2017年上海市八校联考高考数学模拟试卷含解析
- 格式:doc
- 大小:551.00 KB
- 文档页数:20
上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市崇明县2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 复数(2)i i +的虚部为 2. 设函数2log ,0()4,0xx x f x x >⎧=⎨≤⎩,则((1))f f -=3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2xP x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞=6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为8. 若21(2)nx x+*()n N ∈的二项展开式中的第9项是常数项,则n =9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =;③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y += 16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求: (1)异面直线11B C 与1AC 所成角的大小; (2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与 点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数;(1)当1a b ==时,证明:()f x 不是奇函数; (2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4.34 5. 4 6. 187. 75π 8. 12 9. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题 17.(1)5arccos10;(2)33;18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29;20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =;当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;上海市金山区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若集合2{|20}M x x x =-<,{|||1}N x x =>,则MN =2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z =3. 如果5sin 13α=-,且α为第四象限角,则tan α的值是 4. 函数cos sin ()sin cos x xf x x x=的最小正周期是5. 函数()2x f x m =+的反函数为1()y f x -=,且1()y f x -=的图像过点(5,2)Q ,那么m =6. 点(1,0)到双曲线2214x y -=的渐近线的距离是 7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示) 9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示 的圆的圆心轨迹方程是 (结果化为普通方程) 10. 若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有的数从小到大排列成的数列, 即14a =,210a =,312a =,428a =,530a =,636a =,,将数列{}n a 中各项按 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是41012283036⋅⋅⋅二. 选择题(本大题共4题,每题5分,共20分)13. 给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于平面α上 无数条直线”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分也不必要 14. 已知x 、y R ∈,且0x y >>,则( ) A.110x y-> B. 11()()022x y -<C. 22log log 0x y +>D. sin sin 0x y -> 15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点;(1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥P AFD -的体积;18. 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;19. 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短轴长的2倍,直 线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;20. 已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =,x R ∈; (1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x R ∈恒成立,求实数k 的范围; (3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅- 将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;21. 数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个(1)i i b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和; (3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由;参考答案一. 填空题1. (1,2)2. 12i -3. 512-4. π5. 16. 557. 4 8. 48 9. 20x y -= 10. 2 11. 324 12. ②③④二. 选择题13. A 14. B 15. A 16. C三. 解答题 17.(1)310arccos 10;(2)43;18.(1)2211()sin sin()sin(2)33366f x x x x ππ=+=+-,(0,)3x π∈; (2)递增区间(0,]6π,6x π=;19.(1)2212x y +=;(2)(2,0)-; 20.(1)0b =,1a =;(2)1[,8]2;(3)min 4M =;21.(1)n b n =;(2)201822033134+;(3)不存在;上海市虹口区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,4,6,8}A =,{|2,}B x x k k A ==∈,则A B =2. 已知21zi i=+-,则复数z 的虚部为 3. 设函数()sin cos f x x x =-,且()1f a =,则sin 2a =4. 已知二元一次方程111222a xb yc a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是5. 数列{}n a 是首项为1,公差为2的等差数列,n S 是它前n 项和,则2lim n n nSa →∞=6. 已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的 条件(填“充 分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)7. 若双曲线2221y x b-=的一个焦点到其渐近线距离为22,则该双曲线焦距等于8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 9. 一个底面半径为2的圆柱被与其底面所成角是60°的平 面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是二. 选择题(本大题共4题,每题5分,共20分)13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( ) A. 若m ∥α,m 、n 不平行,则n 与α不平行 B. 若m ∥α,m 、n 不垂直,则n 与α不垂直 C. 若m α⊥,m 、n 不平行,则n 与α不垂直 D. 若m α⊥,m 、n 不垂直,则n 与α不平行14. 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱锥P ABC -中,已知底面等边三角形的边长为6,侧棱长为4; (1)求证:PA BC ⊥;(2)求此三棱锥的全面积和体积;18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处; (1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);19. 已知二次函数2()4f x ax x c =-+的值域为[0,)+∞; (1)判断此函数的奇偶性,并说明理由;(2)判断此函数在2[,)a+∞的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域;20. 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;21. 已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ;参考答案一. 填空题1. {2,4,8}2. 13. 04. 21x y =⎧⎨=⎩ 5. 146. 充分非必要7. 68. 29. 43 10. 6011. 22或42 12. [5,)+∞二. 选择题13. A 14. B 15. C 16. C三. 解答题17.(1)略;(2)9793S =+,63V =; 18.(1)291;(2)东偏北41.8︒, 6.4v =海里/小时; 19.(1)非奇非偶函数;(2)单调递增;(3)当02a <<,()0g a =;当2a ≥,4()4g a a a=+-;值域[0,)+∞; 20.(1)22143x y +=;(2)12;(3)2;21.(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;上海市闵行区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 方程lg(34)1x +=的解x = 2. 若关于x 的不等式0x ax b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A BC D -,12AA =,E 为 棱1CC 的中点,则三棱锥1D ADE -的体积为 7. 从单词“shadow ”中任意选取4个不同的字母排成一排, 则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅取值范围是 10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足 1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要 14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒, (1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小; (用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2An A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m=⋅(万元),m 表示污水流量,铺设管道的费用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用? (2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂 的距离为x 千米,求联合建厂的总费用y 与x 的函数关系 式,并求y 的取值范围;20. 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距 为25,点P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 的中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围; (3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤); (1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列, 点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;上海市松江区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =2. 已知a 、b R ∈,i 是虚数单位,若2a i bi +=-,则2()a bi +=3. 已知函数()1x f x a =-的图像经过(1,1)点,则1(3)f -=4. 不等式|1|0x x ->的解集为5. 已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为6. 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道,在由2名中国运动员和6 名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为 7. 按下图所示的程序框图运算:若输入17x =,则输出的x 值是8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y 是曲线22:1259x y C +=上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF +的最大值为11. 已知函数243,13()28,3xx x x f x x ⎧-+-≤≤⎪=⎨->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212lim n n na a -→∞=二. 选择题(本大题共4题,每题5分,共20分) 13. 已知a 、b R ∈,则“0ab >”是“2b aa b+>”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 如图,在棱长为1的正方体1111ABCD A BC D -中,点P 在截面1A DB 上,则线段AP 的最小值为( ) A.13 B. 12 C. 33 D. 2215. 若矩阵11122122a a a a ⎛⎫⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈,且111221220a a a a =,则这样的互不相等的矩阵共有( )A. 2个B. 6个C. 8个D. 10个 16. 解不等式11()022xx -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数 及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++> 的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在正四棱锥P ABCD -中,PA AB a ==,E 是棱PC 的中点; (1)求证:PC BD ⊥;(2)求直线BE 与PA 所成角的余弦值;18. 已知函数21()21x xa f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;19. 松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”, 兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求:(1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)20. 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;21. 如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H 型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时, 试判断数列{}n c 是否为“H 型数列”,并说明理由;参考答案一. 填空题1. {1}2. 34i -3. 24. (0,1)(1,)+∞5. π6.147. 143 8. 11 9. 17π 10. 10 11. 3(0,)312. 12-二. 选择题13. B 14. C 15. D 16. A三. 解答题 17.(1)略;(2)33; 18.