天津市南开中学高二数学必修5复习导学案:1.1.1 正弦定理
- 格式:doc
- 大小:270.50 KB
- 文档页数:5
1.1正弦定理和余弦定理1.1.1正弦定理沉着说课本章内容是处理三角形中的边角联络,与初中学习的三角形的边与角的根本联络有亲近的联络,与已知三角形的边和角持平断定三角形全等的常识也有着亲近的联络.教科书在引进正弦定理内容时,让学生从已有的几许常识动身,提出探求性问题“在恣意三角形中有大边对大角,小边对小角的边角联络.咱们是否能得到这个边、角的联络准确量化的表明呢?”在引进余弦定理内容时,提出探求性问题“假如已知三角形的两条边及其所夹的角,依据三角形全等的断定办法,这个三角形是巨细、形状彻底确认的三角形.咱们依然从量化的视点来研讨这个问题,也便是研讨怎么从已知的两头和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联络的观念,重新的视点看曩昔的问题,使学生关于曩昔的常识有了新的知道,一同使新常识树立在已有常识的坚实根底上,构成杰出的常识结构.教育要点1.正弦定理的概念;2.正弦定理的证明及其根本使用.教育难点1.正弦定理的探求和证明;2.已知两头和其间一边的对角解三角形时判别解的个数.教具预备直角三角板一个三维方针一、常识与技术1.经过对恣意三角形边长和视点联络的探求,把握正弦定理的内容及其证明办法;2.会运用正弦定理与三角形内角和定了解斜三角形的两类根本问题.二、进程与办法1.让学生从已有的几许常识动身,一同探求在恣意三角形中,边与其对角的联络;2.引导学生经过调查、推导、比较,由特别到一般概括出正弦定理;3.进行定理根本使用的实践操作.三、情感情绪与价值观1.培育学生在方程思维辅导下处了解三角形问题的运算才能;2.培育学生探求数学规则的思维才能,经过三角函数、正弦定理、向量的数量积等常识间的联络来表现事物之间的遍及联络与辩证统一.教育进程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着极点C滚动.师考虑:∠C的巨细与它的对边AB的长度之间有怎样的数量联络?生明显,边AB的长度跟着其对角∠C的巨细的增大而增大.师能否用一个等式把这种联络准确地表明出来?师在初中,咱们已学过怎么解直角三角形,下面就首先来评论直角三角形中,角与边的等式联络.如右图,在Rt△ABC中,设BC =A,AC =B,AB =C,依据锐角三角函数中正弦函数的界说,有=sin A, =sin B,又sin C=1=,则.然后在直角三角形ABC中,.推动新课[协作探求]师那么关于恣意的三角形,以上联络式是否依然树立?(由学生评论、剖析)生可分为锐角三角形和钝角三角形两种状况:如右图,当△ABC是锐角三角形时,设边AB上的高是CD,依据恣意角三角函数的界说,有CD=A sin B=B sin A,则,同理,可得.然后.(当△ABC是钝角三角形时,解法相似锐角三角形的状况,由学生自己完结)正弦定理:在一个三角形中,各边和它所对角的正弦的比持平,即.师是否可以用其他办法证明这一等式?生可以作△ABC的外接圆,在△ABC中,令BC=A,AC=B,AB=C,依据直径所对的圆周角是直角以及同弧所对的圆周角持平,来证明这一联络.师很好!这位同学能充分使用咱们曾经学过的常识来处理此问题,咱们一同来看下面的证法.在△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圆,O 为圆心,连接BO并延伸交圆于B′,设BB′=2R.则依据直径所对的圆周角是直角以及同弧所对的圆周角持平可以得到∠BAB′=90°,∠C=∠B′,∴sin C=sin B′=.∴.同理,可得.∴.这便是说,关于恣意的三角形,上述联络式均树立,因而,咱们得到等式.点评:上述证法采用了初中所学的平面几许常识,将恣意三角形经过外接圆性质转化为直角三角形从而求证,此证法在稳固平面几许常识的一同,易于被学生了解和承受,而且消除了学生所持的“向量办法证明正弦定理是仅有途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量办法证明正弦定理作了衬托.[常识拓宽]师接下来,咱们可以考虑用前面所学的向量常识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角联络,而在向量常识中,哪一常识点表现边角联络呢?生向量的数量积的界说式A·B=|A||B|C osθ,其间θ为两向量的夹角.师答复得很好,可是向量数量积触及的是余弦联络而非正弦联络,这两者之间能否转化呢?生可以经过三角函数的诱导公式sinθ=Co s(90°-θ)进行转化.师这一转化发生了新角90°-θ,这就为辅佐向量j的增加供给了头绪,为便利进一步的运算,辅佐向量选取了单位向量j,而j笔直于三角形一边,且与一边夹角呈现了90°-θ这一方式,这是作辅佐向量j笔直于三角形一边的原因.师在向量办法证明进程中,结构向量是根底,并由向量的加法准则可得而增加笔直于的单位向量j是要害,为了发生j与、、的数量积,而在上面向量等式的两头同取与向量j的数量积运算,也就在情理之中了.