 晶格,点阵,网格★Society社会,学会★microscopic微观的hyperfine splitting超精细分裂fission分裂,裂变fusion熔合,聚变constituents成分,组分accelerators加速器detectors 检测器★quarks夸克lepton 轻子gauge bosons规范玻色子gluons胶子★Higgs boson希格斯玻色子CERN欧洲核子研究中心★Magnetic Resonance Imaging磁共振成像,核磁共振ion implantation 离子注入radiocarbon dating放射性碳年代测定法geology地质学archaeology考古学stellar 恒星cosmology宇宙论celestial bodies 天体Hubble diagram 哈勃图Rival竞争的★Big Bang大爆炸nucleo-synthesis核聚合,核合成pillar支柱cosmological principle宇宙学原理ΛCDM modelΛ-冷暗物质模型cosmic inflation宇宙膨胀1 Physics 物理学fabricate制造,建造spintronics自旋电子元件,自旋电子学★neutrinos 中微子superstring 超弦baryon重子turbulence湍流,扰动,骚动catastrophes突变,灾变,灾难heterogeneous collections异质性集合pattern formation模式形成University Physics2 Classical mechanics 经典力学IntroductionIn physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of the oldest and largest subjects in science, engineering and technology.Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, as well as astronomical objects, such as spacecraft, planets, stars, and galaxies. Besides this, many specializations within the subject deal with gases, liquids, solids, and other specific sub-topics.Classical mechanics provides extremely accurate results as long as the domain of study is restricted to large objects and the speeds involved do not approach the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to introduce the other major sub-field of mechanics, quantum mechanics, which reconciles the macroscopic laws of physics with the atomic nature of matter and handles the wave–particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, classical mechanics is enhanced by special relativity. General relativity unifies special relativity with Newton's law of universal gravitation, allowing physicists to handle gravitation at a deeper level.The initial stage in the development of classical mechanics is often referred to as Newtonian mechanics, and is associated with the physical concepts employed by and the mathematical methods invented by Newton himself, in parallel with Leibniz【莱布尼兹】, and others.Later, more abstract and general methods were developed, leading to reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics. These advances were largely made in the 18th and 19th centuries, and they extend substantially beyond Newton's work, particularly through their use of analytical mechanics. Ultimately, the mathematics developed for these were central to the creation of quantum mechanics.Description of classical mechanicsThe following introduces the basic concepts of classical mechanics. For simplicity, it often2 Classical mechanics 经典力学models real-world objects as point particles, objects with negligible size. The motion of a point particle is characterized by a small number of parameters: its position, mass, and the forces applied to it.In reality, the kind of objects that classical mechanics can describe always have a non-zero size. (The physics of very small particles, such as the electron, is more accurately described by quantum mechanics). Objects with non-zero size have more complicated behavior than hypothetical point particles, because of the additional degrees of freedom—for example, a baseball can spin while it is moving. However, the results for point particles can be used to study such objects by treating them as composite objects, made up of a large number of interacting point particles. The center of mass of a composite object behaves like a point particle.Classical mechanics uses common-sense notions of how matter and forces exist and interact. It assumes that matter and energy have definite, knowable attributes such as where an object is in space and its speed. It also assumes that objects may be directly influenced only by their immediate surroundings, known as the principle of locality.In quantum mechanics objects may have unknowable position or velocity, or instantaneously interact with other objects at a distance.Position and its derivativesThe position of a point particle is defined with respect to an arbitrary fixed reference point, O, in space, usually accompanied by a coordinate system, with the reference point located at the origin of the coordinate system. It is defined as the vector r from O to the particle.In general, the point particle need not be stationary relative to O, so r is a function of t, the time elapsed since an arbitrary initial time.In pre-Einstein relativity (known as Galilean relativity), time is considered an absolute, i.e., the time interval between any given pair of events is the same for all observers. In addition to relying on absolute time, classical mechanics assumes Euclidean geometry for the structure of space.Velocity and speedThe velocity, or the rate of change of position with time, is defined as the derivative of the position with respect to time. In classical mechanics, velocities are directly additive and subtractive as vector quantities; they must be dealt with using vector analysis.When both objects are moving in the same direction, the difference can be given in terms of speed only by ignoring direction.University PhysicsAccelerationThe acceleration , or rate of change of velocity, is the derivative of the velocity with respect to time (the second derivative of the position with respect to time).Acceleration can arise from a change with time of the magnitude of the velocity or of the direction of the velocity or both . If only the magnitude