电动机正反转控制PLC编程
- 格式:docx
- 大小:263.57 KB
- 文档页数:7
电动机知识电动机正、反转控制电路的PLC程序设计举例在例一的基础上,如果希望实现三相异步电动机的可逆运行,只需增加一个反转控制按钮和一个反转控制的接触器KM2即可。
其相对应的元件安排如下:在梯形图设计上可以考虑选两套起—保—停电路,一个用于正转,一个用于反转,考虑正反两个接触器不能同时接通,在两个接触器的驱动支路中分别串入对方的常闭触点来达到“互锁”的目的。
其相应的控制梯形图如图1所示:程序清单:图1 电动机正、反转控制电路的PLC梯形图程序——双重输出线圈〃电动机断相的一种自动保护方法〃济南钢铁晃电解决方案----FS/E防晃电系〃用PLC改进鼠笼式异步电动机的控制方案〃电气设计中低压交流接触器选用〃电气设备维修方法与实践〃施耐德LC1交流接触器选型*参数〃通过变频器操作面板控制电动机的启动、〃接触器联锁的正反转控制线路原理分析〃双华ZNB-S电动机正反转电路图_电路图〃电动机正反转实物接线图_电路图〃多台电机并联同步运行方案〃用接触器进行电机正反转控制_电路图〃电动机正反转控制电路图_电路图〃交流接触器接线图_电路图〃按钮接触器复合联锁的电动机正反转控制〃液压泵驱动电机的故障〃达尔文系统在汽车行业的应用----SmartWDomain: dnf辅助More:d2gs2f 〃什么是自锁电路.它的用途和原理_电路〃交流接触器接线图〃中低压交流接触器的选用〃交流接触器的使用类别及注意事项〃用三个接触器实现星三角启动原理图〃仿真三相异步电动机正反转运行状态的电〃ABBIORC型拍合式接触器在首钢二炼钢350〃晃电与自起动的区别〃印刷设备中交流接触器的选用〃台安SG2智能控制单元在自动扶梯上的应收录时间:1380248141 作者:匿名随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。
在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。
PLC控制电机正反转设计专业班级:学生姓名:学号:指导老师姓名:指导老师职称:PLC控制电机正反转设计[摘要]电气控制技术是一门多学科交叉的技术,是实现工业生产自动化的重要技术手段,随着科学技术的不断发展, PLC技术越来越多的应用于机床电气,本文简述了PLC的发展和几种常用电气控制线路的PLC控制。
关键词: 继电器控制系统;基本电气控制线路;PLC控制;电动机前言通过学习,我们初步了解了电气控制技术的一些基本知识和组成,从中也知道了电气控制技术在机械行业的重要性,为了完成的任务,为了更好的掌握机电一体化,我们应该更深入的学习电气控制技术的知识,以满足综合型人才的培养要求,在学习中我们了解到,可编程系统与继电器的传统控制技术比较有以下优点:第一,反应速度快,噪音低,能耗小。
体积小。
第二,功能强大,编程方便,可以随时修改程序。
第三,控制精度高,可进行复杂的程序控制。
第四,能够对控制过程进行自动检测。
第五,系统稳定,安全可靠。
我们应该在继电器的基础上加强可编程控制技术的学习。
可编程控制器是在继电器控制和计算机控制的基础上发展而来的新型工业自动控制装置,可编程系统优于继电器的传统控制技术,我们应该在继电器的基础上加强可编程控制技术的学习。
目录第一章 PLC基础 (1)1.1 PLC的定义 (1)1.2 PLC的产生及发展 (1)1.3 PLC的特点及应用 (2)1.4 PLC的基本结构 (4)1.5 PLC的工作方式 (6)1.6 PLC的设计方法 (6)第二章三相异步电动机控制设计 (9)2.1 电动机可逆运行控制电路 (9)2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (11)2.3 三相异步电动机正反转PLC控制的梯形图、指令表 (13)2.4 三相异步电动机正反转PLC控制的工作原理 (14)2.5 指令的介绍 (15)结论 (17)设计心得 (18)参考文献 (19)第一章 PLC基础1.1 PLC 的定义1985年,国际电工委员会(IEC)对PLC作出如下定义:可编程序控制器是一种数字运算操作电子系统,专为在工业环境下应用而设计。
PLC控制的交流电动机正反转的变频调速原理1. 引言在工业自动化领域,PLC(可编程逻辑控制器)是一种常用的控制设备,而交流电动机的正反转和变频调速是工业生产中常见的需求。
本文将从PLC控制的角度,深入探讨交流电动机正反转的变频调速原理,以便读者能够全面理解这一关键技术。
2. 交流电动机正反转原理交流电动机的正反转控制是工业生产中常见的需求。
在PLC控制下,可以通过控制电动机的接线和使用正反转的信号来实现正反转功能。
具体来说,可以利用PLC的输出口和接触器来实现电动机的正反转控制,通过合适的程序设计和逻辑控制,实现电动机正反转的功能。
3. 变频调速原理在工业生产中,电动机的调速功能也十分重要。
传统的电动机调速方式需要通过改变电源频率或者通过机械齿轮传动,而这些方式都不够灵活和高效。
而利用变频器可以实现对电动机的调速,变频器通过改变输入电源的频率和电压,从而控制电动机的转速。
在PLC控制下,可以通过控制变频器的输入信号,实现对电动机的精准调速。
4. PLC控制交流电动机正反转的变频调速原理将交流电动机的正反转和变频调速结合在一起,可以实现更灵活、智能的控制方式。
在PLC控制下,可以通过编写合适的程序和逻辑框图,实现对电动机的正反转和变频调速的精准控制。
