管理决策分析 第五章 贝叶斯决策分析
- 格式:ppt
- 大小:965.00 KB
- 文档页数:14
一、什么是贝叶斯决策在以上所述的一般风险性决策问题中,自然状态的概率是作为已知条件给出的。
但是,在现实经济生活中,事先给出的各种状态的概率(又称为先验概率)常常是不准确的。
因此,需要通过进一步的试验和调查,收集补充信息,并利用补充信息,对原来估计的概率进行修订,从而求得更接近实际的新概率(利用补充信息修订的概率又称为后验概率)。
所谓贝叶斯决策,就是利用补充信息,根据概率计算中的贝叶斯公式来估计后验概率,并在此基础上对备选方案进行评价和选择的一种决策方法。
利用贝叶斯决策方法,可以将先验的信息和补充的信息结合在一起进行分析与判断,从而提高了决策的可靠性。
同时,利用该方法,还可以对信息的价值以及是否需要采集新的补充信息作出科学的判断。
二、贝叶斯公式与后验概率的估计设某种状态θj的先验概率为P(θj),通过调查获得的补充信息为e k ,θj给定时,e k的条件概率(似然度)为,则在给定信息e k的条件下,θj 的条件概率即后验概率可用以下贝叶斯公式计算:(9.14)【例9-10】某空调机生产厂家拟向另一电子元件厂购买某种电子元器件,根据过去的经验,该电子元件厂产品发生不同次品率的概率分布如表9-5第二栏所示。
但据说,该厂的产品质量最近有所提高。
现从市场上该电子元件厂出售的该种元器件中,随机抽取了10件,结果未发现次品。
试根据这一信息,对以往元器件厂次品率的概率分布进行修正。
解:以往的概率分布可视为先验概率。
在各种不同次品率给定条件下,抽查10件发生0件次品(发生0件为)的概率近似地服从于二项分布,其似然度可按以下方式计算:(9.15)在Excel 中,利用BINOMDIST函数可以方便地计算二项分布的概率。
表9-5的第3栏,给出了按照上式计算的结果。
将似然度代入贝叶斯公式(9.4)式,可求得不同状态下的后验概率,结果如表9-5中最后一栏(第5栏)所示。
例如,次品率为0.05状态的后验概率为:从表中结果可以看出:由于实际抽查的次品率为0,因此,次品率为0.05这种状态的后验概率大于先验概率,而次品率为0.15和 0.20这两种状态的后验概率小于先验概率。
【决策管理】贝叶斯决策模型及实例分析(doc 12页)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑贝叶斯决策模型及实例分析一、贝叶斯决策的概念贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。
风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。
这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。
为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。
二、贝叶斯决策模型的定义贝叶斯决策应具有如下内容贝叶斯决策模型中的组成部分:)(,θθPSAa及∈∈。
概率分布SP∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。
这一概率称为先验分布。
一个可能的试验集合E,Ee∈,无情报试验e0通常包括在集合E之内。
一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。
概率分布P(Z/e,θ),Zz∈表示在自然状态θ的条件下,进行e试验后发生z结果的概率。
这一概率分布称为似然分布。
c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。