(1)1a =-,偶函数;1a =,奇函数;a R ∈且1a ≠±,非奇非偶函数; (2)[2,3];19.(1)18.9米;(2)6.9°;20.(1)2213y x -=;(2)3;(3)(1,0)-; 21.(1)1(,0)(,)2-∞+∞;(2)不存在;(3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;上海市浦东新区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知U R =,集合{|421}A x x x =-≥+,则U C A =2. 三阶行列式351236724---中元素5-的代数余子式的值为 3. 8(1)2x -的二项展开式中含2x 项的系数是4. 已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6. 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02xx m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是 边BC 、CD 上的两个动点,且2MN =,则AM AN ⋅的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13. 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+C. cos(2)3y x π=-D. cos(2)6y x π=-14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( ) A. 关于y 轴对称 B. 关于原点对称 C. 关于直线0x y +=对称 D. 关于直线0x y -=对称 15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则213a a a >D. 若10a <,则2123()()0a a a a --> 16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在长方体1111ABCD A BC D -中(如图),11AD AA ==,2AB =,点E 是棱AB 中点; (1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角 形的四面体成为鳖臑,试问四面体1DCDE 是 否为鳖臑?并说明理由;18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ; (1)若3B π=,7b =,△ABC 的面积332S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;。
如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2017年上海中学高考数学模拟试卷(4)一.选择题1.已知函数f(x)=a x+a﹣x,且f(1)=3,则f(0)+f(1)+f(2)的值是()A.14 B.13 C.12 D.112.设f(x)=x3+log2(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.如图,B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的没岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()A.(2﹣2)a万元B.5a万元C.(2+1)a万元D.(2+3)a万元4.设等比数列{a n}的前n项和为S n,则x=S2n+S22n,y=S n(S2n+S3n)的大小关系是()A.x≥y B.x=y C.x≤y D.不确定二.填空题5.已知y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b﹣a的最小值为.6.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[﹣1,3]内,关于x 的方程f(x)=kx+k+1(k≠﹣1)有四个根,则k取值范围是.7.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+fx,过P(2n,0)任作直线l交抛物线于A n,B n两点,则数列的前n项和公式是.12.在正三棱柱ABC﹣A1B1C1中,各棱长都相等,M是BB1的中点,则BC1与平面AC1M所成角的大小是.13.设抛物线y=ax2(a>0)与直线y=kx+b有两个公共点,其横坐标是x1,x2,而x3是直线与x轴交点的横坐标,则x1,x2,x3的关系是.14.满足|z﹣z0|+|z+2i|=4的复数z在复平面上对应的点Z的轨迹是线段,则复数z0在复平面上对应的点的轨迹是.15.在△ABC中,三个顶点的坐标分别是A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC内部运动,若点P满足,则S△PAC:S△ABC= .16.有一种“数独”推理游戏,游戏规则如下:①在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数字填满整个格子;②每一行与每一列都有1到9的数字,每个小九宫格里也有1到9的数字,并且一个数字在每行、每列及每个每个小九宫格里只能出现一次,既不能重复也不能少.那么A处应填入的数字为;B处应填入的数字为.49 A 3 5 72 63 54 2 8 6 91 76 9 3 5 42 8 9 B 51 2 8 7 64三.解答题17.已知函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),且当x∈时,f(x)取得最大值2﹣1.(1)求f(x)的解析式;(2)是否存在向量,使得将f(x)的图象按向量平移后可以得到一个奇函数的图象?若存在,求出最小的;若不存在,说明理由.18.在五棱锥P﹣ABCDE中,PA=AB=AE=2a,PB=PE=a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.G 为PE的中点.(1)求AG与平面PDE所成角的大小(2)求点C到平面PDE的距离.19.(1)如图,设点P,Q是线段AB的三等分点,若,,试用,表示,,并判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.20.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.21.在直角坐标平面上,O为原点,M为动点,.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).(1)求曲线C的方程;(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.22.已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2﹣16ac<﹣1;(2)若时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.2017年上海中学高考数学模拟试卷(4)参考答案与试题解析一.选择题1.已知函数f(x)=a x+a﹣x,且f(1)=3,则f(0)+f(1)+f(2)的值是()A.14 B.13 C.12 D.11【考点】45:有理数指数幂的运算性质.【分析】考查题设条件,首先可得出a+=3,又f(2)=a2+a﹣2=﹣2,及f(0)=1+1=2,故f(0)+f(1)+f(2)的值易得【解答】解:由题意,函数f(x)=a x+a﹣x,且f(1)=3,可得a+=3,又f(2)=a2+a﹣2=﹣2=7,f(0)=1+1=2所以f(0)+f(1)+f(2)=2+3+7=12故选C2.设f(x)=x3+log2(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断;3F:函数单调性的性质;3I:奇函数.【分析】由f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x),知f(x)是奇函数.所以f(x)在R上是增函数,a+b≥0可得af(a)+f(b)≥0成立;若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a+b≥0成立a+b>=0是f(a)+f(b)>=0的充要条件.【解答】解:f(x)=x3+log2(x+),f(x)的定义域为R∵f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x).∴f(x)是奇函数∵f(x)在(0,+∞)上是增函数∴f(x)在R上是增函数a+b≥0可得a≥﹣b∴f(a)≥f(﹣b)=﹣f(b)∴f(a)+f(b)≥0成立若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a≥﹣b∴a+b≥0成立∴a+b≥0是f(a)+f(b)≥0的充要条件.3.如图,B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的没岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()A.(2﹣2)a万元B.5a万元C.(2+1)a万元D.(2+3)a万元【考点】KD:双曲线的应用.【分析】依题意知曲线PQ是以A、B为焦点、实轴长为2的双曲线的一支,此双曲线的离心率为2,以直线AB为x轴、AB的中点为原点建立平面直角坐标系,则该双曲线的方程为,点C的坐标为(3,).求出修建这条公路的总费用W,根据双曲线的定义有,根据a+b当且仅当a=b时取等号的方法求出W的最小值即可.【解答】解:依题意知PMQ曲线是以A、B为焦点、实轴长为2的双曲线的一支(以B为焦点),此双曲线的离心率为2,以直线AB为轴、AB的中点为原点建立平面直角坐标系,则该双曲线的方程为 x2﹣=1,点C的坐标为(3,).则修建这条公路的总费用ω=a[|MB|+2|MC|]=2a[|MB|+|MC|],设点M、C在右准线上射影分别为点M1、C1,根据双曲线的定义有|MM1|=|MB|,所以=2a[|MM1|+|MC|]≥2a|C C1|=2a×(3﹣)=5a.当且仅当点M在线段C C1上时取等号,故ω的最小值是5a.故选B.4.设等比数列{a n}的前n项和为S n,则x=S2n+S22n,y=S n(S2n+S3n)的大小关系是()A.x≥y B.x=y C.x≤y D.不确定【考点】8K:数列与不等式的综合.【分析】考虑特殊数列1,﹣1,1,﹣1,1,﹣1…,分情况讨论,等比数列{a n}的前n项和为S n,x=S2n+S22n,y=S n(S2n+S3n),要比较x,y的大小,可先将x,y的表达式进行整理,根据等比数列的性质将两个数用相同的量表示出来,再比较它们的大小【解答】解:对于等比数列1,﹣1,1,﹣1,1,﹣1…,S2k=0,S4k﹣S2k=0,S6k﹣S4k=0…,令n=2k,此时有x=y=0,对于S n,S2n﹣S n,S3n ﹣S2n ,…各项不为零时则由于等比数列{a n}的前n项和为S n,∴S n,S2n﹣S n,S3n ﹣S2n ,是一个公比为q n的等比数列,∴S2n﹣S n=S n×q n,S3n ﹣S2n=S n×q2n∴S2n =S n ×(1+q n),S3n =S n ×(1+q n+q2n)∴x=S2n+S22n=S2n ×[1+(1+q n)2]=S2n ×(2+2q n+q2n)y=S n(S2n+S3n)=S n[S n ×(1+q n)+S n ×(1+q n+q2n)]=S2n ×(2+2q n+q2n)由上知,x=y故选B二.填空题5.已知y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b﹣a的最小值为.【考点】4K:对数函数的定义域;4L:对数函数的值域与最值.【分析】由y=|log2x|,知x=2y或x=2﹣y.由0≤y≤2,知1≤x≤4,或.由此能求出区间[a,b]的长度b﹣a的最小值.【解答】解:∵y=|log2x|,∴x=2y或x=2﹣y.∵0≤y≤2,∴1≤x≤4,或.即{a=1,b=4}或{a=,b=1}.于是[b﹣a]min=.故答案为:.6.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[﹣1,3]内,关于x 的方程f(x)=kx+k+1(k≠﹣1)有四个根,则k取值范围是(﹣,0).【考点】3L:函数奇偶性的性质.【分析】把方程f(x)=kx+k+1的根转化为函数f(x)的图象和y=kx+k+1的图象的交点在同一坐标系内画出图象由图可得结论.【解答】解:因为关于x的方程f(x)=kx+k+1(k∈R且k≠﹣1)有4个不同的根,就是函数f(x)的图象与y=kx+k+1的图象有4个不同的交点,f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,所以可以得到函数f(x)的图象,又因为y=kx+k+1=k(x+1)+1过定点(﹣1,1),在同一坐标系内画出它们的图象如图,由图得y=kx+k+1=k(x+1)+1在直线AB和y=1中间时符合要求,而K AB=﹣,所以k的取值范围是:﹣<k<0故答案为:.7.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+f的部分图象确定其解析式;GI:三角函数的化简求值.【分析】先将原函数用降幂公式转化为:f(x)=cos(2ωx+2ϕ)++1,求出函数的A,T,ω,通过f(x)的图象在y轴上的截距为2,求出φ,得到函数的表达式,然后求出所求的值.【解答】解:将原函数f(x)=Acos2(ωx+ϕ)+1转化为:f(x)=cos(2ωx+2ϕ)++1 相邻两对称轴间的距离为2可知周期为:4,则2ω==,ω=由最大值为3,可知A=2又∵图象经过点(0,2),∴cos2ϕ=0∴2φ=kπ+∴f(x)=cos(x+)+2=2﹣sin(x)∵f(1)=2+1,f(2)=0+2,f(3)=﹣1+2,f(4)=0+2…f(1)+f(2)+f(3)+…+f如图,在杨辉三角中,斜线l上方,从1开始箭头所示的数组成一个锯齿数列:1,3,3,4,6,5,10,…,记其前n项和为S n,则S19等于283 .【考点】8E:数列的求和.【分析】由图中锯齿形数列排列,发现规律:奇数项的第n项可以表示成正整数的前n项和的形式,偶数项构成以3为首项,公差是1的等差数列.由此再结合等差数列的通项与求和公式,即可得到S19的值.【解答】解:根据图中锯齿形数列的排列,发现a1=1,a3=3=1+2,a5=6=1+2+3,...,a19=1+2+3+ (10)而a2=3,a4=4,a6=5,…,a18=11,∴前19项的和S19=[1+(1+2)+(1+2+3)+…+(1+2+…+10)]+(3+4+5+…+11)=283.故选C故答案为:283.9.在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,若a、b、c成等差数列,sinB=且△ABC的面积为,求b.【考点】84:等差数列的通项公式;HR:余弦定理.【分析】由三角形面积公式和a、b、c成等差数列,联解得出a2+c2=4b2﹣.由角B为锐角可得cosB==,由余弦定理b2=a2+c2﹣2ac•cosB的式子,代入数据算出b2=4,从而得到b=2.【解答】解:∵由a、b、c成等差数列,得a+c=2b∴平方得a2+c2=4b2﹣2ac﹣﹣﹣﹣﹣﹣①…又∵S△ABC=且sinB=,∴S△ABC=ac•sinB=ac×=ac=故ac=﹣﹣﹣﹣﹣﹣﹣②…由①②联解,可得a2+c2=4b2﹣﹣﹣﹣﹣﹣﹣﹣③…又∵sinB=,且a、b、c成等差数列∴cosB===.…由余弦定理得:b2=a2+c2﹣2ac•cosB=a2+c2﹣2××=a2+c2﹣﹣﹣﹣﹣﹣﹣﹣④…由③④联解,可得b2=4,所以b=2.…10.若对终边不在坐标轴上的任意角x,不等式sinx+cosx≤m≤tan2x+cot2x恒成立,则实数m的取值范围是.【考点】HW:三角函数的最值.【分析】根据sinx+cosx=≤以及tan2x+cot2x≥2,不等式sinx+cosx≤m ≤tan2x+cot2x恒成立,从而求出实数m的取值范围.【解答】解:由于sinx+cosx=≤,tan2x+cot2x≥2 tanx•cotx=2,不等式sinx+cosx≤m≤tan2x+cot2x恒成立,故≤m≤2,故答案为:.11.对正整数n,设抛物线y2=2(2n+1)x,过P(2n,0)任作直线l交抛物线于A n,B n两点,则数列的前n项和公式是﹣n(n+1).【考点】8E:数列的求和;KH:直线与圆锥曲线的综合问题.【分析】设A n(x n1,y n1),B(x n2,y n2),直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n+1)ty﹣4n(2n+1)=0,求出的表达式,然后利用韦达定理代入得=﹣4n2﹣4n,故可得,据此可得数列的前n项和.【解答】解:设直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n+1)ty﹣4n(2n+1)=0,设A n(x n1,y n1),B(x n2,y n2),则,用韦达定理代入得,故,故数列的前n项和﹣n(n+1),故答案为﹣n(n+1).12.在正三棱柱ABC﹣A1B1C1中,各棱长都相等,M是BB1的中点,则BC1与平面AC1M所成角的大小是.