鲁棒控制理论第一章
- 格式:ppt
- 大小:115.00 KB
- 文档页数:3
目前对鲁棒控制的研究多使用状态反馈,但在许多实际问题中,系统的状态往往是不能直接测量的,此时难以应用状态反馈控制律实现系统控制。
有时即使系统的状态可以直接测量,但考虑到实施控制的成本和系统的可靠性等因素,同样需要运用输出反馈来实现系统控制。
因此,研究控制系统的输出反馈镇定及其控制器设计具有重要的理论意义和实际应用价值。
本文基于Lyapunov稳定性理论和线性矩阵不等式(LMI )方法,对不确定时滞系统研究了输出反馈控制器的设计方法,针对不确定的时滞系统设计了输出反馈控制器,保证闭环系统渐近稳定,运用MATLAB中的LMI工具箱求解控制器参数,并用SIMULINK对实际系统进行了仿真实验,通过仿真实例证明了控制器设计方法能够达到较好的控制效果,而且具有较强的鲁棒性和稳定性,证明了设计方法的有效性。
关键词:鲁棒控制;输出反馈;线性矩阵不等式;不确定性;时滞AbstractAt prese nt,people ofte n use state feedback con trol law to study robust control,but in many practical problems,the system state often cannot be measured directly,it is difficult to use state feedback con trol law to con trol the system.Sometimes,eve n if the state can be measured directly,but,c on sideri ng the cost of impleme nti ng the con trol and reliability of the system and other factors,the state feedback control cannot achieve acceptable effect .If the output feedback law can achieve the performa nee requireme nts of the closed-loop system,then it can be selected withpriority.Therefore,the output feedback stabilization of uncertain systems and controller design has important theoretical and practical value.This paper is based on Lyap unov stability theory and Lin ear MatrixInequality(LMI)methods.For uncertain time-delay systems with norm bounded un certa in parameters,the paper studied the output feedback con troller con troller desig n methods.The controller parameters were worked out by means of LMI toolbox in MATLAB.Simulatio n of the actual system was con ducted on the basis of the SIMULINK toolbox in Matlab,the results of which proved that the new controller desig n method could achieve better con trol effect and was more robust and stable.Key words:Robust con trol;Output feedback;L in esr Matrix In equality(LMI); Un certai nty;Time-delay目录第1章概述 (1)1.1输出反馈概述 (1)1.2鲁棒控制理论概述 (1)第2章基本理论 (4)2.1系统的非结构不确定性 (4)2.2系统的结构不确定性 (5)2.3线性矩阵不等式 (5)2.4 L YAPUNO稳定性理论 (8)第3章输出反馈控制器设计 (13)3.1不确定时滞系统的静态输出反馈控制器设计 (13)3.2具有控制时滞的不确定时滞系统静态输出反馈控制器设计 (16)3.3不确定时滞系统的动态输出反馈控制器设计 (21)结论 (26)参考文献 (27)致谢 (28)第1章概述1.1输出反馈概述在许多实际问题中,系统的状态往往是不能直接测量的,故难以应用状态反馈控制律来对系统进行控制。
第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。
在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。
这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。
经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。
1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。
如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。
模型不确定性包括:参数、结构及干扰不确定性等。
1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。
以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。