通过合理设计输入输出口,利用定时器、计数器等功能模块,可以实现对电动机启停、正反转和调速的自动化控制。
5. 个人观点和理解在工业生产中,PLC控制的交流电动机正反转的变频调速技术可以极大地提高生产效率和质量。
通过合理应用PLC技术,可以实现对电动机的智能化控制,提高设备的稳定性和可靠性,同时也符合节能减排的要求。
我认为PLC控制的交流电动机正反转的变频调速技术是非常有价值和意义的。
6. 总结本文通过对PLC控制的交流电动机正反转的变频调速原理进行了深入探讨,从正反转原理、变频调速原理到结合控制方法进行了全面的介绍。
通过本文的阅读,读者可以全面、深刻地理解这一关键技术,为工业生产中的实际应用提供了理论和实践的指导。
PLC课程设计(论文)题目:三相异步电机联锁正反转控制院(系):机械工程学院专业:机电一体化学生姓名:某某学号:401042009指导教师:王海珍职称:讲师2016年6月10日星期五摘要可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装置。
目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,PLC已跃居工业自动化三大支柱的首位。
生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。
由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。
按下正转启动按钮SB1,电动机正转运行,且KM1,KMY接通。
2s后KMY断开,KM 接通,即完成正转启动。
按下停止按钮SB2,电动机停止运行。
按下反转启动按钮SB3,电动机反转运行,且KM2,KMY接通。
2s后KMY断开,KM 接通,即完成反转启动。
目录第一章PLC概述 (1)1.1 PLC的产生 (1)1.2 PLC的定义 (1)1.3 PLC的特点及应用 (2)1.4 PLC的基本结构 (4)第二章三相异步电动机控制设计 (7)2.1 电动机可逆运行控制电路 (7)2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (10)2.3. 三相异步电动机正反转PLC控制的梯形图、指令表 (13)2.4 三相异步电动机正反转PLC控制的工作原理 (14)2.5 指令的介绍 (15)结论 (17)致谢 (18)参考文献 (19)第一章PLC概述1.1 PLC的产生1969年,美国数字设备公司(DEC)研制出了世界上第一台可编程序控制器,并应用于通用汽车公司的生产线上。
当时叫可编程逻辑控制器PLC(Programmable Logic Controller),目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。
紧接着,美国MODICON公司也开发出同名的控制器,1971年,日本从美国引进了这项新技术,很快研制成了日本第一台可编程控制器。
PLC的变频器控制电机正反转接线图之老阳三干创作
简要说明PLC控制的变频器正反转运行操纵步调
1.按接线图将线连好后,启动电源,准备设置变频器各参数。
2.按“MODE”键进入参数设置模式“2”:外部操纵模式,启动信号由外部端子(STF、STR)输入,转速调节由外部端
子(2、5之间、4、5之间、多端速)输入。
3.连续按“MODE”按钮,退出参数设置模式。
4.按下正转按钮,电动机正转起动运行。
5.按下停止按钮,电动机停止。
6.按下反转按钮,电动机反转起动运行。
7.按下停止按钮,电动机停止。
8. 若在电动正转时按下反转按钮,电动机先停止后反转;反
之,若在电动机反转时按下正转按钮,电动机先停止后正
转。
PLC的变频器控制电机正反转。
电动机正反转控制PLC编程
根据下图的三相交流电动机正反转控制的主电路,设计一个PLC控制电动机正停反的控制系统。
控制要求如下:
(1)正常情况下,按启动按钮SB1,电机正转,按下反转启动按钮SB2,电机反转。
(2)电机启动后,按下停止按钮SB3并等待5秒钟之后,才可以改变电动机的旋转方向;
(3)如果SB1和SB2同时按下,电动机停止转动,并且不起动,同时报警灯L1亮1秒暗1秒不断闪烁。
此时按SB3停止按钮进行复位。
首先我们先确定一下按钮、KM的使用辅助触点情况,这里是正反转的主回路,主回路必须有互锁电路,其他的按钮用常开触点。
下面是PLC的输入输出点表:
根据题意(1)编程:这里根据题意1,只需遍2个自保持电路即可。
题意2要求按停止按钮5秒后才能改变电机方向,所以这里需设置一个标志位,这里用M0.0。
并且加上程序互锁电路,具体如下:
首先在2个自保持回路中加入互锁电路——网络1的Q0.1常闭点和网络2的Q0.0常闭点。
题意2说按下停止按钮后5秒,才能按启动
按钮,所以网络3按下I0.2停止按钮后,M0.0得电自保持,计时器T37计时5s后,将M0.0的自保持回路停掉。
并且在网络1和网络2中加M0.0的常闭点,使M0.0得电时网络1和网络2即使按了正转按钮或者反转按钮也不会使Q0.0或Q0.1得电。
题意3要求SB1和SB2同时按下,电动机停止转动,并且不起动,同时报警灯L1亮1秒暗1秒不断闪烁。
编程如下:
这次增加了网络4/5/6,网络5和6就是利用2个计时器产生一个一秒脉冲的小程序,SM0.0为特殊位,其功能为一直得电。
网络4就是利用M0.1将网络1/2/3锁死,也就是说M0.1得电网络1.2.3是不起作用的。
其原理与上一小结的M0.0一样。