v of the velocity decreases, this is sometimes referred to as deceleration , but generally any change in the velocity with time, including deceleration, is simply referred to as acceleration.Inertial frames of referenceWhile the position and velocity and acceleration of a particle can be referred to any observer in any state of motion, classical mechanics assumes the existence of a special family of reference frames in terms of which the mechanical laws of nature take a comparatively simple form. These special reference frames are called inertial frames .An inertial frame is such that when an object without any force interactions (an idealized situation) is viewed from it, it appears either to be at rest or in a state of uniform motion in a straight line. This is the fundamental definition of an inertial frame. They are characterized by the requirement that all forces entering the observer's physical laws originate in identifiable sources (charges, gravitational bodies, and so forth).A non-inertial reference frame is one accelerating with respect to an inertial one, and in such a non-inertial frame a particle is subject to acceleration by fictitious forces that enter the equations of motion solely as a result of its accelerated motion, and do not originate in identifiable sources. These fictitious forces are in addition to the real forces recognized in an inertial frame.A key concept of inertial frames is the method for identifying them. For practical purposes, reference frames that are un-accelerated with respect to the distant stars are regarded as good approximations to inertial frames.Forces; Newton's second lawNewton was the first to mathematically express the relationship between force and momentum . Some physicists interpret Newton's second law of motion as a definition of force and mass, while others consider it a fundamental postulate, a law of nature. Either interpretation has the same mathematical consequences, historically known as "Newton's Second Law":a m t v m t p F ===d )(d d dThe quantity m v is called the (canonical ) momentum . The net force on a particle is thus equal to rate of change of momentum of the particle with time.So long as the force acting on a particle is known, Newton's second law is sufficient to。
物理竞赛题目作文模板范文英文回答:Introduction:In the realm of physics, competitions serve as a platform for young minds to showcase their intellectual prowess and delve into the intricacies of the physical world. These contests not only test students' knowledge and problem-solving abilities but also foster creativity and foster a passion for scientific inquiry.Understanding the Problem:The first step in tackling a physics competition problem is to thoroughly understand the question. This involves carefully reading the problem statement, identifying the given information, and comprehending the underlying concepts and principles. It is crucial to pay attention to key details and avoid making assumptions oroversimplifying the problem.Formulating a Solution Strategy:Based on the problem's understanding, students must formulate a solution strategy. This involves identifying the relevant physical laws and equations, selecting appropriate mathematical tools, and determining the steps necessary to solve the problem. It is essential to approach the problem systematically and logically, breaking down complex problems into smaller, manageable chunks.Mathematical Formulation and Calculations:Once a solution strategy has been formulated, students must translate it into mathematical equations. This requires strong mathematical skills, including algebra, trigonometry, and calculus. Accurate calculations are also crucial to ensure the validity of the solution. Students must be proficient in using appropriate units and pay attention to significant figures.Physical Reasoning and Analysis:In addition to mathematical prowess, physics competitions also test students' ability to reason physically. This involves understanding the underlying physical concepts and principles, making valid assumptions, and drawing meaningful conclusions. Students must be able to interpret graphs, diagrams, and experimental data, and identify patterns and relationships.Writing the Solution:After solving the problem, students must clearly and concisely write their solution. This involves providing detailed explanations of their reasoning, mathematical steps, and final answer. The solution should be well-organized and logically presented, using appropriate language and notation.中文回答:前言:物理竞赛为青年才俊提供了一个展示其才华、深入探索物理世界的平台。
作文英语科创类竞赛奖项The world of science and innovation is a constantly evolving landscape, where the brightest minds come together to push the boundaries of human knowledge and capabilities. At the heart of this dynamic ecosystem lies the science and innovation competition, a platform that celebrates the remarkable achievements of individuals and teams who have dedicated their time, effort, and ingenuity to solving complex problems and shaping the future.These competitions serve as a powerful catalyst for progress, inspiring young minds to explore the realms of science, technology, engineering, and mathematics (STEM) with a renewed sense of purpose and passion. They provide a stage where innovators can showcase their groundbreaking ideas, compete against their peers, and gain recognition for their exceptional