plc控制的电动机正反转
- 格式:ppt
- 大小:1.21 MB
- 文档页数:18
PLC控制电机正反转设计专业班级:学生姓名:学号:指导老师姓名:指导老师职称:PLC控制电机正反转设计[摘要]电气控制技术是一门多学科交叉的技术,是实现工业生产自动化的重要技术手段,随着科学技术的不断发展, PLC技术越来越多的应用于机床电气,本文简述了PLC的发展和几种常用电气控制线路的PLC控制。
关键词: 继电器控制系统;基本电气控制线路;PLC控制;电动机前言通过学习,我们初步了解了电气控制技术的一些基本知识和组成,从中也知道了电气控制技术在机械行业的重要性,为了完成的任务,为了更好的掌握机电一体化,我们应该更深入的学习电气控制技术的知识,以满足综合型人才的培养要求,在学习中我们了解到,可编程系统与继电器的传统控制技术比较有以下优点:第一,反应速度快,噪音低,能耗小。
体积小。
第二,功能强大,编程方便,可以随时修改程序。
第三,控制精度高,可进行复杂的程序控制。
第四,能够对控制过程进行自动检测。
第五,系统稳定,安全可靠。
我们应该在继电器的基础上加强可编程控制技术的学习。
可编程控制器是在继电器控制和计算机控制的基础上发展而来的新型工业自动控制装置,可编程系统优于继电器的传统控制技术,我们应该在继电器的基础上加强可编程控制技术的学习。
目录第一章 PLC基础 (1)1.1 PLC的定义 (1)1.2 PLC的产生及发展 (1)1.3 PLC的特点及应用 (2)1.4 PLC的基本结构 (4)1.5 PLC的工作方式 (6)1.6 PLC的设计方法 (6)第二章三相异步电动机控制设计 (9)2.1 电动机可逆运行控制电路 (9)2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (11)2.3 三相异步电动机正反转PLC控制的梯形图、指令表 (13)2.4 三相异步电动机正反转PLC控制的工作原理 (14)2.5 指令的介绍 (15)结论 (17)设计心得 (18)参考文献 (19)第一章 PLC基础1.1 PLC 的定义1985年,国际电工委员会(IEC)对PLC作出如下定义:可编程序控制器是一种数字运算操作电子系统,专为在工业环境下应用而设计。
第 1 章PLC控制步进电机正反转实验1.1实验目的1、了解PLC的理论与原理;2、掌握PLC编程与操作方法。
3、了解接近传感器的使用方法1.2实验设备1、三菱PLC编程电缆及安装好三菱编程软件的计算机一台;2、模块化柔性制造系统一套。
1.3实验原理料库旋转台是依靠步进电机控制的,高精度旋转模块。
依靠PLC 自身含有的脉冲单元,发出驱动脉冲给步进电机驱动器。
驱动器接收到该脉冲以后,根据所发脉冲的频率和数量驱动步进电机向相应的方向旋转。
1、步进电机步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。
永磁式步进电机永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进电机反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。
PLC控制的交流电动机正反转的变频调速原理1. 引言在工业自动化领域,PLC(可编程逻辑控制器)是一种常用的控制设备,而交流电动机的正反转和变频调速是工业生产中常见的需求。
本文将从PLC控制的角度,深入探讨交流电动机正反转的变频调速原理,以便读者能够全面理解这一关键技术。
2. 交流电动机正反转原理交流电动机的正反转控制是工业生产中常见的需求。
在PLC控制下,可以通过控制电动机的接线和使用正反转的信号来实现正反转功能。
具体来说,可以利用PLC的输出口和接触器来实现电动机的正反转控制,通过合适的程序设计和逻辑控制,实现电动机正反转的功能。
3. 变频调速原理在工业生产中,电动机的调速功能也十分重要。