一个可能的后果集合C,C每一后果c=c(e,z,a,θ)取决于e,z,a和θ。
.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。
三、贝叶斯决策的常用方法3.1层次分析法(AHP)在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。
所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。
贝叶斯决策方法的步骤贝叶斯决策方法是一种基于贝叶斯定理的决策方法,其原理是通过先验概率和后验概率来进行决策。
它在众多领域中得到了广泛的应用,比如机器学习、金融领域、医疗诊断等。
下面就让我们来详细了解一下贝叶斯决策方法的步骤。
步骤一:建立概率模型贝叶斯决策方法首先需要建立一个概率模型,包括先验概率、条件概率等。
先验概率是指在没有任何其他信息的情况下,某一事件发生的概率;条件概率是指在已经发生的其他事件的前提下,某一事件发生的概率。
通过收集数据、统计分析等方法,可以得到所需的概率模型。
步骤二:收集样本数据在进行贝叶斯决策之前,需要收集样本数据,以便用于更新概率模型中的参数。
样本数据的收集应当具有代表性,并且需要足够的量来进行统计分析,以准确地估计概率参数。
步骤三:计算先验概率在得到样本数据之后,需要根据这些数据计算先验概率。
先验概率是在考虑其他任何信息之前,某一事件发生的概率。
通过对样本数据进行统计分析,可以得到相应的先验概率。
步骤四:计算条件概率条件概率是在已知其他事件发生的前提下,某一事件发生的概率。
在得到先验概率之后,需要根据样本数据计算条件概率,以便进行后续的决策过程。
步骤五:应用贝叶斯定理进行决策在建立好概率模型并计算好相应的概率之后,可以应用贝叶斯定理进行决策。
贝叶斯定理是通过先验概率和条件概率来计算后验概率,从而做出最优的决策。
根据后验概率的大小,可以确定最优的决策方案。
步骤六:不断更新概率模型随着新的样本数据的不断积累,概率模型中的参数也需要不断地更新。
通过将新的样本数据融入到原先的概率模型中,可以得到更为准确的概率参数,从而提高决策的准确性。
在实际应用中,贝叶斯决策方法需要根据具体问题对概率模型进行适当的建立和调整,同时也需要根据具体的样本数据来进行概率参数的估计。
在处理一些复杂的实际问题时,可能还需要采用一些先进的数学方法来优化概率模型和提高决策的准确性。
贝叶斯决策方法是一种灵活、有效的决策方法,在实际应用中有着广泛的用武之地。
贝叶斯网络模型在决策分析中的应用近年来,随着数据的爆炸式增长,数据分析在各个领域的应用变得越来越普遍。
在决策分析领域,贝叶斯网络模型已经成为了一种非常有力的工具。
贝叶斯网络可以帮助我们将各种因素联系起来,预测事件的可能性,并帮助我们做出正确的决策。
接下来,我们将详细的介绍一下贝叶斯网络模型在决策分析中的应用。
一、什么是贝叶斯网络模型贝叶斯网络是一种概率图模型,通过图的节点和边来表示变量之间的联系,节点表示变量,边表示变量之间的依赖关系。
贝叶斯网络模型可以用来推断变量之间的关系,并进行预测。
其基本思想是,对于一个事件来说,我们不仅仅知道其中某些因素的概率,还要考虑这些因素之间的关系,从而得到事件发生的概率。
因此,贝叶斯网络模型可以帮助我们在不确定性的情况下,处理事实和数据之间的关系。
二、贝叶斯网络模型的应用1、风险预测贝叶斯网络模型可以用来进行风险预测,从而帮助我们做出更加明智的决策。
例如,在银行信贷风险评估中,我们可以利用这种模型来建立一个信用评级系统。