contributions to their respective fields.One of the most prestigious and coveted awards in the realm of science and innovation competitions is the Nobel Prize. Established in 1901 by the Swedish industrialist Alfred Nobel, the Nobel Prizeshave become the pinnacle of academic and scientific achievement, honoring individuals who have made remarkable breakthroughs in physics, chemistry, physiology or medicine, literature, and peace. The Nobel Laureates are not only celebrated for their intellectual prowess but also for their ability to push the boundaries of human understanding and create a lasting impact on the world.Another renowned competition is the Intel International Science and Engineering Fair (Intel ISEF), which has been inspiring young scientists and engineers for over 70 years. Organized by the Society for Science, Intel ISEF brings together thousands of high school students from around the globe to showcase their innovative research projects and compete for prestigious awards and scholarships. This event not only recognizes the exceptional work of these young minds but also provides them with a platform to network, collaborate, and inspire one another, paving the way for future generations of scientific leaders.The Regeneron Science Talent Search, formerly known as the Westinghouse Science Talent Search, is another prestigious competition that has been honoring the brightest young minds in the United States for over 80 years. This program, organized by the Society for Science, awards scholarships and recognition to high school students who have conducted remarkable research projects in a wide range of STEM disciplines. The Regeneron Science TalentSearch has a long and storied history of producing some of the most influential scientists and innovators of our time, many of whom have gone on to win Nobel Prizes and other prestigious awards.In addition to these well-established competitions, there are numerous other science and innovation contests that cater to a diverse range of interests and age groups. The Google Science Fair, for example, is a global competition that invites students from around the world to tackle real-world problems using the power of science, technology, and innovation. The Breakthrough Junior Challenge, on the other hand, is a competition that encourages young people to create engaging educational videos that explain complex scientific concepts in a clear and accessible manner.These competitions not only recognize the achievements of individual participants but also have a profound impact on the broader scientific community. By showcasing the remarkable work of young innovators, these events inspire others to pursue their own scientific passions and contribute to the advancement of human knowledge. Moreover, the prizes and scholarships offered by these competitions provide crucial financial support and resources that enable aspiring scientists and engineers to continue their research and pursue their dreams.Beyond the tangible rewards, these science and innovationcompetitions also foster a sense of community and collaboration among participants. The opportunity to interact with like-minded individuals, exchange ideas, and learn from one another can be truly transformative, as it helps to cultivate a culture of creativity, critical thinking, and problem-solving that is essential for driving scientific progress.Perhaps most importantly, these competitions play a vital role in inspiring the next generation of scientists, engineers, and innovators. By exposing young minds to the wonders of STEM fields and the potential to make a real difference in the world, these events help to nurture a deep and lasting passion for scientific exploration and discovery. This, in turn, ensures that the pipeline of talented individuals who will shape the future of science and technology remains strong and vibrant.In conclusion, science and innovation competitions are not merely events that recognize exceptional achievements; they are catalysts for progress, beacons of inspiration, and gateways to a brighter future. By celebrating the remarkable work of individuals and teams, these competitions not only honor the past but also pave the way for a tomorrow filled with groundbreaking discoveries, revolutionary technologies, and a deeper understanding of the world around us. As we continue to navigate the challenges and opportunities of the 21st century, the importance of these competitions will only grow, asthey continue to inspire and empower the next generation of scientific leaders and innovators.。