师下面,咱们再结合讲义进一步领会向量法证明正弦定理的进程,并留意总结在证明进程中所用到的向量常识点.点评: (1)在给予学生恰当自学时刻后,应着重学生留意两向量的夹角是以同起点为条件,以及两向量笔直的充要条件的运用.(2)要求学生在稳固向量常识的一同,进一步领会向量常识的东西性效果.向量法证明进程:1.△ABC为锐角三角形,过点A作单位向量j笔直于,则j与的夹角为90°-A,j与的夹角为90°-C.由向量的加法准则可得,为了与图中有关角的三角函数树立联络,咱们在上面向量等式的两头同取与向量j的数量积运算,得到由分配律可得.∴|j|Co s90°+|j|Co s(90°-C)=|j|Co s(90°-A).∴A sin C=C sin A.∴.别的,过点C作与笔直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得.(此处应着重学生留意两向量夹角是以同起点为条件,避免误解为j与的夹角为90°-C,j与的夹角为90°-B)∴.2.△ABC为钝角三角形,无妨设A>90°,过点A作与笔直的单位向量j,则j与的夹角为A-90°,j与的夹角为90°-C.由,得j·+j·=j·,即A·Co s(90°-C)=C·Co s(A-90°),∴A sin C=C sin A.∴别的,过点C作与笔直的单位向量j,则j与的夹角为90°+C,j与夹角为90°+B.同理,可得.∴(方式1).综上所述,正弦定理关于锐角三角形、直角三角形、钝角三角形均树立.师在证明了正弦定理之后,咱们来进一步学习正弦定理的使用.[教师精讲](1)正弦定理阐明同一三角形中,边与其对角的正弦成正比,且份额系数为同一正数,即存在正数k使A=ksin A,B=ksin B,C=ksin C;(2)等价于 (方式2).咱们经过调查正弦定理的方式2不难得到,使用正弦定理,可以处理以下两类有关三角形问题.①已知三角形的恣意两角及其间一边可以求其他边,如.这类问题因为两角已知,故第三角确认,三角形仅有,解仅有,相对简单,讲义P4的例1就归于此类问题.②已知三角形的恣意两头与其间一边的对角可以求其他角的正弦值,如.此类问题改变较多,咱们在解题时要辨明标题所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的进程叫作解三角形.师接下来,咱们经过例题剖析来进一步领会与总结.[例题剖析]【例1】在△ABC中,已知A=32.0°,B=81.8°,A=42.9 c m,解三角形.剖析:此题归于已知两角和其间一角所对边的问题,直接使用正弦定理可求出边B,若求边C,再使用正弦定理即可.解:依据三角形内角和定理,C=180°-(A+B)=180°-(32.0°+81.8°)=66.2°;依据正弦定理,b=≈80.1(c m);c=≈74.1(c m).[办法引导]1.此类问题成果为仅有解,学生较易把握,假如已知两角和两角所夹的边,也是先使用内角和180°求出第三角,再使用正弦定理.2.关于解三角形中的杂乱运算可使用计算器.【例2】在△ABC中,已知A=20c m,B=28c m,A=40°,解三角形(视点准确到1°,边长准确到1 c m).剖析:此例题归于B sin A<a<b的景象,故有两解,这样在求解之后呢,无需作进一步的查验,使学生在运用正弦定理求边、角时,感到意图很清晰,一同领会剖析问题的重要性.解:依据正弦定理,sin B=≈0.899 9.因为0°<B<180°,所以B≈64°或B≈116°.(1)当B≈64°时,C=180°-(A+B)=180°-(40°+64°)=76°,C=≈30(c m).(2)当B≈116°时,C=180°-(A+B)=180°-(40°+116°)=24°,C=≈13(c m).[办法引导]经过此例题可使学生清晰,使用正弦定理求角有两种或许,可是都不契合题意,可以经过剖析取得,这就要求学生了解已知两头和其间一边的对角时解三角形的各种景象.当然关于不契合题意的解的取舍,也可经过三角形的有关性质来判别,关于这一点,咱们经过下面的例题来领会.变式一:在△ABC中,已知A=60,B=50,A=38°,求B(准确到1°)和C(保存两个有用数字).剖析:此题归于A≥B这一类景象,有一解,也可依据三角形内大角对大边,小角对小边这一性质来扫除B为钝角的景象.解:已知B<A,所以B<A,因而B也是锐角.∵sin B=≈0.513 1,∴B≈31°.∴C=180°-(A+B)=180°-(38°+31°)=111°.∴C=≈91.[办法引导]同样是已知两头和一边对角,但或许呈现不同成果,应着重学生留意解题的灵活性,关于本题,假如没有考虑角B 所受约束而求出角B的两个解,从而求出边C的两个解,也可使用三角形内两头之和大于第三边,两头之差小于第三边这一性质从而验证而到达扫除不契合题意的解.变式二:在△ABC中,已知A=28,B=20,A=120°,求B(准确到1°)和C(保存两个有用数字).