事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。
鲁棒控制理论基础章1. 引言鲁棒控制是指当系统受到外界干扰时,仍能保持一定稳定性的控制方法。
鲁棒控制方法的出现,是为了解决传统控制方法在系统故障和外界干扰下容易失效的问题。
鲁棒控制理论也因此应运而生。
本章将介绍鲁棒控制理论的基础知识,包括鲁棒性概念、鲁棒控制设计指标及鲁棒控制设计方法。
2. 鲁棒性概念2.1 鲁棒性定义鲁棒性是指控制系统能够在一定程度上抵抗外界干扰、模型不确定性和参数扰动等不利因素的性能。
在控制系统中,外部干扰是不可避免的,特别是在现代控制领域中,系统模型和控制器参数的不确定性也是普遍存在的。
因此,了解和掌握鲁棒性理论对于控制系统稳定性的提高和鲁棒性能的设计至关重要。
2.2 鲁棒性评价指标鲁棒性评价指标通常采用灵敏度函数和鲁棒稳定裕度等指标来评估系统的鲁棒性能。
其中,灵敏度函数是指系统输出间的变化与系统输入间的变化之间的关系,鲁棒稳定裕度则是指系统在一定范围内满足稳定性要求的能力。
2.3 鲁棒性的分类鲁棒性可分为参数鲁棒性和结构鲁棒性两种。
参数鲁棒性是指系统在参数变化时对系统鲁棒性的影响,即当有一个扰动作用到系统参数上时,系统是否能够维持一定的稳定性。
结构鲁棒性是指系统在模型不精确或者模型存在未知扰动时,仍能够保证鲁棒稳定性。
3. 鲁棒控制设计指标3.1 灵敏度函数在鲁棒控制设计中,灵敏度函数是一个重要的工具,其可以用来评估系统的稳定性。
针对灵敏度函数,可以设计出控制器,通过控制器来提高系统的稳定性。
3.2 鲁棒稳定裕度鲁棒稳定裕度是衡量鲁棒控制系统对于系统变化的一种指标。
通过定义不同的鲁棒稳定裕度,可以使得鲁棒控制系统更加健壮。
3.3 状态观测器状态观测器可以更加准确地预估系统的状态,提供更加精确的控制信号。
在鲁棒控制系统中,设计一个稳健的状态观测器可以提高系统的稳定性。
4. 鲁棒控制设计方法4.1 H∞控制H∞控制是一种经典的鲁棒控制方法,其通过最小化灵敏度函数,使得系统具有一定稳定性。
鲁棒控制理论与方法鲁棒控制是现代控制理论中的一个重要分支,它致力于设计出对系统参数变化、外部扰动和建模误差具有鲁棒性的控制器,以保证系统在不确定性环境下的稳定性和性能。
本文将介绍鲁棒控制的基本理论和常用方法,以及其在工业控制、机器人控制等领域中的应用。
一、鲁棒控制基础理论鲁棒性是指控制系统对不确定性的一种抵抗能力,它可以通过针对系统模型的不确定性建立数学模型,以保证系统稳定性和性能。
鲁棒控制的基础理论包括:1. H∞ 控制理论:H∞ 控制是一种用于处理线性时不变系统鲁棒控制问题的数学工具。
该方法通过定义一个性能指标,以最小化系统输出的最坏情况下的波动来设计控制器。
2. μ合成控制理论:μ合成是一种基于描述函数的鲁棒控制方法,它将系统不确定性建模为复杂函数,并通过求解非线性最优化问题来设计控制器。
3. 鲁棒控制的小参数理论:该理论主要研究在参数扰动很小时,系统性能的鲁棒稳定性和鲁棒性问题。
二、常用的鲁棒控制方法鲁棒控制方法多种多样,下面列举几种常用的方法:1. H∞ 控制方法:H∞ 控制方法通过在系统输出和控制器输入之间引入鲁棒性加权函数来设计鲁棒控制器。
该方法适用于线性时不变系统和线性时变系统。
2. μ合成控制方法:μ合成控制方法通过优化复杂描述函数来设计鲁棒控制器。
该方法适用于线性和非线性系统,并且具有较强的泛化能力。
3. 自适应控制方法:自适应控制方法将未知参数作为反馈调整的对象,通过在线估计参数的方式设计鲁棒控制器。
该方法适用于需要适应不确定性参数的系统。
4. 鲁棒滑模控制方法:鲁棒滑模控制方法通过引入滑模面的概念,以实现对系统模型误差和扰动的高度鲁棒性。
该方法适用于非线性和时变系统。
三、鲁棒控制在工业与机器人控制中的应用鲁棒控制在工业控制和机器人控制领域具有广泛的应用,以下列举几个实际应用案例:1. 工业过程控制:鲁棒控制可以用于工业过程中对温度、压力、流量等参数的控制。
通过对系统模型的不确定性建模和鲁棒控制器的设计,可以保证工业过程的稳定性和性能。
12 H 鲁棒控制12.1鲁棒控制的概念20世纪末,现代控制的理论与方法已日趋完善,然而,在工程实际中的应用依然困难.其中一个重要原因是,现代控制理论在很大程度上要依赖于有一个描述被控对象动态特性的精确数学模型、或者要求对象的不确定性和外界干扰满足某种特殊的假定。
而且,利用这种理论设计的系统只对数学模型保证预期的性能指标。
然而,控制系统设计中一个不可避免的问题是系统的数学模型与实际系统总难免会有些不同。
这是由于在控制系统设计时对实际物理系统进行数学模型化时不可避免地会遇到权衡数学模型的简单性和与实际系统吻合程度的真实性的问题。
数学模型与实际系统之间的差异可能通过许多途径产生,例如:线性化、参数估计等等。
而且,在实际物理系统中,某些参数可能并不是确定的,例如:液压系统中的油液粘度将随油温而变化。
为了弥补现代控制理论的这种不足,最有效的手段是在系统的分析和设计时充分考虑被控对象中所存在的各种不确定因素,即基于含不确定因素的非精确模型来分析系统和设计控制器,使所设计的控制系统能在某一类特定的不确定性条件下具有使系统稳定性、渐近调节和动态特性保持不变的特性。
系统的这种承受不确定性影响的能力即系统的鲁棒性。
20世纪80年代以来,关于控制系统的鲁棒性研究得到了很大的发展。
现代鲁棒控制理论继承了以往的鲁棒性研究方法,以基于使用状态空间模型的频率设计方法为主要特征,提出从根本上解决控制对象模型不确定性和外界扰动不确定性问题的有效方法,主要方法有H ∞控制方法,u 解析方法,LQG/LTR 方法等。
其中最为重要的是H ∞控制方法。
12.2 H ∞鲁棒控制问题的基本知识 1.H ∞范数(H ∞ norm )对于一个连续时间状态变量系统.x (t )=Ax(t)+Bu(t)y(t)=Cx(t)+Du(t) (12.2-1) 其相应的传递函数矩阵为:G (s )=C(sI-A)-1B+D (12.2-2) 则G (s )的H ∞范数为‖G ‖∞=Sup w -σ(G(j ω)) (12.2-3) 这里,)(∙-σ表示最大奇异值。