The Magic of Science and TechnologyCompetitionsIn the dynamic world of today, the allure of science and technology competitions is growing by leaps and bounds. These competitions not only challenge the participants to push the boundaries of their knowledge and skills but also serve as a platform to bring out the best of innovative minds. Engaging in such contests not only sharpens one's scientific acumen but also fosters a competitive spiritthat is essential for success in today's rapidly advancing technological landscape.The essence of science and technology competitions lies in the intersection of creativity and problem-solving. Participants are often tasked with addressing real-world challenges using the principles of science and technology. This process requires them to think outside the box, innovate, and collaborate to find solutions. The journey from concept to prototype often involves rigorous testing, refinement, and iteration, all of which are integral to the scientific method.Moreover, these competitions provide a unique opportunity for participants to network and collaborate with peers from diverse backgrounds. Such interactions not only broaden one's perspective but also lead to the creation of innovative solutions that might not emerge in a singular mindset. The camaraderie among competitors, the shared passion for science and technology, and the mutual respect for each other's achievements create a positive and supportive environment that is conducive to creativity and learning.Additionally, science and technology competitions serve as a launching pad for young minds with a penchant for innovation. They provide a platform for these budding scientists and engineers to showcase their talents and get recognized for their efforts. The prizes and accolades that come with winning these competitions can be a great motivator for these young individuals, encouraging them to pursue their passions and make a difference in the world. In conclusion, science and technology competitions are not just about winning; they are about exploring, discovering, and innovating. They foster a culture ofcuriosity and inquiry among participants, encouraging themto question, experiment, and learn. In the long run, these competitions play a crucial role in nurturing a generationof scientists and engineers who are not only skilled but also passionate about using science and technology for the betterment of society.**科技竞赛的魅力**在如今充满活力的世界中,科技竞赛的吸引力与日俱增。
科普科幻作文大赛往届题目英文回答:As an avid reader and science fiction enthusiast, I have participated in the Science Popularization and Science Fiction Essay Competition for several years. The competition has always provided intriguing prompts that challenge participants to explore the boundaries of scientific knowledge and imagination. One of the most memorable prompts I encountered was "The Future of Space Exploration."In my essay, I delved into the possibilities of space exploration in the coming decades. I discussed thepotential advancements in propulsion systems, such as the development of ion drives and fusion engines, which could enable faster and more efficient interstellar travel. I also explored the concept of terraforming, where humans modify the environment of other planets to make them habitable. This could involve techniques like creatingartificial atmospheres or introducing organisms that can thrive in extreme conditions.Furthermore, I touched upon the idea of colonizing other celestial bodies, such as the Moon and Mars. I discussed the challenges of establishing sustainable habitats and the potential benefits of having a multi-planetary society. This could not only ensure the survival of the human race in the face of potential catastrophes on Earth but also open up new opportunities for scientific research and resource exploitation.In addition to scientific advancements, I also considered the societal and ethical implications of space exploration. I pondered the potential conflicts that could arise when different nations and corporations compete for extraterrestrial resources. I also reflected on the impact of space exploration on the environment and the need for responsible and sustainable practices.中文回答:作为一个热衷于阅读和科幻的人,我参加了科普科幻作文大赛已经有好几年了。
天文竞赛英语作文I woke up early in the morning, feeling excited and a little nervous. Today was the day of the astronomy competition that I had been preparing for months. I quickly got ready and headed to the competition venue.As I entered the room, I could feel the tension in the air. Participants from different schools were all gathered, discussing and reviewing their knowledge. I found my seat and took out my notes, going through them one more time. I wanted to make sure that I was well-prepared for any question that might come my way.The competition began, and the questions were challenging. But I was determined to do my best. Icarefully read each question and thought through my answers before writing them down. The atmosphere was intense, but I remained focused, trying to block out any distractions around me.After what felt like an eternity, the competitionfinally came to an end. I felt a sense of relief wash over me, knowing that I had given it my all. Now, all that was left to do was to wait for the results.When the winners were announced, I was thrilled to hear my name being called out as one of the top scorers. It was a moment of pure joy and satisfaction, knowing that my hard work had paid off. I was proud of myself for pushing through the challenges and coming out on top.Participating in the astronomy competition was an experience I would never forget. It not only tested my knowledge and skills but also taught me the value of perseverance and determination. I left the venue that day with a newfound confidence in my abilities and a deeper love for the wonders of the universe.。