剖析:此题归于A为钝角且A>B的景象,有一解,可使用正弦定理求解角B后,使用三角形内角和为180°扫除角B为钝角的景象.解:∵sin B=≈0.618 6,∴B≈38°或B≈142°(舍去).∴C=180°-(A+B)=22°.∴ C=≈12.[办法引导](1)此题要求学生留意考虑问题的全面性,关于角B为钝角的扫除也可以结合三角形小角对小边性质而得到.(2)归纳上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两头与其间一边的对角解三角形.3.关于已知两头夹角解三角形这一类型,将经过下一节所学习的余弦定理来解.师为稳固本节咱们所学内容,接下来进行讲堂操练:1.在△ABC中(成果保存两个有用数字),1.已知C =,A=45°,B=60°,求B;2.已知B=12,A=30°,B=120°,求A.解:(1)∵C=180°-(A+B)=180°-(45°+60°)=75°,,∴B=≈1.6.(2)∵,∴A=≈6.9.点评:此题为正弦定理的直接使用,意在使学生了解正弦定理的内容,可以让数学成果较弱的学生进行在黑板上回答,以增强其自信心.2.依据下列条件解三角形(视点准确到1°,边长准确到1):1.B=11,A=20,B=30°;(2)A=28,B=20,A=45°;(3)C =54,B=39,C=115°;(4)A=20,B=28,A=120°.解:(1) ∵.∴sin A=≈0.909 1.∴A1≈65°,A2≈115°.当A1≈65°时,C1=180°-(B+A1)=180°-(30°+65°)=85°,∴C1=≈22.当A2≈115°时,C2=180°-(B+A2)=180°-(30°+115°)=35°,∴C2=≈13.2.∵sin B=≈0.505 1,∴B1≈30°,B2≈150°.因为A+B2=45°+150°>180°,故B2≈150°应舍去(或许由B<A知B<A,故B应为锐角).∴C=180°-(45°+30°)=105°.∴C=≈38.3.∵,∴sin B=≈0.654 6.∴B1≈41°,B2≈139°.因为B<C,故B<C,∴B2≈139°应舍去.∴当B=41°时,A=180°-(41°+115°)=24°,A=≈24.4.sin B= =1.212>1.∴本题无解.点评:此操练意图是使学生进一步了解正弦定理,一同加强解三角形的才能,既要考虑到已知角的正弦值求角的两种或许,又要结合标题的具体状况进行正确取舍.讲堂小结经过本节学习,咱们一同研讨了正弦定理的证明办法,一同了解了向量的东西性效果,而且清晰了使用正弦定理所能处理的两类有关三角形问题:已知两角、一边解三角形;已知两头和其间一边的对角解三角形.安置作业(一)讲义第10页习题1.1第1、2题.(二)预习内容:讲义P5~P 8余弦定理[预习提纲]1.温习余弦定理证明中所触及的有关向量常识.2.余弦定理怎么与向量发生联络.3.使用余弦定理能处理哪些有关三角形问题.板书设计正弦定理1.正弦定理:2.证明办法:3.使用正弦定理,可以处理两类问题:1.平面几许法 (1)已知两角和一边(2)向量法 (2)已知两头和其间一边的对角。
必修五目录第一章解三角形1.1正弦定理和余弦定理1.2使用举例1.3实习作业解三角形实际使用举例习题第二章数列2.1数列的概念和简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系和不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)和简单的线性3.4基本不等式:2a bab+≤不等式练习题第一章 解三角形1.1.1 正弦定理1.在ABC △中,已知3b =,33c =,30B ∠=,解此三角形。
2.在ABC △中,已知∠A =4530B ∠=,C=10,解此三角形。
3.在三角形ABC 中,角A,B,C 所对的边分别为a,b,c ,且A,B 为锐角,sin A = 5sin B = 10(1) 求A+B 的值:(2) 若a-b= 2,求a,b,c 得值1. 在ABC △中,已知222sin sin sin A B C +=,求证:ABC △为直角三角形2. 已知ABC △中,60A ∠=,45B ∠=,且三角形一边的长为m ,解此三角1. 正弦定理反映了三角形中各边和它的对角正弦值的比例关系,表示形式为2sin sin sin a b c R A B C===,其中R 是三角形外接圆的半径。
2. 正弦定理的使用(1)如果已知三角形的任意两角和一边,由三角形的内角和定理可以计算出另外一个角,并由三角形的正弦定理计算书另外两边。
(2)如果已知三角形的任意两边和其中一边的对角,使用正弦定理可以计算出另外一边对角的正弦值,进而可以确定这个角(此时特别注意:一定要先判断这个三角形是锐角还是钝角)和三角形其它的边和角。