【考点】MI:直线与平面所成的角.【分析】要求BC1与平面AC1M所成角,首先求利用等体积点B到平面AMC1的距离,进而利用正弦函数可求BC1与平面AC1M所成角【解答】解:由题意,设棱长为2a,则∵,∴=∵S△AMB=a2设点B到平面AMC1的距离为h,根据得∴设BC1与平面AC1M所成角为α,则∴故答案为13.设抛物线y=ax2(a>0)与直线y=kx+b有两个公共点,其横坐标是x1,x2,而x3是直线与x轴交点的横坐标,则x1,x2,x3的关系是x1x2=(x1+x2)x3.【考点】KG:直线与圆锥曲线的关系.【分析】将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系,求出两根积与两根和的表达式;然后将欲证等式的左边通分,转化为两根积与两根和的形式,将以上两表达式代入得到等式左边的值;再根据直线解析式求出与x的交点横坐标,结论得证.【解答】解:由题意,联立抛物线y=ax2(a>0)与直线y=kx+b得ax2﹣kx﹣b=0,∴,,∴,∴x1x2=x1x3+x2x3,即x1x2=(x1+x2)x3故答案为:x1x2=(x1+x2)x3.14.满足|z﹣z0|+|z+2i|=4的复数z在复平面上对应的点Z的轨迹是线段,则复数z0在复平面上对应的点的轨迹是以(0,﹣2)为圆心以 4 为半径的圆.【考点】A4:复数的代数表示法及其几何意义.【分析】根据关系式和点Z的轨迹是线段判断出,z0和﹣2i对应的点是对应线段上端点,再由(0,﹣2)是定点,线段是定长得出所求的轨迹是圆.【解答】解:∵|z﹣z0|+|z+2i|=4,且点Z的轨迹是线段,∴z0和﹣2i对应的点必然是Z的轨迹:线段上面2个端点,且线段的长为4,∴Z点轨迹:线段,它是通过一个端点(0,﹣2)的任意线段,并且长度为4,∴z0点轨迹其实是圆心为(0,﹣2),半径为4的圆,故答案为:以(0,﹣2)为圆心以 4 为半径的圆.15.在△ABC中,三个顶点的坐标分别是A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC内部运动,若点P满足,则S△PAC:S△ABC= 1:3 .【考点】98:向量的加法及其几何意义.【分析】延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC',根据可知P是△AB'C'的重心,然后设S△PAB'=S△PAC'=S△PB'C'=k,然后将三个三角形的面积用k表示,即可求出所求.【解答】解:如图:延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC'则,P是△AB'C'的重心,则S△PAB'=S△PAC'=S△PB'C'=kS1=S△PAB'=k,S3=S△PAC'=kS2=PB×PC×sin∠BPC=S△PB'C'=k故S1:S2:S3=:: =3:1:2∴S△PAC:S△ABC=1:3故答案为:1:316.有一种“数独”推理游戏,游戏规则如下:①在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数字填满整个格子;②每一行与每一列都有1到9的数字,每个小九宫格里也有1到9的数字,并且一个数字在每行、每列及每个每个小九宫格里只能出现一次,既不能重复也不能少.那么A处应填入的数字为 1 ;B处应填入的数字为1或3 .49 A 3 5 72 63 54 2 8 6 91 76 9 3 5 42 8 9 B 51 2 8 7 64【考点】F1:归纳推理;8B:数列的应用.【分析】本题是一个简单的合情推理问题,根据“数独”的游戏规则,①在9×9的九宫格子中,分成9个3×3的小九宫格,用1,2,3…,9这9个数字填满整个格子,且每个格子只能填一个数;②每一行与每一列以及每个小九宫格里分别都有1,2,3,…9的所有数字.由A所处的行、列及小九宫格中已填数据,不难得到答案.【解答】解:与A同行的数据有:9、3、5、7与A同列的数据有:4、2、6、8与A处在同一九宫格中的数据有:2、4、9所以A处应填入的数字为1,与B同行的数据有:2、8、9、5与B同列的数据有:5、7、4、6与B处在同一九宫格中的数据有:4、5、6、7B处应填入的数字为 1或3故答案为:1 1或3三.解答题17.已知函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),且当x∈时,f(x)取得最大值2﹣1.(1)求f(x)的解析式;(2)是否存在向量,使得将f(x)的图象按向量平移后可以得到一个奇函数的图象?若存在,求出最小的;若不存在,说明理由.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】(1)由题意求得m、n、a间的关系,再根据当x∈时,f(x)取得最大值2﹣1,求得a的值,可得函数的解析式.(2)利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的奇偶性,求得最小的.【解答】解:(1)∵函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),∴a+0+n=1,且a+m+0=1,求得m=n=1﹣a,故有f(x)=a+(1﹣a)sin2x+(1﹣a)cos2x=a+(1﹣a)sin(2x+).①若1﹣a>0,∵当x∈时,2x+∈[,],故当2x+=时,f(x)取得最大值为a+(1﹣a).又f(x)的最大值2﹣1,可得a+(1﹣a)=2﹣1,求得a=﹣1,∴f(x)=﹣1+2sin(2x+).②若1﹣a<0,∵当x∈时,2x+∈[,],故当2x+=或时,f(x)取得最大值为a+(1﹣a)•.又f(x)的最大值2﹣1,可得a+(1﹣a)•=2﹣1,求得a无解.③若1﹣a=0,f(x)=1,不满足条件.综上可得,a=﹣1,f(x)=﹣1+2sin(2x+).(2)把f(x)的图象向右平移个单位,可得y=﹣1+2sin(2x﹣+)=﹣1+2sin2x的图象;再把所的图象向上平移1个单位,可得奇函数y=2sin2x的图象,此时,平移的距离最小.故若将f(x)的图象按向量平移后可以得到一个奇函数的图象,则存在=(,1),且满足||最小.18.在五棱锥P﹣ABCDE中,PA=AB=AE=2a,PB=PE=a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.G 为PE的中点.(1)求AG与平面PDE所成角的大小(2)求点C到平面PDE的距离.【考点】MK:点、线、面间的距离计算;MI:直线与平面所成的角.【分析】(1)通过证明PA垂直平面ABCDE上的两条相交直线即可,在三角形PAB中运用勾股定理,可证明PA垂直于AB,在三角形PAE中,同样用勾股定理,可证明PA垂直AE,这样就可证明PA⊥平面ABCDE.通过证明AG垂直于平面PDE中的两条相交直线,在三角形中PA=AE=2a,可知AG垂直PE,再通过ED⊥平面PAE,利用线面垂直的性质,可得AG垂直于DE,则AG⊥平面PDE可证.(2)欲求点C到平面PDE的距离,只需过C点向平面PDE作垂线,但是垂足位置不容易找到,所以可以转化为其它点到平面的距离.证明CF∥DE,则点C到平面PDE的距离等于F 到平面PDE的距离,就可求F到平面PDE的距离.再由(3)中结论知FG⊥平面PDE,所以FG的长即F点到平面PDE的距离,放入△PAE中求出即可.【解答】解:(1)解:(1)证明∵PA=AB=2a,PB=2a,∴PA2+AB2=PB2,∴∠PAB=90°,即PA⊥AB.同理PA⊥AE.∵AB∩AE=A,∴PA⊥平面ABCDE.又∵∠AED=90°,∴AE⊥ED.∵PA⊥平面ABCDE,∴PA⊥ED.∴ED⊥平面PAE,所以DE⊥AG.∵PA=AE,G为PE中点,所以AG⊥PE,∴AG⊥平面PDE;∴AG与平面PDE所成角的大小为90°;(2)解:∵∠EAB=∠ABC=∠DEA=90°,BC=DE=a,AB=AE=2a,取AE中点F,连CF,∵AF∥=BC,∴四边形ABCF为平行四边形.∴CF∥AB,而AB∥DE,∴CF∥DE,而DE⊂平面PDE,CF⊄平面PDE,∴CF∥平面PDE.∴点C到平面PDE的距离等于F到平面PDE的距离.∵PA⊥平面ABCDE,∴PA⊥DE.又∵DE⊥AE,∴DE⊥平面PAE.∴平面PAE⊥平面PDE.∴过F作FG⊥PE于G,则 FG⊥平面PDE.∴FG的长即F点到平面PDE的距离.在△PAE中,PA=AE=2a,F为AE中点,FG⊥PE,∴FG=a.∴点C到平面PDE的距离为a.19.(1)如图,设点P,Q是线段AB的三等分点,若,,试用,表示,,并判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.【考点】96:平行向量与共线向量.【分析】(1)由三角形法则及向量共线的数乘表示,分别用向量、表示出,相加即得用向量、表示的表达式,进而判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,归纳得出猜想,再数学归纳法证明结论.【解答】解:(1)如图:点P、Q是线段AB的三等分点=,则,同理,所以即:,(2)设A1,A2.,…,A n﹣1是AB的n等分点,则;证:A1,A2,,A n﹣1是线段n≥2的等分点,先证明:(1≤k≤n﹣1,n、k∈N*).由,,因为和是相反向量,则,所以.记,相加得∴.20.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.【考点】8M:等差数列与等比数列的综合;84:等差数列的通项公式;88:等比数列的通项公式.【分析】(1)先求出等差数列的公差,再利用a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3,表示出a n=a1+(a2﹣a1)+(a3﹣a1)+…+(a n﹣a n﹣1)即可求出数列{a n}的通项公式;同样先求出等比数列的公比,再利用即可求{b n}的通项公式;(2)先求出f(k)=a k﹣b k的表达式,并找到其单调区间的分界点,求出其函数值的范围即可得出结论.【解答】解:(1)由已知a2﹣a1=﹣2,a3﹣a2=﹣1得公差d=﹣1﹣(﹣2)=1所以a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3故a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=6+(﹣2)+(﹣1)+0+…+(n﹣4)==由已知b1﹣2=4,b2﹣2=2所以公比所以.故(2)设f(k)=a k﹣b k==所以当k≥4时,f(k)是增函数.又,所以当k≥4时,而f(1)=f(2)=f(3)=0,所以不存在k,使.21.在直角坐标平面上,O为原点,M为动点,.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).(1)求曲线C的方程;(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.【考点】K4:椭圆的简单性质.【分析】(1)设点T的坐标为(x,y),点M的坐标为(x',y'),可知点M1的坐标,由可得点N的坐标和N1的坐标,进而表示出和,代入,求得x和x'的关系,y和y'的关系,再代入||中求得x和y的关系,即可得到曲线C的方程;(2)当直线l的斜率不存在时,直线l与椭圆C无交点;当直线的斜率存在时,设直线l 的方程为y=k(x﹣5),联立直线方程与椭圆方程,消去y化为关于x的一元二次方程,根据判别式大于0求得k的范围,设交点P(x1,y1),Q(x2,y2),PQ的中点为R(x0,y0),利用根与系数的关系得x1+x2,求得R的坐标,根据|BP|=|BQ|可得BR⊥l,再由k•k BR=﹣1,整理得20k2=20k2﹣4,此结论不成立,可判断不存在直线l,使得|BP|=|BQ|.【解答】解:(1)设点T的坐标为(x,y),点M的坐标为(x',y'),则M1的坐标为(0,y'),由=(x′,y′),得点N的坐标为(x′,y′),N1的坐标为(x′,0),∴=(x′,0),=(0,y′).由,得(x,y)=(x′,0)+(0,y′),∴,得x′=x,y′=.由||=,得(x′)2+(y′)2=5,∴,即.故所求曲线C的方程为;(2)点A(5,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆C无交点;当直线l斜率存在时,设斜率为k,直线l的方程为y=k(x﹣5).联立,得(5k2+4)x2﹣50k2x+125k2﹣20=0.依题意△=20(16﹣80k2)>0,得﹣<k<.当﹣<k<时,设交点P(x1,y1),Q(x2,y2),PQ的中点为R(x0,y0),则,.∴y0=k(x0﹣5)=k()=.由|BP|=|BQ|,得BR⊥l,则k•k BR=﹣1,∴,即20k2=20k2﹣4,此式显然不成立,∴不存在直线l,使得|BP|=|BQ|.22.已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2﹣16ac<﹣1;(2)若时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.【考点】3R:函数恒成立问题.【分析】(1)由于函数f(x)的图象与直线y=±x均无公共点,所以ax2+2bx+4c=±x无解,从而△<0,故可证;(2)把b与c的值代入f(x)中,配方得到顶点式,由a小于0,得到函数有最大值,表示出这个最大值,当最大值大于5时,求出此时a的范围,又最大值小于﹣,M(a)是方程ax2+8x+3=5的较小根,利用求根公式求出M(a)即可判断出M(a)小于;当最大值小于等于5时,求出此时a的范围,最大值大于﹣,M(a)是方程ax2+8x+3=﹣5的较大根,根据求根公式求出M(a)即可判断M(a)小于等于,又大于,即可得到M (a)的最大值;(3)求出f(x)的导函数,由a大于0,求出函数有最大值让其等于2,得到a与b的关系式,由﹣2≤f(0)=4a=4a+4b+4c﹣4(a+b)=f(2)﹣4≤2﹣4=﹣2,得c的值,又因为|f(x)|≤2,所以f(x)≥﹣2=f(0),即可得到x=0时,函数取得最小值,表示出对称轴让其等于0,即可求得b的值,进而求出a的值,把a,b和c的值代入即可确定出f(x)的解析式【解答】解:(1)证明:∵函数f(x)的图象与直线y=±x均无公共点,∴ax2+2bx+4c=±x无解∴△<0∴4b2﹣16ac<﹣1;(2)把b=4,c=代入得:f(x)=ax2+8x+3=a +3﹣,∵a<0,所以f(x)max=3﹣①当3﹣>5,即﹣8<a<0时,M(a)满足:﹣8<a<0且0<M(a)<﹣,所以M(a)是方程ax2+8x+3=5的较小根,则M(a)==<=;②当3﹣≤5即a≤﹣8时,此时M(a)≥﹣,所以M(a)是ax2+8x+3=﹣5的较大根,则M(a)==≤=,当且仅当a=﹣8时取等号,由于>,因此当且仅当a=﹣8时,M(a)取最大值;(3)求得f′(x)=2ax+2b,∵a>0,∴f(x)max=2a+2b=2,即a+b=1,则﹣2≤f(0)=4a=4a+4b+4c﹣4(a+b)=f(2)﹣4≤2﹣4=﹣2,∴4c=﹣2,解得c=﹣,又∵|f(x)|≤2,所以f(x)≥﹣2=f(0)∴f(x)在x=0处取得最小值,且0∈(﹣2,2),∴﹣=0,解得b=0,从而a=1,∴f(x)=x2﹣2.。