我们可以将客户申请的贷款金额、收入、已有贷款的还款情况、年龄、性别等因素作为节点,然后使用大量的数据对这些节点进行训练,从而得到一个准确的风险评估模型。
2、医疗诊断贝叶斯网络模型还可以用来进行医疗诊断。
我们可以将各种疾病、症状、家族史、饮食、运动等因素作为节点,然后使用医疗数据进行训练,从而得到一个准确的诊断模型。
这种模型可以帮助医生更加准确地诊断疾病,并提供更好的治疗方案。
3、工业决策贝叶斯网络模型还可以用来进行工业决策。
例如,在石油开采行业,我们可以将工程中的各种因素,如油藏性质、地质结构、工程参数等作为节点,并使用大量的数据进行训练,从而得到一个准确的决策模型。
这种模型可以帮助决策者更好地做出决策,提高开采效率。
三、贝叶斯网络模型的优势相比于其他模型,贝叶斯网络模型具有以下优势:1、深入分析因素之间的关系贝叶斯网络从本质上就是一种因果推断的模型,在分析过程中,它能够深入分析各个因素之间的关系,与其他模型相比,它更加准确、可靠。
毕业论文贝叶斯决策分析贝叶斯决策分析是一种基于统计学原理的决策方法,它能够通过概率模型和贝叶斯定理来评估不确定情况下的决策风险和收益。
本文将介绍贝叶斯决策分析的基本原理和应用,以及其在实际问题中的应用。
首先,我们来了解一下贝叶斯决策分析的基本原理。
贝叶斯决策分析是基于贝叶斯定理的推理方法,它将概率模型和决策问题相结合。
在贝叶斯决策分析中,我们首先通过观察到的数据来估计模型的参数,然后使用这些参数来计算各种可能的决策结果的概率,最后选择具有最大期望收益的决策。
对于一个具体的决策问题,我们首先需要构建一个概率模型,该模型将描述不同决策结果和不同事件之间的概率关系。
然后,我们需要通过观察已知的数据来估计概率模型的参数。
一旦我们估计出参数,我们就可以根据贝叶斯定理来计算不同决策结果的后验概率,即在给定已知数据的条件下,不同决策结果发生的概率。
最后,我们选择具有最大期望收益的决策结果作为最优决策。
贝叶斯决策分析可以在各种不确定性决策问题中应用。
例如,在医学诊断中,我们可以使用贝叶斯决策分析来根据病人的症状和检测结果来确定病人是否患有其中一种疾病。
在金融投资中,我们可以使用贝叶斯决策分析来评估不同投资策略的风险和回报,并选择最优的投资组合。
在工程设计中,我们可以使用贝叶斯决策分析来评估不同设计方案的可行性和效益,并选择最优的设计方案。
贝叶斯决策分析的应用还包括决策树、朴素贝叶斯分类器、最大期望算法等。
决策树是一种基于贝叶斯决策分析的决策模型,它通过将决策问题划分为一系列决策节点和结果节点,从而形成一棵树状结构来进行决策。
朴素贝叶斯分类器是一种基于贝叶斯决策分析的分类方法,它假设不同特征之间相互独立,然后使用贝叶斯定理来计算不同类别下的后验概率,最后选择具有最大后验概率的类别作为分类结果。
最大期望算法是一种基于贝叶斯决策分析的参数估计方法,它通过迭代优化来估计参数的最大似然值。
总之,贝叶斯决策分析是一种有效的决策方法,它能够通过概率模型和贝叶斯定理来评估不确定情况下的决策风险和收益。
决策分析之贝叶斯分析Bayesean Analysis§4.0引言一、决策问题的表格表示——缺失矩阵对无观看(No-data)问题a=δ可用表格(缺失矩阵)替代决策树来描述决策问题的后果(缺失):或缺失矩阵直观、运算方便二、决策原那么通常,要依照某种原那么来选择决策规那么δ,使结果最优(或中意),这种原那么就叫决策原那么,贝叶斯分析的决策原那么是使期望效用极大。
本章在介绍贝叶斯分析往常先介绍芙他决策原那么。
