第2章非线性方程的数值解法
- 格式:ppt
- 大小:1.64 MB
- 文档页数:58
非线性方程的数值解法《计算方法》期末论文论文题目非线性方程的数值解法学院专业班级姓名学号指导教师日期目录摘要第1 章绪论1.1 问题的提出和研究目的和意义1.2 国内外相关研究综述1.3 论文的结构与研究方法第2 章非线性方程的数值解法2.1 二分法2.2 迭代法2.3 迭代法的局部收敛性及收敛的阶2.4 牛顿迭代法2.5 牛顿法的改进2.6 插值摘要数值计算方法,是一种研究解决数学问题的数值近似解方法,它的计算对象是那些。
在理论上有解而又无法用手工计算的数学问题。
在科学研究和工程技术中都要用到各种计算方法。
例如 在地质勘探、汽车制造、桥梁设计、天气预报和汉字设计中都有计算方法的踪影。
本文讨论了非线性方程的数值解法:非线性方程的二分法、迭代法原理、牛顿迭代法,迭代法的收敛性条件及适合非线性方程的插值法等等。
第1 章绪论可以证明插值多项式L (x) n 存在并唯一。
拉格朗日插值多项式的算法 step1.输入 插值节点控制数n 插值点序列 i i x , yi=0,1,…,n 要计算的函数点x。
step2. FOR i =0,1,…,n i 制拉格朗日基函数序列问题的提出和研究目的和意义非线性方程的问题在工程实践中有很多用途 研究其数值解法是当前一个研究方向。
目前已有相当一部分算法在广泛使用于工程实践中。
非线性方程组和无约束最优化的数值解法 一直是数值优化领域中热门的研究课题。
本文对传统的方法进行改进和提出新的算法 该算法不仅有重要的论价值,而且有很高的实用价值。
例如在天体力学中,有如下Kepler 开普勒方程 x-t- sin x=0,0< <1,其中t 表示时间 x 表示弧度,行星运动的轨道x 是t 的函数。
也就是说,对每个时刻i t 上述方程有唯一解i x ,运动轨道位置。
国内外相关研究综述随着科学技术的高速发展和计算机的广泛应用 求解形如F(x)=0 的非线性方程组问题越来越多的被提出来了 其中F 是的连续可微函数。
非线性微分方程的数值求解方法非线性微分方程是现代科学研究中的一个重要课题,其涉及机械、物理、化学、电子、生物、医学等众多领域。
然而,由于非线性微分方程普遍难以求解,因此,数值求解成为了解决问题的有效方法。
在本文中,我们将介绍非线性微分方程数值求解的常用方法和一些应用实例。
1. 常用方法1.1 有限差分法有限差分法是一种基于离散化技术的数值求解方法。
其具体操作是将非线性微分方程转化为一个差分方程,然后利用数值迭代的方法逐步计算出方程的解。
有限差分法是非线性微分方程数值求解的最基本方法,其优点是简单、易于实现,但由于离散化带来的误差限制了其应用范围。
1.2 有限元法有限元法是结构力学和流体力学中常用的一种数学方法,可以用于求解大量的非线性微分方程。
该方法将连续的物理问题转化为一系列离散的有限元问题,并利用数值技术实现数值计算。
相对于有限差分法,有限元法更加灵活、精确,能够模拟各种复杂的力学问题。
1.3 辛波特-欧拉法辛波特-欧拉法是非线性微分方程数值求解中的一种高精度方法。
其基本思想是将微分方程用欧拉法离散化,然后利用辛波特方法来提高精度。
该方法应用广泛,在计算机模拟、物理学、天文学等领域有着广泛的应用。
2. 应用实例2.1 生态学非线性微分方程在生态学中有着广泛的应用,其中最经典的例子是Lotka-Volterra方程。
这个模型描述了食物链中食草动物和食肉动物的数量变化。
利用有限元法、有限差分法等数值方法,可以对生态系统的发展、演变进行模拟,研究生态链条的稳定性、物种丰富度变化、环境扰动的影响等问题。
2.2 理论物理学非线性微分方程在理论物理学中也有着广泛的应用。
例如,把非线性微分方程用于研究非线性波方程和非线性光学方程,以及非线性薛定谔方程和非线性薛定谔场方程等等。
这些数值方法的应用可以有效地模拟和研究各种物理现象。
例如,研究自然灾害引起的气候变化、稳定器的效应、研究界面液晶显示器,以及研究光学调制中涉及的非线性现象等等。