2017年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.抛物线y2=2x的准线方程是.3.若复数z满足(i为虚数单位),则z=.4.已知sin(α+)=,α∈(﹣,0),则tanα=.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x ∈R ,则“x >1”是“”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.关于直线l ,m 及平面α,β,下列命题中正确的是( )A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ∥α,则l ∥mC .若l ⊥α,m ∥α,则l ⊥mD .若l ∥α,m ⊥l ,则m ⊥α15.在直角坐标平面内,点A ,B 的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan ∠PBA=m (m 为非零常数)的点P 的轨迹方程是( )A .B .C .D .16.若函数y=f (x )在区间I 上是增函数,且函数在区间I 上是减函数,则称函数f (x )是区间I 上的“H 函数”.对于命题:①函数是(0,1)上的“H 函数”;②函数是(0,1)上的“H 函数”.下列判断正确的是( )A .①和②均为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①和②均为假命题 三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P ﹣ABC 中,底面ABC 是边长为6的正三角形,PA ⊥底面ABC ,且PB 与底面ABC 所成的角为.(1)求三棱锥P ﹣ABC 的体积;(2)若M 是BC 的中点,求异面直线PM 与AB 所成角的大小(结果用反三角函数值表示).18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.已知数列{a n},{b n}满足b n=a n﹣a n(n=1,2,3,…).+1(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要(n=1,2,3,…)”.条件是“数列{c n}为等差数列且b n≤b n+12017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2} .【考点】交集及其运算.【分析】化简集合A,根据交集的定义写出A∩Z即可.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣3.若复数z满足(i为虚数单位),则z=1+2i.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由,得z=1+2i.故答案为:1+2i.4.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【考点】圆的切线方程.【分析】由点到直线的距离求出半径,从而得到圆的方程.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【考点】二项式定理的应用.【分析】根据题意求得n=5,再在二项展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项的系数.【解答】解:∵二项式的展开式共有6项,故n=5,=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,则此展开式的通项公式为T r+1中含x4的项的系数=10,故答案为:10.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【考点】向量的模.【分析】利用≤+r即可得出.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=﹣7.【考点】反函数.【分析】根据反函数与原函数的关系,可知反函数的定义域是原函数的值域,即可求解.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为﹣12.【考点】数列的极限.【分析】由题意可得数列{a n}为公比为﹣的等比数列,运用数列极限的运算,解方程即可得到所求.【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【考点】排列、组合及简单计数问题.【分析】根据题意,甲、乙所选的课程中至多有1门相同,其包含两种情况:①甲乙所选的课程全不相同,②甲乙所选的课程有1门相同;分别计算每种情况下的选法数目,相加可得答案.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【考点】直线与椭圆的位置关系.【分析】由题意画出图形,求出的坐标,代入,结合隐含条件求得实数λ的值.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【考点】函数恒成立问题.【分析】依题意可知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,利用对勾函数的单调性质可求g(x2)min=g(1)=3;再对f(x)=2ax2+2x中的二次项系数a分a=0、a>0、a<0三类讨论,利用函数的单调性质可求得f(x)在区间[1,4]上的最大值,解f(x)max≤3即可求得实数a的取值范围.【解答】解:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾'函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】在A中,l与m平行或异面;在B中,l与m相交、平行或异面;在C 中,由线面垂直的性质定理得l⊥m;在D中,m与α相交、平行或m⊂α.【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.【考点】轨迹方程.【分析】设P(x,y),则由题意,(m≠0),化简可得结论.【解答】解:设P(x,y),则由题意,(m≠0),化简可得,故选C.16.若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题【考点】命题的真假判断与应用.【分析】对函数,G(x)=在(0,1)上的单调性进行判断,得命题①是真命题.对函数=,H(x)=在(0,1)上单调性进行判断,得命题②是假命题.【解答】解:对于命题①:令t=,函数=﹣t2+2t,∵t=在(0,1)上是增函数,函数y=﹣t2+2t在(0,1)上是增函数,∴在(0,1)上是增函数;G(x)=在(0,1)上是减函数,∴函数是(0,1)上的“H函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)在Rt△PAB中计算PA,再代入棱锥的体积公式计算;(2)取棱AC的中点N,连接MN,NP,分别求出△PMN的三边长,利用余弦定理计算cos∠PMN即可.【解答】解:(1)∵PA⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵PA⊥平面ABC,∴PA⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵PA⊥平面ABC,所以PA⊥AM,PA⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【考点】直线与双曲线的位置关系;双曲线的标准方程.【分析】(1)设出双曲线C方程,利用已知条件求出c,a,解得b,即可求出双曲线方程与渐近线的方程;(2)设直线l的方程为y=x+t,将其代入方程,通过△>0,求出t的范围,设A(x1,y1),B(x2,y2),利用韦达定理,通过x1x2+y1y2=0,求解t即可得到直线方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…所以b2=c2﹣a2=3,故双曲线C的方程为.…双曲线C的渐近线方程为.…(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【考点】函数模型的选择与应用.【分析】(1)设M是CD中点,连OM,推出∠COM=∠DOM=,MD=Rsinθ,利用△CEO≌△DFO,转化求解∠DFO=,在△DFO中,利用正弦定理+S ODF+S OCE=S△COD+2S ODF的解析式即可.,求解S=S△COD(2)利用S的解析式,通过三角函数的最值求解即可.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=Rsinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…所以S=S+S ODF+S OCE=S△COD+2S ODF=△COD=…(2)…=(其中)…当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【考点】抽象函数及其应用.【分析】(1)利用f(x)=3x+2,通过f(t+2)=f(t)+f(2)推出方程无解,说明f(x)=3x+2不属于集合M.(2)由属于集合M,推出有实解,即(a﹣6)x2+4ax+6(a﹣2)=0有实解,若a=6时,若a≠6时,利用判断式求解即可.(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔3×2x+4bx﹣4=0,令g (x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,当b<0时,判断函数是否有零点,证明对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b ⇔3×2x+4bx﹣4=0,…令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…21.已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【考点】数列与函数的综合;数列的应用;数列递推式.【分析】(1)判断{b n}是等差数列.然后化简a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)利用等差数列的性质求和即可.(2)利用a2n+3﹣a2n+1=22n+1﹣231﹣2n,判断a2n+3<a2n+1,求出n<7.5,a2n+3>a2n+1求出n>7.5,带带数列{a2n+1}中a17最小,即第8项最小..法二:化简,求出a2n+1=a1+b1+b2+b3+…+b2n=,利用基本不等式求出最小值得到数列{a2n+1}中的第8项最小.(3)若数列{a n}为等差数列,设其公差为d,说明数列{c n}为等差数列.由b n=a n+1﹣a n=d(n=1,2,3,…),推出b n≤b n+1,若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,转化推出b n+1=b n(n=1,2,3,…),说明数列{a n}为等差数列.得到结果.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…法二:由,…可知a2n+1=a1+b1+b2+b3+…+b2n==…(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n ≤b n+1(n=1,2,3,…)”.…2017年2月18日。
2017年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= .2.(4分)若排列数=6×5×4,则m= .3.(4分)不等式>1的解集为.4.(4分)已知球的体积为36π,则该球主视图的面积等于.5.(4分)已知复数z满足z+=0,则|z|= .6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|= .7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则= .11.(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于.12.(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧.用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和.若过P 的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为.二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为()A.B.C.D.14.(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A.等于B.等于0C.等于D.不存在15.(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0 16.(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1.P 为C1上的动点,Q为C2上的动点,w是的最大值.记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A.2个B.4个C.8个D.无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.2017年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= {3,4} .【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(4分)若排列数=6×5×4,则m= 3 .【考点】D4:排列及排列数公式.【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】利用排列数公式直接求解.【解答】解:∵排列数=6×5×4,∴由排列数公式得,∴m=3.故答案为:m=3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用.3.(4分)不等式>1的解集为(﹣∞,0).【考点】7E:其他不等式的解法.【专题】35:转化思想;4R:转化法;59:不等式的解法及应用.【分析】根据分式不等式的解法求出不等式的解集即可.【解答】解:由>1得:,故不等式的解集为:(﹣∞,0),故答案为:(﹣∞,0).【点评】本题考查了解分式不等式,考查转化思想,是一道基础题.4.(4分)已知球的体积为36π,则该球主视图的面积等于9π.【考点】L7:简单空间图形的三视图.【专题】31:数形结合;48:分析法;5U:球.【分析】由球的体积公式,可得半径R=3,再由主视图为圆,可得面积.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.【点评】本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题.5.(4分)已知复数z满足z+=0,则|z|= .【考点】A5:复数的运算.【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数.【分析】设z=a+bi(a,b∈R),代入z2=﹣3,由复数相等的条件列式求得a,b 的值得答案.【解答】解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:.∴.则|z|=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题.6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|= 11 .【考点】KC:双曲线的性质.【专题】11:计算题;34:方程思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】根据题意,由双曲线的方程可得a的值,结合双曲线的定义可得||PF1|﹣|PF2||=6,解可得|PF2|的值,即可得答案.【解答】解:根据题意,双曲线的方程为:﹣=1,其中a==3,则有||PF1|﹣|PF2||=6,又由|PF1|=5,解可得|PF2|=11或﹣1(舍)故|PF2|=11,故答案为:11.【点评】本题考查双曲线的几何性质,关键是掌握双曲线的定义.7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(﹣4,3,2).【考点】JH:空间中的点的坐标.【专题】11:计算题;31:数形结合;44:数形结合法;5H:空间向量及应用.【分析】由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).【点评】本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.【考点】4R:反函数.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】由奇函数的定义,当x>0时,﹣x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【解答】解:若g(x)=为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2=,可得f﹣1(x)=2的解为x=.故答案为:.【点评】本题考查函数的奇偶性和运用,考查互为反函数的自变量和函数值的关系,考查运算能力,属于基础题.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【考点】3A:函数的图象与图象的变换;CC:列举法计算基本事件数及事件发生的概率.【专题】11:计算题;33:函数思想;4O:定义法;5I:概率与统计.【分析】从四个函数中任选2个,基本事件总数n=,再利用列举法求出事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A:“所选2个函数的图象有且只有一个公共点”的概率.【解答】解:给出四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从四个函数中任选2个,基本事件总数n=,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A)==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=2 .【考点】8H:数列递推式.【专题】34:方程思想;4R:转化法;51:函数的性质及应用;54:等差数列与等比数列.【分析】a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n 项,可得==.于是b1=a1=1,=b4,=b9,=b16.即可得出.【解答】解:∵a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,∴==.∴b1=a1=1,=b4,=b9,=b16.∴b1b4b9b16=.∴=2.故答案为:2.【点评】本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题.11.(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于.【考点】GF:三角函数的恒等变换及化简求值.【专题】35:转化思想;4R:转化法.【分析】由题意,要使+=2,可得sinα1=﹣1,sin2α2=﹣1.求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.