1.在ABC △中,若2sin sin cos 2A C =,B 则ABC △是( )A .等边三角形B .等腰三角形C .直角三角形D . 等腰直角三角形3. 在ABC △中,已知30B =,503b =,150c =,那么这个三角形是( ) A.等边三角形B.直角三角形 C.等腰三角形 D.等腰三角形或直角三角形4. 在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .32D .236.ABC △若26120c b B ===,,,则a 等于 ( )A 6B .2C 3D 2 7. .在△ABC 中,若B A 2=,则a 等于 ( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 28.若12057A AB BC ∠===,,,则ABC △的面积S = .9. 在ABC △中,若此三角形有一解,则a b A ,,满足的条件为________1.1.2 余弦定理1.在三角形ABC 中,已知下列条件,解三角形。
天津市第二南开中学2014高中数学 1.1.1 正弦定理复习导学案 新人教A版必修5显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学◆ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==.( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B=, 同理可得sin sin c b C B =, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin cC =. 试试:(1)在ABC ∆中,一定成立的等式是( ). A .sin sin a A b B = B.cos cos a A b B = C. sin sin a B b A = D.cos cos a B b A = (2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 . ◆理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C . (3)正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B =;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin aA B b=;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. ◆ 典型例题 例1. 在ABC ∆中,已知45A =o ,60B =o ,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =o ,60C =o ,12a =cm ,解三角形.例2. 在ABC ∆C B ,,2,45,6和求b a A c ===︒.变式:在ABC ∆C A,,1,60,3和求a c B b ===◆ 动手试试1. 在ABC ∆中,若cos cos A bB a =,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1∶3D .2∶2∶33. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定 4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C++++= .6. 已知△ABC 中,AB =6,∠A =30°, ∠B =120︒,解此三角形.7.在ΔABC中,利用正弦定理证明==+c b a CBA sin sin sin + .三、总结提升 ◆ 学习小结 1. 正弦定理:sin sin a b A B =sin cC=2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角. ◆ 知识拓展 sin sin a b A B =2sin c R C ==,其中2R 为外接圆直径.。
1.1.1正弦定理班级: 姓名: 编者: 高二数学备课组 问题引航2. 会运用正弦定理解斜三角形的两类基本问题。
自主探究在ΔABC 中,角A 、B 、C 的对边为a 、b 、c ,1.大角对 边,小角对 边。
2.在ΔABC 中,C B A ∠-=∠+∠π,即 =+)sin(B A sin ,也就是互补的两个角的正弦值 。
3.①在Rt ΔABC 中,∠C=900, A c sin = ,B c sin = ,即sin a A = = 。
② 在锐角ΔABC 中,过C 做CD ⊥AB 于D ,则CD = = ,即sin a A = ,同理得 ,故有sin aA = 。
③ 在钝角ΔABC 中,∠B 为钝角,过C 做CD ⊥AB 交AB 的延长线D ,则CD= = ,即sin a A = ,故有sin a A= 。
互动探究一.新课导入,推导公式.(1)直角三角形中(2)斜三角形中正弦定理是:二.典例解析例1.在∆ABC 中,已知c =10,∠030=A ,∠0120=C ,求b 。
