鲁棒稳定性理论 棱边定理
- 格式:pptx
- 大小:3.37 MB
- 文档页数:47
第五章 系统的稳定性和鲁棒性能分析5.1 BIBO 稳定性对实际工程中的动态系统来讲,稳定性是最基本的要求。
一般的稳定性含义有两个。
一个是指无外部信号激励的情况下,系统的状态能够从任意的初始点回到自身所固有的平衡状态的特性。
另一种定义是指在有外部有界的信号激励下,系统的状态,或输出,响应能够停留在有界的范围内。
对于线性系统,这两个稳定性定义是等价的,但是对一般的非线性系统则不是等价的。
前者称为Lyapunov 稳定,而后者称为BIBO 稳定。
本小节我们先考虑BIBO 稳定性。
假设系统H 由如下状态方程来描述: (5.1.1)⎩⎨⎧==),(),(u x h y u x f xH &:如图5.1.1所示,是系统的内部状态,u 和分别是外部输入信号和输出信号。
设输入信号u 属于某一个可描述的函数空间U 。
那么,对于任意nR t x ∈)(y U u ∈,系统H 都有一个输出响应信号y 与之对应,为了简单起见,记其对应关系为(5.1.2)Hu y =显然,系统Σ对应于的输出响应信号的全体同样地构成一个空间,记为Y 。
因此,从数学的意义上讲,系统U u ∈H 实际上是输入函数空间U 到输出函数空间的一个映射或算子。
这也表明,我们可以更加严格地使用算子理论来研究系统Y H 的性质。
定义5.1.1 设为关于时间)(t u ),0[∞∈t 的函数,则的截断的定义为 )(t u )(t U T (5.1.3)⎩⎨⎧>≤≤=T t Tt t u t u T ,00),()(定义5.1.2 若算子H 满足(5.1.4) T T T Hu Hu )()(=则称算子H 是因果的。
而式(5.1.4)称为因果律。
因果算子的物理意义很明确,即T 时刻的输入并不影响))((T t t u >T 时刻以前的输出响应。
T Hu )(定义 5.1.3 设算子H 满足p T p T L u L HU ∈∀∈,)(。
综合信息系统的稳定性与鲁棒性研究一、立论依据稳定性与鲁棒性问题是控制系统中的普遍性问题。
稳定性理论是研究动态系统中的过程(包括平衡位置)相对于干扰是否具有自我保持能力的理论。
一个实际系统与人们所建立的数学模型之间总存在着偏差,根据数学模型设计的控制器作用于实际系统中往往使系统达不到期望的性能指标。
因此我们需要设计控制系统使得某些重要特性在摄动情况下保持不变。
在系统参数具有小摄动时保持系统特性不变性的设计问题在控制理论发展初始阶段已经被考虑过,当时自然只限于系统灵敏度分析之上,后来人们认识到实际系统与纯化了的理想系统之间的差异并不能总视为充分小,这既反映在由于系统与环境的日益复杂而使系统含有较大的不确定性上,也反映在对某些对象来说,它的工作状态并不唯一等因素上,例如,飞机在不同高度以不同速度作巡航飞行时,无论是其空气动力学特性还是发动机的工作状态均不相同,此时,同一架飞机由于飞行状态的变化就有几个标定系统。
从上世纪七十年代末开始,在处理系统的非微摄动的问题上,有了一些理论与方法,特别由于控制界的推动,形成了起于上世纪八十年代至今不衰的鲁棒分析与鲁棒控制的研究热。
鲁棒性是指系统中存在不确定因素时系统能保持正常工作性能的一种属性。
不确定性通常包括结构性不确定性和非结构性不确定性,前者通常是由实际物理系统的物理参数的测量误差、运行环境的变化或系统辨识不精确而引起的,就线性定常系统而言,它表现为系统传递函数中的多项式系数或相关参数的摄动;后者通常是由未建模动态而引起的,常用对标称系统传递函数扰动的范数来表示。
从分析的观点来研究系统在一定摄动下是否仍能保持原有的性能,称为系统的鲁棒分析问题;而从设计的观点来研究如何设计控制器来控制具有一定摄动的受控对象,使系统在这种摄动下仍能保持所希望的性能,称为系统的鲁棒综合。
前苏联科学家Kharitonov首先讨论了具有参数不确定性多项式族的鲁棒稳定性问题,自从Barmish将Kharitonov定理引入控制界以来,这方面的研究也得到了控制理论界的极大重视,相继出现了许多重要的成果,如棱边定理、边界定理、以及稳定的凸方向研究等。
对鲁棒控制的认识 赵呈涛专业:学号: 092030071姓名:鲁棒控制( RobustControl )方面的研究始于 20 世纪 50 年代。
在过去的 20 年中,鲁棒控制一直是国际自控界的研究热点。
所谓“鲁棒性”,是指控制系统 在一定(结构、大小)的参数摄动下,维持某些性能的特性。
根据对性能的不同 定义,可分为稳定鲁棒性和性能鲁棒性。
如果所关心的是系统的稳定性,那么就称 该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的 品质,那么就称该系统具有鲁棒性能。
以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。
定性,具有代表性的是 Zames 提出的微分灵敏度分析。
然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。
控制是一个着重控制算法可靠性研究的控制器设计方法, 际环境中为保证安全要求控制系统最小必须满足的要求。
一旦设计好这个控制 器,它的参数不能改变而且控制性能能够保证。
鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息 和它的变化范围 , 一些算法不需要精确的过程模型,但需要一些离线辨识。
鲁棒 控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析 及鲁棒性综合问题。
鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系 统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模 型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满 足期望的性能要求。
主要的鲁棒控制理论有:1) Kharitonov 区间理论;2) H 控制理论;3)结构奇异值理论 理论。
面就这三种理论做简单的介绍。
1 Kharitonov 区间理论 1.1 参数不确定性系统的研究概况对参数不确定性系统的研究源于20世纪20年代。