【点评】本题主要考察三角函数性质,有界限的范围的灵活应用,属于基本知识的考查.12.(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧.用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和.若过P 的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为P1、P3、P4.【考点】F4:进行简单的合情推理.【专题】35:转化思想;44:数形结合法;5M:推理和证明.【分析】根据任意四边形ABCD两组对边中点的连线交于一点,过此点作直线,使四边形的四个顶点不在该直线的同一侧,则该直线两侧的四边形的顶点到直线的距离之和相等;由此得出结论.【解答】解:建立平面直角坐标系,如图所示;则记为“▲”的四个点是A(0,3),B(1,0),C(7,1),D(4,4),线段AB,BC,CD,DA的中点分别为E,F,G,H,易知EFGH为平行四边形,如图所示;设四边形重心为M(x,y),则+++=,由此求得M(3,2),即为平行四边形EFGH的对角线交于点P2,则符合条件的直线l P一定经过点P2,且过点P2的直线有无数条;由过点P1和P2的直线有且仅有1条,过点P3和P2的直线有且仅有1条,过点P4和P2的直线有且仅有1条,所以符合条件的点是P1、P3、P4.故答案为:P1、P3、P4.【点评】本题考查了数学理解力与转化力的应用问题,也考查了对基本问题的阅读理解和应用转化能力.二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为()A.B.C.D.【考点】O1:二阶矩阵.【专题】11:计算题;38:对应思想;4O:定义法;5R:矩阵和变换.【分析】利用线性方程组的系数行列式的定义直接求解.【解答】解:关于x、y的二元一次方程组的系数行列式:D=.故选:C.【点评】本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用.14.(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A.等于B.等于0C.等于D.不存在【考点】6F:极限及其运算.【专题】38:对应思想;4O:定义法;55:点列、递归数列与数学归纳法.【分析】根据极限的定义,求出a n=的值.【解答】解:数列{a n}中,a n=(﹣)n,n∈N*,则a n==0.故选:B.【点评】本题考查了极限的定义与应用问题,是基础题.15.(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0【考点】29:充分条件、必要条件、充要条件.【专题】34:方程思想;54:等差数列与等比数列;5L:简易逻辑.【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1.P 为C1上的动点,Q为C2上的动点,w是的最大值.记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A.2个B.4个C.8个D.无穷个【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;57:三角函数的图像与性质;5D:圆锥曲线的定义、性质与方程.【分析】设出P(6cosα,2sinα),Q(cosβ,3sinβ),0≤αβ<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数.【解答】解:椭圆C1:=1和C2:x2+=1.P为C1上的动点,Q为C2上的动点,可设P(6cosα,2sinα),Q(cosβ,3sinβ),0≤αβ<2π,则=6cosαcosβ+6sinαsinβ=6cos(α﹣β),当α﹣β=2kπ,k∈Z时,w取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且=w}中的元素有无穷多对.另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=9nu,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确.故选:D.【点评】本题考查椭圆的参数方程的运用,以及向量数量积的坐标表示和余弦函数的值域,考查集合的几何意义,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=,由此能求出结果.(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M与平面ABC所成角的大小.【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.【点评】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.【考点】HT:三角形中的几何计算.【专题】35:转化思想;48:分析法;57:三角函数的图像与性质;58:解三角形.【分析】(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.【点评】本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【考点】5C:根据实际问题选择函数类型.【专题】38:对应思想;49:综合法;54:等差数列与等比数列.【分析】(1)计算出{a n}和{b n}的前4项和的差即可得出答案;(2)令a n≥b n得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论.【解答】解:(1)∵a n=,b n=n+5∴a1=5×14+15=20a2=5×24+15=95a3=5×34+15=420a4=﹣10×4+470=430b1=1+5=6b2=2+5=7b3=3+5=8b4=4+5=9∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935.(2)令a n≥b n,显然n≤3时恒成立,当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大.当n≥4,{a n}为公差为﹣10等差数列,而{b n}为等差为1的等差数列,∴到第42个月底,单车保有量为×39+535﹣×42=×39+535﹣×42=8782.S42=﹣4×16+8800=8736.∵8782>8736,∴第42个月底单车保有量超过了容纳量.【点评】本题考查了数列模型的应用,等差数列的求和公式,属于中档题.20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.【考点】KL:直线与椭圆的综合.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)设P(x,y)(x>0,y>0),联立,能求出P点坐标.(2)设M(x0,0),A(0,1),P(),由∠P=90°,求出x0=;由∠M=90°,求出x0=1或x0=;由∠A=90°,则M点在x轴负半轴,不合题意.由此能求出点M的横坐标.(3)设C(2cosα,sinα),推导出Q(4cosα,2sinα﹣1),设P(2cosβ,sinβ),M(x0,0)推导出x0=cosβ,从而4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣cosα,且sinα=(1﹣2sinα),由此能求出直线AQ.【解答】解:(1)设P(x,y)(x>0,y>0),∵椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,P在第一象限,且|OP|=,∴联立,解得P(,).(2)设M(x0,0),A(0,1),P(),若∠P=90°,则?,即(x0﹣,﹣)?(﹣,)=0,∴(﹣)x0+﹣=0,解得x0=.如图,若∠M=90°,则?=0,即(﹣x0,1)?(﹣x0,)=0,∴=0,解得x0=1或x0=,若∠A=90°,则M点在x轴负半轴,不合题意.∴点M的横坐标为,或1,或.(3)设C(2cosα,sinα),∵,A(0,1),∴Q(4cosα,2sinα﹣1),又设P(2cosβ,sinβ),M(x0,0),∵|MA|=|MP|,∴x02+1=(2cosβ﹣x0)2+(sinβ)2,整理得:x0=cosβ,∵=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1),=(﹣cosβ,﹣sinβ),,∴4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣cosα,且sinα=(1﹣2sinα),以上两式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα=,或sinα=﹣1(舍去),此时,直线AC的斜率k AC=﹣=(负值已舍去),如图.∴直线AQ为y=x+1.【点评】本题考查点的坐标的求法,考查直线方程的求法,考查椭圆、直线方程、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.【考点】3Q:函数的周期性.【专题】35:转化思想;49:综合法;51:函数的性质及应用.【分析】(1)直接由f(x1)﹣f(x2)≤0求得a的取值范围;(2)若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),证明对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),可得f(x0)=f(x0+nT k),n∈Z,再由…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明.【解答】(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0.故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k).又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1?g(x),则对任意x0∈R,h(x0+T g)=c1?g(x0+T g)=c1?g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h.若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2).又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾.综上,f(x)>0恒成立.由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]?[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=R.h(x0)=g(x0)?f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)?f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0.因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c.而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.综上,必要性得证.【点评】本题考查抽象函数及其应用,考查逻辑思维能力与理论运算能力考查分类讨论的数学思想方法,题目设置难度过大.。
2017年上海市静安区高考数学一模试卷一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每一个空格填对得5分,不然一概得零分.1.“x<0”是“x<a”的充分非必要条件,那么a的取值范围是.2.函数的最小正周期为.3.假设复数z为纯虚数,且知足(2﹣i)z=a+i(i为虚数单位),那么实数a的值为.4.二项式展开式中x的系数为.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.已知α为锐角,且,那么sinα=.7.依照有关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,通过x个小时,酒精含量降为p 毫克/100毫升,且知足关系式(r为常数).假设某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,那么这人饮酒后需通过小时方可驾车.(精准到小时)8.已知奇函数f(x)是概念在R上的增函数,数列{x n}是一个公差为2的等差数列,知足f(x7)+f(x8)=0,那么x2017的值为.9.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,那么的最大值为.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,假设对任意实数x均有f(x)•g(x)≤0,那么的最小值为.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必需把答题纸上相应题序内的正确结论代号涂黑,选对得5分,不然一概得零分.11.假设空间三条直线a、b、c知足a⊥b,b⊥c,那么直线a与c()A.必然平行B.必然相交C.必然是异面直线D.平行、相交、是异面直线都有可能12.在无穷等比数列{a n}中,,那么a1的取值范围是()A.B. C.(0,1) D.13.某班班会预备从含甲、乙的6名学生当选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.已知椭圆C1,抛物线C2核心均在x轴上,C1的中心和C2极点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,那么C1的左核心到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.215.已知y=g(x)与y=h(x)都是概念在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),假设y=g(x)﹣h(x)恰有4个零点,那么正实数k的取值范围是()A.B. C.D.三、解答题(此题总分值75分)本大题共有5题,解答以下各题必需在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F别离是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.17.设双曲线C:,F1,F2为其左右两个核心.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)假设动点P与双曲线C的两个核心F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.18.在某海边城市周围海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是不是开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时刻为多久?19.设集合M a={f(x)|存在正实数a,使得概念域内任意x都有f(x+a)>f(x)}.(1)假设f(x)=2x﹣x2,试判定f(x)是不是为M1中的元素,并说明理由;(2)假设,且g(x)∈M a,求a的取值范围;(3)假设(k∈R),且h(x)∈M2,求h(x)的最小值.20.由n(n≥2)个不同的数组成的数列a1,a2,…a n中,假设1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),那么称a i与a j组成一个逆序,一个有穷数列的全数逆序的总数称为该数列的逆序数.如关于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1,…a1的逆序数.2017年上海市静安区高考数学一模试卷参考答案与试题解析一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每一个空格填对得5分,不然一概得零分.1.“x<0”是“x<a”的充分非必要条件,那么a的取值范围是(0,+∞).【考点】必要条件、充分条件与充要条件的判定.【分析】依照充分必要条件的概念求出a的范围即可.【解答】解:假设“x<0”是“x<a”的充分非必要条件,那么a的取值范围是(0,+∞),故答案为:(0,+∞).2.函数的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得f(x)的最小正周期.【解答】解:函数=1﹣3•=1﹣•(1+sin2x)=﹣﹣sin2x 的最小正周期为=π,故答案为:π.3.假设复数z为纯虚数,且知足(2﹣i)z=a+i(i为虚数单位),那么实数a的值为.【考点】复数代数形式的乘除运算.【分析】由(2﹣i)z=a+i,得,然后利用复数代数形式的乘除运算化简复数z,由复数z 为纯虚数,列出方程组,求解即可得答案.【解答】解:由(2﹣i)z=a+i,得==,∵复数z为纯虚数,∴,解得a=.那么实数a的值为:.故答案为:.4.二项式展开式中x的系数为10.【考点】二项式定理.