三、决策问题的分类:1.不确定型(非确定型)自然状态不确定,且各种状态的概率无法估量.2.风险型自然状态不确定,但各种状态的概率能够估量.四、按状态优于:l ij ≤lik∀I, 且至少对某个i严格不等式成立, 那么称行动aj按状态优于ak§4.1 不确定型决策问题一、极小化极大(wald)原那么(法那么、准那么) a1a2a4minj maxil (θi, aj) 或maxjminiuij例:θ24 1 9 2θ313 16 12 14θ46 9 8 10各行动最大缺失: 13 16 12 14其中缺失最小的缺失对应于行动a3.采纳该原那么者极端保守, 是悲观主义者, 认为老天总跟自己作对.二、极小化极小minj minil (θi, aj) 或maxjmaxiuij例:各行动最小缺失: 4 1 7 2其中缺失最小的是行动a2.采纳该原那么者极端冒险,是乐观主义者,认为总能撞大运。
三、Hurwitz准那么上两法的折衷,取乐观系数入minj [λminil (θi, aj)+〔1-λ〕maxil (θi, aj)]例如λ=0.5时λmini lij: 2 0.5 3.5 1〔1-λ〕maxi lij: 6.5 8 6 7两者之和:8.5 8.5 9.5 8其中缺失最小的是:行动a4四、等概率准那么(Laplace)用i∑l ij来评判行动a j的优劣选minji∑l ij上例:i∑l ij: 33 34 36 35 其中行动a1的缺失最小五、后梅值极小化极大准那么(svage-Niehans)定义后梅值sij =lij-minklik其中mink lik为自然状态为θi时采取不同行动时的最小缺失.构成后梅值(机会成本)矩阵S={sij }m n⨯,使后梅值极小化极大,即:min max j i s ij例:缺失矩阵同上, 后梅值矩阵为:3 1 0 23 0 8 11 4 0 20 3 2 4各种行动的最大后梅值为: 3 4 8 4其中行动a1 的最大后梅值最小,因此按后梅值极小化极大准那么应采取行动1.六、Krelle准那么:使缺失是效用的负数(后果的效用化),再用等概率(Laplace)准那么.七、莫尔诺(Molnor)对理想决策准那么的要求(1954)1.能把方案或行动排居完全序;2.优劣次序与行动及状态的编号无关;3.假设行动ak 按状态优于aj,那么应有ak优于aj;4.无关方案独立性:差不多考虑过的假设干行动的优劣不因增加新的行动而改变;5.在缺失矩阵的任一行中各元素加同一常数时,各行动间的优劣次序不变;6.在缺失矩阵中添加一行,这一行与原矩阵中的某行相同,那么各行动的优劣次序不变。
统计贝叶斯方法在决策分析中的应用统计贝叶斯方法是一种基于贝叶斯定理的统计推断方法,它在决策分析中具有广泛的应用。
贝叶斯方法的核心理念是将先验信息与观测数据相结合,通过不断迭代更新概率分布,得出对未知参数或未来事件的后验概率分布。
本文将探讨统计贝叶斯方法在决策分析中的应用,并讨论其优势和局限性。
一、贝叶斯决策分析简介贝叶斯决策分析是一种以概率为基础的决策分析方法。
它允许决策者在不确定的环境中,通过将概率模型与决策模型相结合,做出最优的决策。
贝叶斯决策分析通常包括以下几个步骤:1. 收集信息:获取相关的数据和先验知识。
2. 确定决策模型:定义决策变量和目标函数,建立决策模型。
3. 建立概率模型:根据先验知识和观测数据,建立贝叶斯概率模型。
4. 更新概率分布:通过贝叶斯定理,将先验概率分布与新观测数据相结合,得到后验概率分布。
5. 做出决策:根据目标函数,选取后验概率最大的决策。
二、统计贝叶斯方法在决策分析中的应用1. 模式识别:统计贝叶斯方法在模式识别领域被广泛应用。
通过将先验概率和观测数据结合,可以有效地进行图像识别、语音识别等任务。
例如,在人脸识别中,贝叶斯方法可以通过学习先验概率和观测数据,对人脸进行准确的识别和分类。
2. 健康风险评估:统计贝叶斯方法在健康风险评估中非常有用。
通过将患病先验概率和医学检测结果相结合,可以准确地评估一个人的患病风险。