科普科幻作文决赛比赛规则英文回答:The rules for the final competition of the popular science science fiction essay are as follows:Firstly, the essay should be written in both English and Chinese languages, with separate sections for each language. The English section should be completed first, followed by the Chinese section. This ensures that the two languages are not mixed together in the essay. To differentiate between the two sections, it is important to clearly mark each section as "English Answer:" and "Chinese Answer:" respectively.Secondly, the essay should not reveal the prompt given for the competition. Instead, the focus should be on providing a comprehensive and detailed response to the topic. The essay should be at least 1500 words long, and writers should avoid stating that they cannot meet thisrequirement. Instead, they should strive to write as much as possible to fully address the topic.Thirdly, each paragraph should begin with a different opening sentence or idea. This helps to avoid repetition and ensures that the essay flows smoothly. Additionally, transitional phrases such as "firstly," "secondly," "lastly," "in conclusion," "of course," "however," "in summary," "in the meantime," "to summarize," "for example," and "of course" should be avoided. Instead, writers should aim for natural and varied sentence structures and word placement.Fourthly, it is important to maintain a balanced and proportional distribution of words in each paragraph. Following a 1:2:3:1:2:3:1:2:3 ratio for paragraph length can help to create a visually appealing and well-structured essay.Lastly, the essay should be written in the first person perspective, allowing the writer to express their thoughts and opinions. Including examples and incorporatingcolloquial language and idioms can make the essay more relatable and engaging for the reader.中文回答:科普科幻作文决赛比赛的规则如下:首先,文章需要用英文和中文回答,每种语言都要分开写,先完成英文部分,然后再写中文部分。
关于物理竞赛的英语作文Physics competition is no joke. It's a real challenge to test your knowledge and skills in physics. You have to be quick on your feet and think critically to solve the problems presented to you. It's not just about memorizing formulas and equations, but also about understanding the principles behind them.The competition is fierce. You're up against some of the brightest minds in the field, all vying for the top spot. It's a great opportunity to test your abilities and see how you measure up against others. The pressure is on, but it's also exhilarating to be part of such a competitive environment.One of the best things about physics competitions is the camaraderie. You get to meet other physics enthusiasts from different schools and regions, and you can learn a lot from each other. It's a chance to exchange ideas, share experiences, and build connections with like-mindedindividuals who share your passion for physics.Preparing for a physics competition is no easy feat. It takes a lot of dedication and hard work to be ready for the challenges that lie ahead. You have to put in long hours of studying, practicing problem-solving, and honing yourskills to ensure you're at the top of your game on competition day.The feeling of accomplishment after a physics competition is like no other. Whether you win or not, just being able to participate and test your abilities is a victory in itself. It's a great way to gain confidence in your skills and push yourself to new heights in yourpursuit of knowledge and excellence in physics.。
物理竞赛英文书Physics Competition English BookPhysics competitions are a great way for students to challenge themselves, showcase their knowledge, and improve their problem-solving skills. To excel in these competitions, it is important for students to have a solid understanding of the fundamental principles of physics. One of the best ways to prepare for physics competitions is to study from a comprehensive and well-structured English book that covers all the essential topics.The Physics Competition English Book is designed to help students enhance their physics knowledge and problem-solving abilities. This book covers a wide range of topics, including mechanics, electricity and magnetism, thermodynamics, optics, and modern physics. Each topic is explained in a clear and concise manner, making it easy for students to grasp the concepts and apply them to solve challenging problems.One of the key features of the Physics Competition English Book is its collection of practice problems. These problems are carefully selected to cover a variety of difficulty levels and test different aspects of physics knowledge. By solving these problems, students can improve their critical thinking skills, analytical abilities, and problem-solving strategies. Additionally, the book provides detailed solutions to each problem, allowing students to check their answers and learn from their mistakes.In addition to practice problems, the Physics Competition English Book also includes tips and strategies for approaching physics competitions. These tips cover a range of topics, such as time management, effective studying techniques, and test-taking strategies. By following these tips, students can maximize their performance in physics competitions and increase their chances of success.Overall, the Physics Competition English Book is a valuable resource for students preparing for physics competitions. With its comprehensive coverage of physics topics, challenging practice problems, and helpful tips, this book can help students improve theirphysics knowledge and excel in competitions. Whether you are a beginner looking to build a strong foundation in physics or an experienced competitor aiming to enhance your skills, this book is a must-have for your preparation.。