传统的电动机调速方式需要通过改变电源频率或者通过机械齿轮传动,而这些方式都不够灵活和高效。
而利用变频器可以实现对电动机的调速,变频器通过改变输入电源的频率和电压,从而控制电动机的转速。
在PLC控制下,可以通过控制变频器的输入信号,实现对电动机的精准调速。
4. PLC控制交流电动机正反转的变频调速原理将交流电动机的正反转和变频调速结合在一起,可以实现更灵活、智能的控制方式。
在PLC控制下,可以通过编写合适的程序和逻辑框图,实现对电动机的正反转和变频调速的精准控制。
通过合理设计输入输出口,利用定时器、计数器等功能模块,可以实现对电动机启停、正反转和调速的自动化控制。
5. 个人观点和理解在工业生产中,PLC控制的交流电动机正反转的变频调速技术可以极大地提高生产效率和质量。
通过合理应用PLC技术,可以实现对电动机的智能化控制,提高设备的稳定性和可靠性,同时也符合节能减排的要求。
我认为PLC控制的交流电动机正反转的变频调速技术是非常有价值和意义的。
6. 总结本文通过对PLC控制的交流电动机正反转的变频调速原理进行了深入探讨,从正反转原理、变频调速原理到结合控制方法进行了全面的介绍。
通过本文的阅读,读者可以全面、深刻地理解这一关键技术,为工业生产中的实际应用提供了理论和实践的指导。
PLC的变频器控制电机正反转接线图
简要说明PLC控制的变频器正反转运行操作步骤
1.按接线图将线连好后,启动电源,准备设置变频器各参数。
2.按“MODE”键进入参数设置模式,将设置为“2”:外部操作模式,启动信号由外部端子(STF、STR)输入,转速调节由外部端子(2、5之间、4、5之间、多端速)输入。
3.连续按“MODE”按钮,退出参数设置模式。
4.按下正转按钮,电动机正转起动运行。
5.按下停止按钮,电动机停止。
6.按下反转按钮,电动机反转起动运行。
7.按下停止按钮,电动机停止。
8. 若在电动正转时按下反转按钮,电动机先停止后反转;反之,若在电动机反
转时按下正转按钮,电动机先停止后正转。
PLC的变频器控制电机正反转。
PLC的变频器控制电机正反转接线图之老阳三干创作
简要说明PLC控制的变频器正反转运行操纵步调
1.按接线图将线连好后,启动电源,准备设置变频器各参数。
2.按“MODE”键进入参数设置模式“2”:外部操纵模式,启动信号由外部端子(STF、STR)输入,转速调节由外部端
子(2、5之间、4、5之间、多端速)输入。
3.连续按“MODE”按钮,退出参数设置模式。
4.按下正转按钮,电动机正转起动运行。
5.按下停止按钮,电动机停止。
6.按下反转按钮,电动机反转起动运行。
7.按下停止按钮,电动机停止。
8. 若在电动正转时按下反转按钮,电动机先停止后反转;反
之,若在电动机反转时按下正转按钮,电动机先停止后正
转。
PLC的变频器控制电机正反转。
PLC实现步进电机的正反转和调整控制PLC(可编程逻辑控制器)是一种电子设备,用于控制工业自动化系统中的运动和操作。
步进电机是一种常用的驱动器,它的旋转运动是通过一步一步地前进来实现的。
本文将探讨如何使用PLC来实现步进电机的正反转和调整控制。
步进电机的正反转控制是通过改变电机绕组的相序来实现的。
在PLC 中,我们可以使用输出模块来控制电机的相序。
以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。
确保正确连接。
2.编程PLC:使用PLC编程软件,编写一个控制程序来实现电机的正反转。
首先,定义输出模块的输出信号来控制电机。
然后使用程序语言来编写逻辑控制指令,根据需要来改变输出信号的状态。
为了实现正反转,需要改变输出信号的相序。
3.实现正反转控制:在编程中,定义一个变量来控制步进电机的运动方向。
当变量为正值时,电机正转;当变量为负值时,电机反转。
根据变量的值来改变输出模块的输出信号,以改变电机的相序。
4.运行程序:将PLC连接到电源,并加载程序到PLC中。
启动PLC,程序将开始运行。
通过改变变量的值,我们可以控制电机的正反转。