例2.在ΔABC 中,,316,16==b a ∠030=A ,求∠B 。
当堂检测1.已知在ΔABC 中,0075,60,18=∠=∠=C B a ,求b .2.在ΔABC 中,350,150,300===∠b c B ,则ΔABC 的形状是( )。
A.钝角三角形B.直角三角形C.等腰三角形D.直角三角形或等腰三角形知识拓展中,三内角的正弦比为4:5:6,有三角形的周长为7.5,则三角形三边长分别为: 。
作业4页练习题1,2题.自我评价)A.非常好 B.较好 C.一般 D.较差 E.很差。
1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝ ⎛⎦⎥⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=B +C -sin C cos B A +C -sin C cos A =sin B cos C sin A cos C =sin Bsin A=右边.所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87.。
高二数学必修五全套导学案及答案(人教A版)本资料为woRD文档,请点击下载地址下载全文下载地址1.1.1正弦定理【学习目标】.掌握正弦定理的推导过程;2.理解正弦定理在讨论三角形边角关系时的作用;3.能应用正弦定理解斜三角形【重点难点】正弦定理及其应用;解三角形中知两边一对角型中解的判断。
【知识梳理】.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即===2R(R为△ABc外接圆半径)2.正弦定理的应用从理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角3.中,已知及锐角,则、、满足什么关系时,三角形无解,有一解,有两解?(见图示):⑴若A为锐角时:⑵若A为直角或钝角时:【范例分析】例1.(1)已知下列三角形的两边及其一边对角,先判断三角形是否有解?有解的作出解答。
①;②;③;④。
(2)在中,,若有两解,则的取值范围为A、B、C、D、例2.(1)在△ABc中,已知,求的值;(2)在△ABc中,已知,求的值。
例3.(1)在△ABc中,已知AB=l,∠c=50°,当∠B 多大时,Bc的长取得最大值.?(2)△ABc的三个角满足A<B<c,且2B=A+c,最大边为最小边的2倍,求三内角之比。
(2)在中,,求的外接圆半径和面积。
【规律总结】.正弦定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关涉及到三角形的其他问题中,也常会用到正弦定理。
正余弦定理的边角互换功能①,,②,,③==④2.结合正弦定理,三角形的面积公式有以下几种形式:其中分别表示的边上的高、外接圆半径。
一、选择题.在△ABc中,a=10,B=60°,c=45°,则c等于()A.B.c.D.2.在中,若,则的值为()A.B.c.D.3、已知△ABc的面积为,且,则∠A等于()A.30°B.30°或150°c.60°D.60°或120°4.△ABc中,∠A、∠B的对边分别为a,b,且∠A=60°,, 那么满足条件的△ABc()A.有一个解B.有两个解c.无解D.不能确定5.在△ABc中,已知60°,如果△ABc两组解,则x的取值范围是A.B.c.D.二、填空题6.在△ABc中,若∠A:∠B:∠c=1:2:3,则7.在△ABc中,,则此三角形的最大边长为,外接圆半径为,面积为。
课题: 正弦定理【学习目标】1.掌握正弦定理的内容2.会用正弦定理解三角形第一环节:导入学习(约3分钟)a ,sin sin sin ABC A B C b c A B C==在直角三角形中,角C 为直角,角、、对应的边分别为a,b,c,则sinA=______,sinB=_______,sinC=________.所以那么,对于一般三角形,以上关系是否存在呢?第二环节:自主学习(知识点以题的形式呈现)(约15分钟)(一)基础学习(本课需要掌握的基础知识)1. 正弦定理:在一个三角形中,各边和他所对的角的 相等,即a s i n s i n s i nbcA B C == 2. 三角形的三个角A ,B ,C 和它所对的边a,b,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做3. 正弦定理可以解决哪些解三角形的问题(1)(2)类型1已知两角和一边,求其它 1.?,20,ABC a A =≈例已知在三角形中=30,C=45,求B ,b ,c(sin1050.966)类型2:已知两边及一边的对角,解三角形 ⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA⑵若A 为直角或钝角时:⎩⎨⎧>≤)(b a 锐角一解无解b a例2.