【分析】利用二项式展开式的通项公式即可求得答案.,【解答】解:设二项式展开式的通项为T r+1=x2(5﹣r)•x﹣r=•x10﹣3r,那么T r+1令10﹣3r=1得r=3,∴二项式展开式中x的系数为=10.故答案为:10.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【考点】棱柱、棱锥、棱台的体积.【分析】由已知求出圆锥的底面半径,进一步求得高,代入圆锥体积公式得答案.【解答】解:半径为1米的半圆的周长为=π,那么制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,那么2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.6.已知α为锐角,且,那么sinα=.【考点】两角和与差的余弦函数.【分析】由α为锐角求出α+的范围,利用同角三角函数间的大体关系求出sin(α+)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,那么sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:7.依照有关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,通过x个小时,酒精含量降为p毫克/100毫升,且知足关系式(r为常数).假设某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,那么这人饮酒后需通过8小时方可驾车.(精准到小时)【考点】函数模型的选择与应用.【分析】先求出e r=,再利用89•e xr<20,即可得出结论.【解答】解:由题意,61=89•e2r,∴e r=,∵89•e xr<20,∴x≥8,故答案为8.8.已知奇函数f(x)是概念在R上的增函数,数列{x n}是一个公差为2的等差数列,知足f(x7)+f(x8)=0,那么x2017的值为4019.【考点】数列与函数的综合.【分析】设设x7=x,那么x8=x+2,那么f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,f (x+1)=0=f(0),x7=﹣1.设数列{x n}通项x n=x7+2(n﹣7).取得通项x n=2n﹣15.由此能求出x2020的值.【解答】解:设x7=x,那么x8=x+2,∵f(x7)+f(x8)=0,∴f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,∴f(x+1)=0=f(0),即x+1=0.∴x=﹣1,设数列{x n}通项x n=x7+2(n﹣7)=2n﹣15∴x2017=2×2017﹣15=4019.故答案为:40199.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,那么的最大值为12.【考点】向量在几何中的应用.【分析】成立坐标系,设M (),那么=(),,【解答】解:如图成立平面直角坐标系,A(0,0),B(3,0),C(0.4),三角形ABC外接圆(x﹣)2+(y﹣2)2=,设M (),那么=(),,,故答案为:12.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,假设对任意实数x均有f(x)•g (x)≤0,那么的最小值为4.【考点】大体不等式.【分析】依照对任意实数x均有f(x)•g(x)≤0,求出a,b的关系,可求的最小值.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当x=y=时取等号.故的最小值为4.故答案为:4.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必需把答题纸上相应题序内的正确结论代号涂黑,选对得5分,不然一概得零分.11.假设空间三条直线a、b、c知足a⊥b,b⊥c,那么直线a与c()A.必然平行B.必然相交C.必然是异面直线D.平行、相交、是异面直线都有可能【考点】空间中直线与直线之间的位置关系.【分析】利用正方体的棱与棱的位置关系及异面直线所成的角的概念即可得出,假设直线a、b、c 知足a⊥b、b⊥c,那么a∥c,或a与c相交,或a与c异面.【解答】解:如下图:a⊥b,b⊥c,a与c能够相交,异面直线,也可能平行.从而假设直线a、b、c知足a⊥b、b⊥c,那么a∥c,或a与c相交,或a与c异面.应选D.12.在无穷等比数列{a n}中,,那么a1的取值范围是()A.B. C.(0,1) D.【考点】数列的极限.【分析】利用无穷等比数列和的极限,列出方程,推出a1的取值范围.【解答】解:在无穷等比数列{a n}中,,可知|q|<1,那么=,a1=∈(0,)∪(,1).应选:D.13.某班班会预备从含甲、乙的6名学生当选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【考点】排列、组合的实际应用.【分析】依照题意,分2种情形讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情形数量,由加法原理计算可得答案.【解答】解:依照题意,分2种情形讨论,假设只有甲乙其中一人参加,有C21•C43•A44=192种情形;假设甲乙两人都参加,有C22•C42•A44=144种情形,那么不同的发言顺序种数192+144=336种,应选:A.14.已知椭圆C1,抛物线C2核心均在x轴上,C1的中心和C2极点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,那么C1的左核心到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.2【考点】抛物线的简单性质;椭圆的简单性质.【分析】由表可知:抛物线C2核心在x轴的正半轴,设抛物线C2:y2=2px(p>0),那么有=2p (x≠0),将(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,即可求得抛物线方程,求得准线方程,设椭圆C1:(a>b>0),把点(﹣2,0),(,),即可求得椭圆方程,求得核心坐标,即可求得C1的左核心到C2的准线之间的距离.【解答】解:由表可知:抛物线C2核心在x轴的正半轴,设抛物线C2:y2=2px(p>0),那么有=2p (x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,∴抛物线C2的标准方程为y2=4x.那么核心坐标为(1,0),准线方程为:x=﹣1,设椭圆C1:(a>b>0),把点(﹣2,0),(,)代入得,,解得:,∴C1的标准方程为+y2=1;由c==,左核心(,0),C1的左核心到C2的准线之间的距离﹣1,应选B.15.已知y=g(x)与y=h(x)都是概念在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),假设y=g(x)﹣h(x)恰有4个零点,那么正实数k的取值范围是()A.B. C.D.【考点】根的存在性及根的个数判定.【分析】问题转化为g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,结合图象取得关于k的不等式组,解出即可.【解答】解:假设y=g(x)﹣h(x)恰有4个零点,即g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,如图示:,结合图象得:,解得:<k<log32,应选:C.三、解答题(此题总分值75分)本大题共有5题,解答以下各题必需在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F别离是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)连接A1C1,由E,F别离是棱AD,CD的中点,可得EF∥AC,进一步取得EF∥A1C1,可知∠A1C1B为异面直线BC1与EF所成角.然后求解直角三角形得答案;(2)直接利用等体积法把四面体CA1EF的体积转化为三棱锥A1﹣EFC的体积求解.【解答】解:(1)连接A1C1,∵E,F别离是棱AD,CD的中点,∴EF∥AC,那么EF∥A1C1,∴∠A1C1B为异面直线BC1与EF所成角.在△A1C1B中,由AB=a,AA1=2a,得,,∴cos∠A1C1B=,∴异面直线BC1与EF所成角的大小为;(2).17.设双曲线C:,F1,F2为其左右两个核心.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)假设动点P与双曲线C的两个核心F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【考点】直线与双曲线的位置关系.【分析】(1)设M(x,y),,左核心,通过利用二次函数的性质求出对称轴,求出的取值范围.(2)写出P点轨迹为椭圆,利用,|PF1|+|PF2|=2a,结合余弦定理,和大体不等式求解椭圆方程即可.【解答】解:(1)设M(x,y),,左核心,=…=()对称轴,…(2)由椭圆概念得:P点轨迹为椭圆,,|PF1|+|PF2|=2a=…由大体不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…18.在某海边城市周围海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是不是开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时刻为多久?【考点】圆方程的综合应用.【分析】(1)成立直角坐标系,…,那么城市A(0,0),当前台风中心,设t 小时后台风中心P的坐标为(x,y),由题意成立方程组,能求出10小时后,该台风尚未开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【解答】解:(1)如图成立直角坐标系,…那么城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),则,现在台风的半径为60+10t,10小时后,|PA|≈184.4km,台风的半径为r=160km,∵r<|PA|,…∴10小时后,该台风尚未开始侵袭城市A.…(2)由(1)知t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,假设城市A受到台风侵袭,则,∴300t2﹣10800t+86400≤0,即t2﹣36t+288≤0,…解得12≤t≤24…∴该城市受台风侵袭的持续时刻为12小时.…19.设集合M a={f(x)|存在正实数a,使得概念域内任意x都有f(x+a)>f(x)}.(1)假设f(x)=2x﹣x2,试判定f(x)是不是为M1中的元素,并说明理由;(2)假设,且g(x)∈M a,求a的取值范围;(3)假设(k∈R),且h(x)∈M2,求h(x)的最小值.【考点】函数与方程的综合运用.【分析】(1)利用f(1)=f(0)=1,判定f(x)∉M1.(2)f(x+a)﹣f(x)>0,化简,通过判别式小于0,求出a的范围即可.(3)由f(x+a)﹣f(x)>0,推出,取得对任意x∈[1,+∞)都成立,然后分离变量,通过当﹣1<k≤0时,当0<k<1时,别离求解最小值即可.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(2)由…∴,…故a>1.…(3)由,…即:∴对任意x∈[1,+∞)都成立∴…当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…当0<k<1时,h(x)min=h(1)=log3(1+k);…当1≤k<3时,.…综上:…20.由n(n≥2)个不同的数组成的数列a1,a2,…a n中,假设1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),那么称a i与a j组成一个逆序,一个有穷数列的全数逆序的总数称为该数列的逆序数.如关于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1,…a1的逆序数.【考点】数列的求和.【分析】(1)由{a n}为单调递减数列,可得逆序数为99+98+ (1)(2)当n为奇数时,a1>a3>…>a2n﹣1>0.当n为偶数时:0>a2>a4>…>a2n.可得逆序数.(3)在数列a1,a2,…a n中,假设a1与后面n﹣1个数组成p1个逆序对,那么有(n﹣1)﹣p1不组成逆序对,可得在数列a n,a n﹣1,…a1中,逆序数为(n﹣1)﹣p1+(n﹣2)﹣p2+…+(n﹣n)﹣p n.【解答】解:(1)∵{a n}为单调递减数列,∴逆序数为.(2)当n为奇数时,a1>a3>…>a2n﹣1>0.当n为偶数时:∴0>a2>a4>…>a2n.当k为奇数时,逆序数为;当k为偶数时,逆序数为.(3)在数列a1,a2,…a n中,假设a1与后面n﹣1个数组成p1个逆序对,那么有(n﹣1)﹣p1不组成逆序对,因此在数列a n,a n﹣1,…a1中,逆序数为.。
2017年上海市高考数学模拟试卷一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=.3.已知复数(i为虚数单位),则|z|=.4.函数,若存在锐角θ满足f(θ)=2,则θ=.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=.7.设k为常数,且,则用k表示sin2α的式子为sin2α=.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为.9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=.+112.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.19.某租车公司给出的财务报表如下:1014年(1﹣121015年(1﹣121016年(1﹣11月)月)月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.2017年上海市高考数学模拟试卷参考答案与试题解析一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=﹣2.【考点】二阶矩阵.【分析】利用二阶行列式对角线法则直接求解.【解答】解:=4×1﹣3×2=﹣2.故答案为:﹣2.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=16.【考点】反函数.【分析】先求出x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,由此能求出f﹣1(4).【解答】解:∵函数f(x)=y=的反函数是f﹣1(x),∴x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,∴f﹣1(4)=42=16.故答案为:16.3.已知复数(i为虚数单位),则|z|=2.【考点】复数代数形式的乘除运算.【分析】利用复数模的计算公式即可得出.【解答】解:复数(i为虚数单位),则|z|==2.故答案为:2、4.函数,若存在锐角θ满足f(θ)=2,则θ=.【考点】三角函数的化简求值.【分析】运用两角和的正弦公式和特殊角的正弦函数值,计算即可得到所求值.【解答】解:函数=2(sinx+cosx)=2sin(x+),由若存在锐角θ满足f(θ)=2,即有2sin(θ+)=2,解得θ=﹣=.故答案为:.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为R.【考点】球面距离及相关计算.【分析】两点A、B间的球面距离为,可得∠AOB=,即可求出两点A,B 间的距离.【解答】解:两点A、B间的球面距离为,∴∠AOB=.∴两点A,B间的距离为R,故答案为:R.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=8.【考点】二项式系数的性质.【分析】由题意可得:2n=256,解得n.【解答】解:由题意可得:2n=256,解得n=8.故答案为:8.7.设k为常数,且,则用k表示sin2α的式子为sin2α=2k2﹣1.【考点】二倍角的正弦.【分析】利用两角差的余弦函数公式化简已知等式,进而两边平方利用二倍角的正弦函数公式,同角三角函数基本关系式即可求解.【解答】解:∵,∴(cosα+sinα)=k,可得:cosα+sinα=k,∴两边平方可得:cos2α+sin2α+2cosαsinα=2k2,可得:1+sin2α=2k2,∴sin2α=2k2﹣1.故答案为:sin2α=2k2﹣1.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为[﹣2,1] .【考点】椭圆的简单性质.【分析】由题意可知:焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),可得y2=1﹣,=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,则x2∈[0,4],的取值范围为[﹣2,1].【解答】解:如下图所示,在直角坐标系中作出椭圆:由椭圆,a=2,b=1,c=,则焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),由,可得y2=1﹣;=(﹣﹣x,﹣y),﹣=(﹣x,﹣y);=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,由题意可知:x∈[﹣2,2],则x2∈[0,4],∴的取值范围为[﹣2,1].