例如,在乳腺癌检测中,贝叶斯方法可以根据乳腺癌的先验概率和乳腺摄影检查结果,对患者的乳腺癌风险进行评估。
3. 金融风险管理:统计贝叶斯方法在金融风险管理领域有着重要的应用。
通过将市场数据和经济指标与先验概率相结合,可以对金融市场的风险进行准确的评估和预测。
例如,在股票市场中,贝叶斯方法可以根据股票的历史数据和市场因素,对未来股票价格的涨跌进行预测。
4. 市场营销决策:统计贝叶斯方法在市场营销决策中的应用也非常广泛。
通过将市场调研数据和消费者行为数据与先验概率相结合,可以对消费者的偏好和购买行为进行准确的分析和预测。
贝叶斯统计在决策分析中的应用在当今这个充满不确定性的世界里,决策分析成为了我们生活和工作中不可或缺的一部分。
从企业的战略规划到个人的日常选择,我们都需要在有限的信息和多种可能性中做出最优的决策。
而贝叶斯统计,作为一种强大的统计工具,为我们提供了一种更科学、更合理的决策分析方法。
在决策分析中,贝叶斯统计可以帮助我们更好地处理不确定性。
让我们以医疗诊断为例。
医生在诊断一位患者是否患有某种疾病时,通常会根据患者的症状、病史等先验信息做出初步判断。
然后,通过各种检查手段(如血液检查、影像学检查等)获取新的信息。
贝叶斯统计可以将这些先验信息和新的检查结果结合起来,计算出患者患有该疾病的概率,从而为医生的诊断和治疗决策提供有力的支持。
再比如,在金融领域,投资者在决定是否投资某只股票时,会考虑公司的财务状况、行业前景等先验信息。
同时,他们也会关注市场的动态、宏观经济数据等新的信息。
利用贝叶斯统计,投资者可以根据这些信息不断更新对股票收益的预期,从而做出更明智的投资决策。
贝叶斯统计在市场营销中也有广泛的应用。
企业在推出新产品之前,往往会对市场需求进行预测。
通过市场调研和历史销售数据等先验信息,企业可以初步估计产品的潜在市场规模。
在产品上市后,通过实际销售数据和消费者反馈等新的信息,企业可以运用贝叶斯统计方法来调整对市场需求的估计,进而优化生产和营销策略。
在风险管理中,贝叶斯统计同样发挥着重要作用。
例如,保险公司在评估某个地区的自然灾害风险时,可以结合该地区的历史灾害数据(先验信息)和最新的气候数据、地质监测数据等(新的信息),运用贝叶斯统计来更准确地估计未来可能的损失,从而制定合理的保险费率和风险防范措施。
贝叶斯统计的优势在于它能够充分利用先验信息,并且可以随着新数据的不断积累进行动态更新和优化。
这使得决策更加具有适应性和灵活性。
然而,贝叶斯统计也并非完美无缺。
在实际应用中,确定合理的先验分布可能会存在一定的主观性。
第五章贝叶斯决策分析
贝叶斯决策分析(Bayesian Decision Analysis)是一种基于贝叶斯统计推理的决策方法。
它以数据作为输入,利用贝叶斯统计推理以及现实世界中的模型参数等,建立统计学模型,分析不同决策情况的可能性,最终指导决策者进行最优决策。
贝叶斯决策分析采用了极大似然估计(Maximum Likelihood Estimation)和贝叶斯统计推理(Bayesian Statistical Inference)的方法,从而给出了可行的决策结果。
贝叶斯决策分析模型假设了有一个无穷大的条件概率分布集,即根据历史观测值估计的各种情况及其发生概率。
模型的输入包括现有信息的观测值,如目标对象或数据的性质,环境和模型参数的估计值等,以及决策者的系统目标函数。
这些输入被用来估计条件概率,即感兴趣的决策性问题中每一个状态的发生概率,以及状态特征随时间变化的概率。
有了所有的输入信息之后,贝叶斯决策分析可以给出最优决策,它是针对模型的描述做出的。
例如,一个简单的决策模型可以表示为,有两个观测变量X和Y,每个观测变量有三种状态,共有九种模式(3×3=9)。