已知下列各三角形中两边及一边的对角,先判断是否有解,有解的作出解答 (1)a=7,b=8,A=105(2) a=10,b=20,A=80(3)b=10,c=65 ,C=60 (4) a=(二)深入学习(需掌握的知识转化成能力——知识运用)1.,ABC A C a b 已知在中,=60,B=45,c=20,求,2.3c 1,ABC B C b 中,=0,=45,=求及三角形外接在三角形圆的半径3.在∆ABC 中,A=45,a=2, b=2,求B ,C ,c第四环节:展示学习(约7分钟)第五环节:精讲学习(学生对应的是反思学习)(约8分钟)(1)定理的表示形式:sin sin a b A B =sin c C ==++=++2sin sin sin a b cR A B C;或=2sin a R A ,=2sin b R B ,=2sin c R C (0)k >(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角 已知a, b 和A, 用正弦定理求B 时的各种情况:。
第一章 解三角形§1.1.1 正弦定理【情景激趣】有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
已知一座山顶A 到山脚C 的直线距离是1500米,在山脚C 测得两座山顶之间的夹角是450,在另一座山顶B 测得山脚C 与山顶A 之间的夹角是300。
求需要建多长的索道?【学习过程 】一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学 ※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==. 探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B=, 同理可得sin sin c b C B=,从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试推导.1.叙述正弦定理的内容:2.正弦定理的变形①边化角:a = ,b = ,c = ;②角化边:sin A = ,sin B = ,sin C = ;3.正弦定理的推论: ::a b c =从而知正弦定理的基本作用为:①②一般地,已知三角形的某些边和角,求其他的边和角的过程叫作_______【交流释疑】(二)合作探讨类型一 已知两角及一边解三角形例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.规律总结:类型二 已知两边及其中一边的对角解三角形例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.规律总结:类型三 判断三角形的形状例3 在ABC ∆中,已知A b B a tan tan 22=,试判断三角形的形状。
1.1正弦定理和余弦定理第1课时 正弦定理预习案【学习目标】1.掌握正弦定理的内容及其证明方法;会初步运用正弦定理解三角形,培养学生应用能力. 2.学会运用正弦定理解三角形的方法,领悟数形结合及分类讨论思想在解三角形中的应用. 3.引导学生体会数学的科学价值、应用价值、人文价值、美学价值,并以更加饱满的激情投入到学习中去.【重点】:正弦定理及其推导过程,正弦定理的简单应用. 【难点】:正弦定理的推导及应用. 【学法指导】1. 阅读探究课本上的基础知识,初步掌握正弦定理及其简单应用;2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测;3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.Ⅰ.相关知识1.在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,若A>B,则a b,反之,若a>b,则A B 。
2.三角形内角和定理是: 。
勾股定理的内容是:Rt △ABC 中,若a,b 为直角边,c 为斜边,则 。
3.三角形面积公式: 。
Ⅱ.教材助读1. 在Rt △ABC 中,角A ,B ,C 所对的边分别为a,b,c ,则sinA= ,cosA= ,tanA= .2. 正弦定理:_________sin ==Aa,观察正弦定理的结构,它有什么特点? 3. 正弦定理文字语言叙述为: 。
4.一般地,把三角形的 和它们的 叫做三角形的元素。
已知三角形的 求 的过程叫做解三角形。
5.应用正弦定理解三角形可分为两类: (1)已知三角形的 与一边,求其他的边和角;(2)已知三角形的 与其中一边的对角,求其他的边和角。