除了控制步进电机的正反转,PLC还可以实现步进电机的调整控制。
调整控制是通过改变电机的步距和速度来实现的。
以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。
与正反转控制相同,确保正确连接。
2.编程PLC:使用PLC编程软件编写控制程序。
首先,定义输出模块的输出信号来控制电机的相序。
然后,使用程序语言来编写逻辑控制指令,根据需要改变输出信号的状态。
为了实现调整控制,需要改变输出信号的频率和占空比。
3.实现调整控制:在编程中,定义两个变量来控制电机的步距和速度。
步距变量控制电机每一步的距离,速度变量控制电机的旋转速度。
根据变量的值来改变输出模块的输出信号,以改变电机的相序,并控制步距和速度。
4.运行程序:将PLC连接到电源,并加载程序到PLC中。
plc控制电动机正反转梯形图_PLC实现电机正反转控制编
程实例
今天给大家介绍正反转控制吧!喜欢就收藏,点赞,转发吧!谢谢要求:1.能够正反点动电机。
2.能够选择正转,反转电机。
3.能够停止电机。
挺简单的一个正反转,能够带大家入门了解了。
我们首先分析下程序的要求,可以得知,需要输入点5个输出点2个分别如下分配:
输入点:X0 急停 X1正转启动 X2反转启动 X3正转点动 X4反转点动
输出点:Y0输出正转 Y1输出反转
分配好输入输出点后我们就开始我们的梯形图编写,编写完成后如下:
其中的M0和M1 是plc的内部辅助触点。
然后我们点击模拟运行:
然后我们右键­——调试——当前值更改
ON/OFF取反“X3(正转点动)”:
“Y0(正转输入)”能在X3通的时候通,断的时候断开,说明我们的点动效果达到目标。
ON/OFF取反“X4(反转点动)”:
“Y1(反转输出)”能在X4通的时候通,断的时候断开,说明我们的点动效果达到目标
然后我们继续调试“X1正转启动”,“X2反转启动”和”X0停止”。
用PLC控制三相异步电动机正、反转用PLC控制三相异步电动机正、反转:三相交流异步电动机是生产设备常用的动力元件,PLC控制电动机的转动,是生产设备自动控制的最常用,也是基本的控制。
PLC控制电动机,用PLC控制负载,编程是主要的任务,接线驱动负载是次要的任务,不要本末倒置,将接线当成首要任务,编程当成次要任务。
用PLC控制三相异步电动机正、反转设计步骤控制案例:给正转信号,电动机正转运行;给反转信号,电动机反转运行;给停止信号,无论电动机正转还是反转,都要停止运行。
即电动机的控制能实现正反停。
1.电动机正反转的主电路中,交流接触器KM1和KM2的主触点不能同时闭合,并且必须保证,一个接触器的主触点断开以后,另一个接触器的主触点才能闭合。
2.为了做到上面一点,梯形图中输出继电器Y0、Y1的线圈就不能同时带电,这样在梯形图中就要加程序互锁。
即在输出Y0线圈的一路中,加元件Y1的常闭触点;在输出Y1线圈的一路中,加元件Y0的常闭触点。
当Y0的线圈带电时,Y1的线圈因Y¬0的常闭触点断开而不能得电;同样的道理,当Y1的线圈带电时,Y0的线圈因Y¬1的常闭触点断开而不能得电。
3.为了保证电动机能从正转直接切换到反转,梯形图中必须加类似按钮机械互锁的程序互锁。
即在输出Y0线圈的一路中,加反转控制信号X1的常闭触点;在输出Y1线圈的一路中,加正转控制信号X0的常闭触点。
这样能做到电动机正反转的直接切换。
当电动机加正转控制信号时,输入继电器X0的常开触点闭合,常闭触点断开。
常闭触点断开反转输出Y1的线圈,交流接触器KM2的线圈失电,电动机停止反转,同时Y1的常闭触点闭合,正转输出继电器Y0的线圈带电,交流接触器KM1的线圈得电,电动机正转。
当电动机加反转控制信号时,输入继电器X1的常开触点闭合,常闭触点断开。
常闭触点断开正转输出Y0的线圈,交流接触器KM1的线圈失电,电动机停止正转,同时Y 0的常闭触点闭合,反转输出继电器Y1的线圈带电,交流接触器KM2的线圈得电,电动机正转。