故答案为:[﹣2,1].9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.【考点】余弦定理;同角三角函数基本关系的运用.【分析】先利用正弦定理化简sinC=2sinB,得到c与b的关系式,代入中得到a2与b2的关系式,然后利用余弦定理表示出cosA,把表示出的关系式分别代入即可求出cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.【解答】解:由sinC=2sinB得:c=2b,所以=•2b2,即a2=7b2,则cosA===,又A∈(0,π),所以A=.故答案为:10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.【考点】对数函数的图象与性质.【分析】由题意,f(x)=lgx在(0,+∞)上单调递增,利用f(﹣a)﹣f(a)>0,可得﹣a>a>0,即可求出实数a的取值范围.【解答】解:由题意,f(x)=lgx在(0,+∞)上单调递增,∵f(1﹣a)﹣f(a)>0,∴1﹣a>a>0,∴a∈,故答案为11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=﹣.+1【考点】极限及其运算.【分析】由已知推导出S2n=(1﹣),S2n﹣1=1+,从而a2n=S2n =﹣[1+(1﹣)],由此能求出.﹣S2n﹣1【解答】解:∵数列{a n}满足:a1=1,,n∈N*,∴(a1+a2)+(a3+a4)+…+(a2n﹣1+a2n)===(1﹣)=(1﹣),∴S2n=(1﹣),a1+(a2+a3)+(a4+a5)+…+(a2n+a2n﹣1)﹣2=1+=1+=1+,=1+,∴S2n﹣1∴a2n=S2n﹣S2n﹣1=﹣[1+(1﹣)],∴=﹣[1+(1﹣)]==﹣.故答案为:.12.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为90.【考点】平面向量的基本定理及其意义.【分析】取AB的中点D,AC的中点E,则P为DE的中点,利用相似比,可得结论.【解答】解:取AB的中点D,AC的中点E,则P为DE的中点,∵△ABC的面积为360,∴△PAB的面积=△ADE的面积==90.故答案为90.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A【考点】元素与集合关系的判断.【分析】根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可得结论.【解答】解:根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可知B 正确.故选B.14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:A.当x=1,y=0时,满足|x|≥1时,但|x|+|y|=1>1不成立,不满足条件.B.当x=1,y=0时,满足|x+y|≥1时,但|x|+|y|=1>1不成立,不满足条件.C.当y≤﹣2时,|y|≥2,则|x|+|y|>1成立,即充分性成立,满足条件.D.当且,则|x|+|y|≥1,等取等号时,不等式不成立,即充分性不成立,不满足条件.故选:C.15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.【考点】曲线与方程.【分析】由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),即可得出结论.【解答】解:由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),故选C.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16【考点】集合的包含关系判断及应用.【分析】由题意M是集合{2,3,4,5}的非空子集,且2,4不同时出现,同时出现有4个,即可得出结论.【解答】解:由题意M是集合{2,3,4,5}的非空子集,有15个,且2,4不同时出现,同时出现有4个,故满足题意的M有11个,故选:A.三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积. 【分析】(1)设BD 的中点为O ,连结OA ,OC ,则OA ⊥平面BCD .由经能求出S 圆锥侧.(2)该几何体的体积V=(S △BCD +S 半圆)•AO ,由此能求出结果. 【解答】解:(1)设BD 的中点为O ,连结OA ,OC , ∵A 是圆锥的顶点,BD 是圆锥底面的直径, ∴OA ⊥平面BCD .∵BD=2,BC=1,AC 与底面所成角的大小为,过点A 作截面ABC ,ACD ,∴在Rt △AOC 中,OC=1,,AC=2,AO=,∴S 圆锥侧=πrl==2π.(2)该几何体为三棱锥与半个圆锥的组合体, ∵AO=,∠BCD=90°,∴CD=,该几何体的体积V=(S △BCD +S 半圆)•AO ==.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.【考点】双曲线的简单性质.【分析】(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),即可求双曲线Γ的方程;(2)设Γ与l的交点为P,求出P的坐标,利用夹角公式,即可求∠F1PF2的角平分线所在直线的方程.【解答】解:(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),∴双曲线方程为x2﹣y2=2;(2),显然∠F1PF2的角平分线所在直线斜率k存在,且k>0,,,于是.∴为所求.19.某租车公司给出的财务报表如下:1014年(1﹣12月)1015年(1﹣12月)1016年(1﹣11月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)【考点】函数模型的选择与应用.【分析】(1)根据空驶率的计算公式为,带入计算即可;(2)根据T2016的值,求出k的值,从而求出2016年前11个月的平均每单油费和平均每单里程.【解答】解:(1),,∴2014、2015年,该公司空驶率分别为41.14%和38.00%.(2),T2016=38%﹣20%=18%.由,∴2016年前11个月的平均每单油费为12.98元,平均每单里程为15.71km.20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?【考点】数列的求和;数列递推式.【分析】(1)由a4,a7,a8成等比数列,可得=a4•a8,可得(15+6d)2=(15+3d)(15+7d),化简解出即可得出..(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,对n分类讨论,利用等差数列的求和公式即可得出.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,利用指数运算性质、等差数列的求和公式及其二次函数的单调性即可得出.【解答】解:(1)∵a4,a7,a8成等比数列,∴=a4•a8,∴(15+6d)2=(15+3d)(15+7d),化为:d2+2d=0,∵d≠0,∴d=﹣2.(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,∴,∴.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,,∴当n=15或16时,T n最大.21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.【考点】抽象函数及其应用;函数奇偶性的性质.【分析】(1)根据“位差奇函数”的定义.考查h(x)=g(x+m)﹣g(m)=2x+m ﹣2m=2m(2x﹣1)即可,(2)依题意,是奇函数,求出φ;(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.假设h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需.【解答】解:(1)对于f(x)=2x+1,f(x+m)﹣f(m)=2(x+m)+1﹣(2m+1)=2x,∴对任意实数m,f(x+m)﹣f(m)是奇函数,即f(x)是位差值为任意实数m的“位差奇函数”;对于g(x)=2x,记h(x)=g(x+m)﹣g(m)=2x+m﹣2m=2m(2x﹣1),由h(x)+h(﹣x)=2m(2x﹣1)+2m(2﹣x﹣1)=0,当且仅当x=0等式成立,∴对任意实数m,g(x+m)﹣g(m)都不是奇函数,则g(x)不是“位差奇函数”;(2)依题意,是奇函数,∴(k∈Z).(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.依题意,h(x)对任意都不是奇函数,若h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需,且c∈R.2017年2月1日。
上海八校联考高三数学试卷2017.3一. 填空题1. 已知设集合2{|20170,}S x x x x R =+=∈,2{|20170,}T x x x x R =-=∈,则 S T =2. 不等式13x x+<的解为 3. 已知两平行直线1:210l x y +-=,2:260l x y +-=,则1l 与2l 的距离是 4. 若行列式5413879xx 中,元素4的代数余子式大于0,则x 满足的条件是5. 二项式(51)n x -的展开式的二项式系数和为W ,各项系数和为P ,且62128W P +=,则n 的值是6. 2,四个顶点在同一球面上,则该球的体积为7. 学校要求每位学生从6门选修课程中选修3门,甲、乙两位同学选的三门课程中恰有两 门是相同的概率为 (以数字作答)8. 已知1F 、2F 是双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点,过1F 的直线l 与 C 的左、右两支分别交于点A 、B ,若2ABF ∆为等边三角形,则双曲线的渐近线方程是9. 已知函数log (5)6()(4)462a x x f x a x x -≥⎧⎪=⎨--<⎪⎩,数列{}nb 满足()n b f n =(*n N ∈),且{}n b 是 单调递增数列,则实数a 的取值范围是10. 已知0a >,1a ≠,若函数()2|sin 2|2x f x a x π=+-,0x >,若函数()f x 至少有 五个零点,则实数a 的取值范围是11. 已知集合211{|,1}k M x x kt t kt k==+<<,若对大于1的正整数k ,所有集合k M 的 交集为12. 对于定义域和值域均为[0,1]的函数()f x ,定义1()()f x f x =,21()(())f x f f x =, …,1()(())n n f x f f x -=,1,2,3n =,…,满足()n f x x =的点称为f 的n 阶周期点, 设1202()12212x x f x x x ⎧<≤⎪⎪=⎨⎪-<≤⎪⎩,则f 的2阶周期点的个数是二. 选择题13. 条件甲:0a b >>,条件乙:11a b<,则甲是乙成立的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14. m 、n 是不重合的两直线,α、β是不重合的两平面,则下列命题正确的是( )A. 若m ∥α,n α⊂,则m ∥nB. 若m ∥α,m ∥β,则α∥βC. 若m α⊥,m β⊥,则α∥βD. 若n αβ=,m ∥n ,则m ∥α且m ∥β15. 下列命题:① 命题“若22am bm >,则a b >”的逆命题是真命题;② 若(4,3)a =,(2,1)b =-,则b 在a 上的投影是5-③ 在164(x x的二项展开式中,有理项共有4项; ④ 已知一组正数1x 、2x 、3x 、4x 的方差为2222212340.25(16)s x x x x =+++-,则数据 12x +、22x +、32x +、42x +的平均数为4;⑤ 复数32i i+的共轭复数是a bi +(,a b R ∈),则6ab =-, 其中真命题的个数为( )A. 0B. 1C. 2D. 316. 已知圆221x y +=与x 轴的两个交点为A 、B ,若圆内的动点P 使2PA 、2PO 、2PB 成等比数列(O 为坐标原点),则PA PB ⋅的取值范围为( )A. 1(0,]2B. 1[,0)2-C. 1(,0)2- D. [1,0)-三. 解答题17. 已知()lg(1)f x x =+;(1)若0(12)()1f x f x <--<,求x 的取值范围;(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([1,2]x ∈)的反函数;18. ABC ∆中,角A 、B 、C 对应边长分别为a 、b 、c ,且221(cos )2c a B b a b -=-; (1)求角A ;(2)求sin sin B C +的最大值;19. 如图所示,正方体1111ABCD A B C D -的棱长为1,点M 、N 分别是面对角线1A B 和 11B D 的中点;(1)求证:MN AB ⊥;(2)求三棱锥N MBC -的体积;20. 已知圆1C 的圆心在坐标原点O ,且恰好与直线1:220l x y --=相切;(1)求圆的标准方程;(2)设点A 为圆上一动点,AN x ⊥轴于N ,若动点Q 满足:(1)OQ mOA m ON =+-, (其中m 为非零常数),试求动点Q 的轨迹方程2C ;(3)在(2)的结论下,当3m =时,得到曲线C ,与1l 垂直的直线l 与曲线C 交于B 、 D 两点,求△OBD 面积的最大值;21. 设无穷数列{}n a 的前n 项和为n S ,且(3)23n n p S pa p -+=+*()n N ∈,p 为常数, 3p <-;(1)求证:{}n a 是等比数列,写出{}n a 的通项公式;(2)若数列{}n a 的公比()q f p =,无穷数列{}n b 满足:11b a =,13()2n n b f b -=(2)n ≥, 求证:1{}nb 是等差数列,并写出{}n b 的通项公式; (3)设11n n n c a a +=-,在(2)的条件下,有lim(lg )lg 27n n n b a →∞=,求数列{}n c 各项和;参考答案一. 填空题1. {0}2. {|0x x <或1}2x >3.5 4. 83x < 5.6 6. 3 7. 920 8. 6y x =± 9. 32(,8)5 10. (1,2) 11. 5[2,)2 12. 4二. 选择题13. A 14. C 15. B 16. B三. 解答题17.(1)2133x -<<;(2)1()310x f x -=-,[0,lg 2]x ∈; 18.(1)3π;(2)3(3]; 19.(1)略;(2)124; 20.(1)224x y +=;(2)2224y x m+=;(33 21.(1)12()3n n p a p -=+;(2)32n b n =+;(3)34-;。