【预习自测】1. 正弦定理适用的范围是( )A. 直角三角形B. 钝角三角形C. 钝角三角形D. 任意三角形2. 在△ABC 中一定成立的等式是()A .asinA=bsinB B. acosA=bcosB C. asinB=bsinA D. acosB=bcosA 3. 在△ABC 中,.___,30,10,105=︒==︒=b C c A 则 4.在△ABC 中,.____,30,8,4=︒===B A b a 则【我的疑惑】探究案Ⅰ.质疑探究——质疑解惑、合作探究探究一:利用构造三角形外接圆,证明正弦定理;正弦定理中的比值实际上是一个什么样的数?探究二:正弦定理有哪几种变式?探究三:证明C ab S ABC sin 21=∆,除此之外,你还有其他的结果吗?【归纳总结】1.正弦定理适用于 三角形.2.可以证明 = = = =2R (R 为△ABC 的外接圆半径).3.正弦定理的三个等式: , , ,每个式子中有 个量, 如果知道其中 个可以求出 (知三求一).4.正弦定理可解决两类问题: (1) ; (2) 。
显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?
二、新课导学
◆ 学习探究
探究1:在初中,我们已
学过如何解直角三角形,下面就首先来探讨直角三角形
中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,
AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,
sin sin sin a b c A B C ==.
(
探究2:那么对于任意的三角形,以上关系式是否仍然成立?
可分为锐角三角形和钝角三角形两种情况:
当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,
有CD =sin sin a B b A =,则
sin sin a b A B =, 同理可得sin sin c b C B
=, 从而sin sin a b A B =sin c C
=.
类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.
新知:正弦定理
在一个三角形中,各边和它所对角的 的比相等,即
sin sin a b A B =sin c C
=.
试试:
(1)在ABC ∆中,一定成立的等式是( ).
A .sin sin a A b
B = B .cos cos a A b B =
C . sin sin a B b A =
D .cos cos a B b A =
(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 . ◆理解定理
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;
(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C
. (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =
;b = .
②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b
=;sin C = .
(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. ◆ 典型例题
例1. 在ABC ∆中,已知45A = ,60B = ,42a =cm ,解三角形.
变式:在ABC ∆中,已知45B = ,60C = , 12a =cm ,解三角形.
例2. 在ABC ∆
C B,,2,45,6和求b a A c ===︒.
变式:在ABC ∆
C A,,1,60,3和求a c B b ===
◆ 动手试试
1. 在ABC ∆中,若cos cos A
b
B a =,则AB
C ∆是( ).
A .等腰三角形
B .等腰三角形或直角三角形
C .直角三角形
D .等边三角形
2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,
则a ∶b ∶c 等于( ).
A .1∶1∶4
B .1∶1∶2
C .
1∶1∶
D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).
A. A B >
B. A B <
C. A ≥B
D. A 、B 的大小关系不能确定
4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .
5. 已知∆ABC 中,∠A 60=︒,a =
sin sin sin a b c
A B C ++++= .
6. 已知△ABC 中,AB =6,∠A =30°,
∠B =120︒,解此三角形.
7.在ΔABC 中,利用正弦定理证明
==+c b a C
B A sin sin sin +
.
三、总结提升
◆ 学习小结
1. 正弦定理:sin sin a b A B =sin c C =
2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法.
3.应用正弦定理解三角形: ①已知两角和一边;
②已知两边和其中一边的对角. ◆ 知识拓展
sin sin a b A B =2sin c R C
==,其中2R 为外接圆直径.。