2017年上海中学高考数学模拟试卷(3)一、填空题1.复数的虚部是.2.已知函数ƒ(2x)的定义域为[﹣1,1],则函数y=ƒ(log2x)的定义域为.3.自圆x2+y2=4上点A(2,0)引此圆的弦AB,则弦的中点的轨迹方程为.4.已知函数,则方程f2(x)﹣f(x)=0的实根共有.5.在的取值范围为.6.已知函数对定义域内的任意x的值都有﹣1≤f(x)≤4,则a的取值范围为.7.函数f(x)=a(x+2)2﹣1(a≠0)的图象的顶点A在直线mx+ny+1=0上,其中m•n>0,则的最小值为.8.一个四面体的各个面都是边长为的三角形,则这个四面体体积为.9.考察下列一组不等式:23+53>22•5+2•52,24+54>23•5+2•53,25+55>23•52+22•53,….将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是.10.关于x的方程2x2+3ax+a2﹣a=0至少有一个模为1的复数根,则实数a的所有可能值为.11.已知不等式对大于1的自然数n都成立,则实数a的取值范围为.12.在一个给定的正(2n+1)边形的顶点中随机地选取三个不同的顶点,任何一种选法的可能性是相等的,则正多边形的中心位于所选三个点构成的三角形内部的概率为.二、选择题13.已知,那么实数a的取值范围是()A.(﹣1,2)B.C.D.14.已知△ABC的三个顶点A、B、C及平面内一点P满足,则点P与△ABC 的关系为()A.P在△ABC内部B.P在△ABC外部C.P在AB边所在直线上D.P是AC边的一个三等分点15.若a>1,b>1,且lg(a+b)=lga+lgb,则lg(a﹣1)+lg(b﹣1)的值()A.等于1 B.等于lg2 C.等于0 D.不是常数16.对b>a>0,取第一象限的点A k(x k,y k)(k=1,2,…,n),使a,x1,x2,…,x n,b 成等差数列,且a,y1,y2,…,y n,b成等比数列,则点A1,A2,…,A n与射线L:y=x(x >0)的关系为()A.各点均在射线L的上方 B.各点均在射线L的上面C.各点均在射线L的下方 D.不能确定三、解答题17.已知函数与g(x)=cos2x+a(1+cosx)﹣cosx﹣3的图象在(0,π)内至少有一个公共点,求a的取值范围.18.在△ABC中,a、b、c分别是角A、B、C的对边,且=﹣.(1)求角B的大小;(2)若b=,a+c=4,求a的值.19.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求异面直线CD和PB所成角大小;(2)求直线CD和平面ABE所成角大小.20.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.21.现有流量均为300m3/s的两条河流A,B汇合于某处后,不断混合,它们的含沙量分别为2kg/m3和0.2kg/m3.假设从汇合处开始,沿岸设有若干个观测点,两股水流在流往相邻两个观测点的过程中,其混合效果相当于两股水流在1秒内交换100m3的水量,其交换过程为从A股流入B股100m3的水量,经混合后,又从B股流入A股100m3水并混合,问从第几个观测点开始,两股河水的含沙量之差小于0.01kg/m3.(不考虑泥沙沉淀).22.已知椭圆的中心在原点,焦点在x轴上,F1、F2分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且||=2.(1)求椭圆方程;(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于P、Q两点,若存在x轴上的点S,使得对符合条件的L恒有∠PST=∠QST成立,我们称S为T的一个配对点,当T为左焦点时,求T 的配对点的坐标;(3)在(2)条件下讨论当T在何处时,存在有配对点?2017年上海中学高考数学模拟试卷(3)参考答案与试题解析一、填空题1.复数的虚部是.【考点】A2:复数的基本概念.【分析】复数的分子与分母同乘分母的共轭复数,化简复数为a+bi的形式,即可求出复数的虚部.【解答】解:复数===﹣+i.复数的虚部为:;故答案为:.2.已知函数ƒ(2x)的定义域为[﹣1,1],则函数y=ƒ(log2x)的定义域为.【考点】33:函数的定义域及其求法.【分析】由函数ƒ(2x)的定义域为[﹣1,1],知.所以在函数y=ƒ(log2x)中,,由此能求出函数y=ƒ(log2x)的定义域.【解答】解:∵函数ƒ(2x)的定义域为[﹣1,1],∴﹣1≤x≤1,∴.∴在函数y=ƒ(log2x)中,,∴.故答案为:[].3.自圆x2+y2=4上点A(2,0)引此圆的弦AB,则弦的中点的轨迹方程为(x﹣1)2+y2=1,(x≠2).【考点】J3:轨迹方程.【分析】设出AB的中点坐标,利用中点坐标公式求出B的坐标,据B在圆上,将P坐标代入圆方程,求出中点的轨迹方程.【解答】解:设AB中点为M(x,y),由中点坐标公式可知,B点坐标为(2x﹣2,2y).∵B点在圆x2+y2=4上,∴(2x﹣2)2+(2y)2=4.故线段AB中点的轨迹方程为(x﹣1)2+y2=1.不包括A点,则弦的中点的轨迹方程为(x﹣1)2+y2=1,(x≠2)故答案为:(x﹣1)2+y2=1,(x≠2).4.已知函数,则方程f2(x)﹣f(x)=0的实根共有7个.【考点】54:根的存在性及根的个数判断.【分析】求解方程f2(x)﹣f(x)=0,可得f(x)=0或f(x)=1.画出函数的图象,数形结合得答案.【解答】解:由f2(x)﹣f(x)=0,得f(x)=0或f(x)=1.画出函数的图象如图,由图可知,f(x)=0可得x有3个不同实根;f(x)=1可得x有4个不同实根.∴方程f2(x)﹣f(x)=0的实根共有7个.故答案为:7个.5.在的取值范围为 (1,3) .【考点】HQ :正弦定理的应用.【分析】根据正弦定理可得到,结合∠C=3∠B 根据两角和的正弦公式和二倍角公式可得整理得到,再由∠B 的范围即可得到的取值范围.【解答】解:根据正弦定理,,得====4cos 2B ﹣1由∠C=3∠B ,4∠B <180°,故0°<∠B <45°,cosB ∈(,1)故4cos 2B ﹣1∈(1,3). 故答案为:(1,3) 6.已知函数对定义域内的任意x 的值都有﹣1≤f (x )≤4,则a 的取值范围为 [﹣4,4] .【考点】34:函数的值域.【分析】将已知条件转化为恒成立,恒成立,令两个二次不等式的判别式小于等于0即得到答案. 【解答】解:根据题意得:恒成立,所以恒成立所以解得﹣4≤a ≤4 故答案为[﹣4,4].7.函数f (x )=a (x+2)2﹣1(a ≠0)的图象的顶点A 在直线mx+ny+1=0上,其中m•n>0,则的最小值为8 .【考点】7G:基本不等式在最值问题中的应用.【分析】先根据二次函数求出顶点坐标,然后代入直线方程可得2m+n=1,然后中的1用2m+n代入,2用4m+2n代入化简,利用基本不等式可求出最小值.【解答】解:由题意可得顶点A(﹣2,﹣1),又点A在直线mx+ny+1=0上,∴2m+n=1,则+=+=4++≥4+2 =8,当且仅当时,等号成立,故答案为:8.8.一个四面体的各个面都是边长为的三角形,则这个四面体体积为 2 .【考点】LF:棱柱、棱锥、棱台的体积.【分析】考虑一个长方体ABCD﹣A1B1C1D1,其四个顶点就构成一个四面体AB1CD1恰好就是每个三角形边长为,利用长方体的体积减去4个角的体积即可.【解答】解:设长方体ABCD﹣A1B1C1D1三棱分别是a,b,c,于是列出方程 a2+b2=5,b2+c2=10,c2+a2=13 于是解出 a2=4,b2=1,c2=9,a=2,b=1,c=3,即对于三棱分别为1,2,3的长方体去掉4个角就得到题中要求的四面体.于是,所求四面体体积为:长方体体积﹣4个角上直四面体体积=1×2×3=2.故答案为:2.9.考察下列一组不等式:23+53>22•5+2•52,24+54>23•5+2•53,25+55>23•52+22•53,….将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是2n+5n>2n﹣k5k+2k5n﹣k,n≥3,1≤k≤n .【考点】F1:归纳推理.【分析】题目中的式子变形得22+1+52+1>22•51+21•52(1)23+1+53+1>23•51+21•53(2)观察会发现指数满足的条件,可类比得到2m+n+5m+n>2m5n+2n5m,使式子近一步推广得2n+5n>2n﹣k5k+2k5n ﹣k,n≥3,1≤k≤n【解答】解:22+1+52+1>22•51+21•52(1)23+1+53+1>23•51+21•53(2)观察(1)(2)(3)式指数会发现规律,则推广的不等式可以是:2n+5n>2n﹣k5k+2k5n﹣k,n≥3,1≤k≤n故答案为:2n+5n>2n﹣k5k+2k5n﹣k,n≥3,1≤k≤n.10.关于x的方程2x2+3ax+a2﹣a=0至少有一个模为1的复数根,则实数a的所有可能值为.【考点】7H:一元二次方程的根的分布与系数的关系.【分析】原方程的根是实根与虚根讨论:(1)对于方程 2x2+3ax+a2﹣a=0 若方程有实根,(2)若方程有共轭复数根,则可设两根为cosθ+isinθ、cosθ﹣isinθ,分别求出a的值,从而得到答案.【解答】解:(1)对于方程 2x2+3ax+a2﹣a=0 若方程有实根,则实根中有一个根为1或﹣1,△=9a2﹣8(a2﹣a)=a(a+8)≥0,得a≤﹣8或a≥0,将x=1代入方程,得2+3a+a2﹣a=0,即a2+2a+2=0,a无实根;将x=﹣1代入方程,得2﹣3a+a2﹣a=0,即a2﹣4a+2=0,得a=2±(2)若方程有共轭复数根,则可设两根为cosθ+isinθ、cosθ﹣isinθ,△=9a2﹣8(a2﹣a)=a(a+8)<0,得﹣8<a<0 由韦达定理,有 cosθ+isinθ+cosθ﹣isinθ=2cosθ=﹣a,得cosθ=﹣a,(cosθ+isinθ)(cosθ﹣isinθ)=cos2θ+sin2θ=1=(a2﹣a),即(a+1)(a﹣2)=0,⇒a=2或a=﹣1,a=﹣1时,cosθ=∈[﹣1,1];a=2不在﹣8<a<0的范围内,舍去.∴a=﹣1故答案为:a=2±或﹣111.已知不等式对大于1的自然数n都成立,则实数a的取值范围为.【考点】8I:数列与函数的综合.【分析】设S n=,(n≥2),由已知,只需小于Sn的最小值,利用作差法得出Sn随n的增大而增大,当n=2时Sn取得最小值,再解对数不等式即可.【解答】设S n=,(n≥2)则S n+1=Sn+1﹣Sn==>0,∴Sn随n的增大而增大.当n=2时,Sn取得最小值,S2=∴恒成立.移向化简整理得log a(a﹣1)<﹣1.①根据对数的真数为正得:a﹣1>0,a>1,①再根据对数函数单调性得a﹣1<,a2﹣a﹣1<0,②①②联立解得故答案为:12.在一个给定的正(2n+1)边形的顶点中随机地选取三个不同的顶点,任何一种选法的可能性是相等的,则正多边形的中心位于所选三个点构成的三角形内部的概率为.【考点】C7:等可能事件的概率.【分析】从(2n+1)边形的顶点中随机地选取三个不同的顶点中取3个的所有不同的取法有C2n+13,每种取法等可能出现,属于古典概率,正多边形的中心位于所选三个点构成的三角形内部,若第一个点取的就是点2n+1,对于第二个点分类考虑:第二个点取取的是点1,第二个点取的是点2…第二个点取的是m,第二个点取的是点n,再考虑第三个点的所有取法,利用古典概率的公式可求.【解答】解:不妨设以时钟12点方向的顶点为点2n+1,顺时针方向的下一个点为点1,则以时钟12点和6点连线为轴,左右两边各有n个点.多边形中心位于三角形内部的三角形个数a:假设第一个点取的就是点2n+1,则剩下的两点必然在轴线的一左一右.对于第二个点取的是点1,对于第二个点取的是点2,第三个点能取点n+1、点n+2,有2种…对于第二个点取的是点m,第三个点能取点n+1、点n+2…点n+m,有m种…对于第二个点取的是点n,第三个点能取点n+1,点n+2…点2n,有n种一共1+2+…n=(n+1)n种如果第二个点取的是点n+1到点2n,可视为上述情况中的第三个点.所以a=(n+1)n×(2n+1)=(2n+1)(n+1)n一共可构成三角形个数b=(2n+1)n(2n﹣1)∴P==故答案为:二、选择题13.已知,那么实数a的取值范围是()A.(﹣1,2)B.C.D.【考点】1C:集合关系中的参数取值问题.【分析】由题意,可先化简集合A,再由A∪B=A得B⊆A,由此对B的集合讨论求a,由于集合B可能为空集,可分两类探讨,当B是空集时,与B不是空集时,分别解出a的取值范围,选出正确选项【解答】解:由题意,,由A∪B=A得B⊆A又B={x|x2﹣2ax+a+2≤0}当B是空集时,符合题意,此时有△=4a2﹣4a﹣8<0解得﹣1<a<2当B不是空集时,有解得2≤a≤综上知,实数a的取值范围是故选D14.已知△ABC的三个顶点A、B、C及平面内一点P满足,则点P与△ABC 的关系为()A.P在△ABC内部B.P在△ABC外部C.P在AB边所在直线上D.P是AC边的一个三等分点【考点】9V:向量在几何中的应用.【分析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论.【解答】解:∵,∴,∴,∴P是AC边的一个三等分点.故选项为D15.若a>1,b>1,且lg(a+b)=lga+lgb,则lg(a﹣1)+lg(b﹣1)的值()A.等于1 B.等于lg2 C.等于0 D.不是常数【考点】4H:对数的运算性质.【分析】由lg(a+b)=lga+lgb,知lg(a+b)=lg(ab)=lga+lgb,所以a+b=ab,由此能求出lg(a﹣1)+lg(b﹣1)的值.【解答】解:∵lg(a+b)=lga+lgb,∴lg(a+b)=lg(ab)=lga+lgb,∴a+b=ab,∴lg(a﹣1)+lg(b﹣1)=lg[(a﹣1)×(b﹣1)]=lg(ab﹣a﹣b+1)=lg[ab﹣(a+b)+1]=lg(ab﹣ab+1)=lg1=0.故选C.16.对b>a>0,取第一象限的点A k(x k,y k)(k=1,2,…,n),使a,x1,x2,…,x n,b 成等差数列,且a,y1,y2,…,y n,b成等比数列,则点A1,A2,…,A n与射线L:y=x(x >0)的关系为()A.各点均在射线L的上方 B.各点均在射线L的上面C.各点均在射线L的下方 D.不能确定【考点】8M:等差数列与等比数列的综合.【分析】先由等差数列的通项公式,求出x k=,再由等比数列的通项公式,求出y k=a,最后作差即可证明各点均在射线L的下方【解答】解:依题意,设数列{x n}的公差为d,由b=a+(n+1)d,得d=∴x k=a+kd=a+设数列{y n}的公比为q,由b=aq n+1,得∴y k=aq k=a∵y k﹣x k=a﹣a﹣<0∴各点Ak均在射线L:y=x(x>0)的下方故选C三、解答题17.已知函数与g(x)=cos2x+a(1+cosx)﹣cosx﹣3的图象在(0,π)内至少有一个公共点,求a的取值范围.【考点】3R:函数恒成立问题.【分析】要使f(x)与g(x)的图象在(0,π)内至少有一个公共点可转化成f(x)=g(x)在(0,π)内至少有一个解,然后根据三角函数公式进行化简整理,将a分离出来,求出另一侧的取值范围即可求出所求.【解答】解:∵函数与g(x)=cos2x+a(1+cosx)﹣cosx﹣3的图象在(0,π)内至少有一个公共点,∴=cos2x+a(1+cosx)﹣cosx﹣3在(0,π)内至少有一个解即sin﹣sin=2sin [cos2x+a(1+cosx)﹣cosx﹣3]∴2cos sinx=2sin [cos2x+a(1+cosx)﹣cosx﹣3]2cos cos=cos2x+a(1+cosx)﹣cosx﹣3cos2x+cosx=cos2x+a(1+cosx)﹣cosx﹣3∴a=(1+cosx)+令1+cosx=t,t∈(0,2)∴a≥2∴a的取值范围是[2,+∞)18.在△ABC中,a、b、c分别是角A、B、C的对边,且=﹣.(1)求角B的大小;(2)若b=,a+c=4,求a的值.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)根据正弦定理化简已知的等式,再利用两角和的正弦函数公式及诱导公式化简后,由sinA不为0,即可得到cosB的值,根据B的范围,利用特殊角的三角函数值即可求出B的度数;(2)利用余弦定理得到b2=a2+c2﹣2accosB,配方后把b,a+c及cosB的值代入,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:(1)由正弦定理得===2R,得a=2RsinA,b=2RsinB,c=2RsinC,代入=﹣,即2sinAcosB+sinCcosB+cosCsinB=0,化简得:2sinAcosB+sin(B+C)=0,∵A+B+C=π,∴sin(B+C)=sinA,∴2sinAcosB+sinA=0,∵sinA≠0,∴cosB=﹣,又∵角B为三角形的内角,∴B=;(2)将b=,a+c=4,B=,代入余弦定理b2=a2+c2﹣2accosB,得13=a2+(4﹣a)2﹣2a(4﹣a)cos,∴a2﹣4a+3=0,∴a=1或a=3.19.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求异面直线CD和PB所成角大小;(2)求直线CD和平面ABE所成角大小.【考点】MI:直线与平面所成的角;LM:异面直线及其所成的角.【分析】分别以AB,AD,AP为x轴,y轴,z轴建立空间直角坐标系(1)设异面直线CD和PB所成角为α,用向量表示CD和PB,再利用公式可求.(2)先求平面ABE的法向量,再利用公式求解.【解答】解:由题意,分别以AB,AD,AP为x轴,y轴,z轴.设PA=a,则P(0,0,a),B(a,0,0),,(1)设异面直线CD和PB所成角为α∴∴异面直线CD和PB所成角为(2)设直线CD和平面ABE所成角为βPA=AB=BC,∠ABC=60°,故PA=AC,E是PC的中点,故AE⊥PC,PA⊥底面ABCD,∴CD⊥PA.又CD⊥AC,PA∩AC=A,故CD⊥面PAC,AE⊆面PAC,故CD⊥AE.从而AE⊥面PCD,故AE⊥PD.易知BA⊥PD,故PD⊥面ABE.∵,∴∴直线CD和平面ABE所成角为.20.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.【考点】3W:二次函数的性质.【分析】(1)设Φ(x)=2x2﹣ax﹣2,则当α<x<β时,Φ(x)<0,利用f′(x)的符号进行判定函数的单调性即可;(2)运用方程的根,求得f(α)•f(β)==﹣4<0,可知函数f(x)在[α,β]上最大值f(β)>0,最小值f(α)<0,而f(α)•f(β)=﹣4,则当f(β)=﹣f(α)=2时,f(β)﹣f(α)取最小值,从而得到结论.【解答】解:(1)证明:设Φ(x)=2x2﹣ax﹣2,则当α<x<β时,Φ(x)<0.f′(x)==﹣>0,∴函数f(x)在(α,β)上是增函数.(2)由关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),可得α=,β=,f(α)==,f(β)=,即有f(α)•f(β)==﹣4<0,函数f(x)在[α,β]上最大值f(β)>0,最小值f(α)<0,∴当且仅当f(β)=﹣f(α)=2时,f(β)﹣f(α)=|f(β)|+|f(α)|取最小值4,此时a=0,f(β)=2.当a=0时,f(x)在区间[α,β]上的最大值与最小值之差最小.21.现有流量均为300m3/s的两条河流A,B汇合于某处后,不断混合,它们的含沙量分别为2kg/m3和0.2kg/m3.假设从汇合处开始,沿岸设有若干个观测点,两股水流在流往相邻两个观测点的过程中,其混合效果相当于两股水流在1秒内交换100m3的水量,其交换过程为从A股流入B股100m3的水量,经混合后,又从B股流入A股100m3水并混合,问从第几个观测点开始,两股河水的含沙量之差小于0.01kg/m3.(不考虑泥沙沉淀).【考点】8B:数列的应用.【分析】我们设第n个观测点A股水流含沙量为a n,B股水流含沙量为b n.由已知我们易得{a n﹣b n}是以a1﹣b1为首项,为公比的等比数列.求出数列的通项公式后,构造不等式,解不不等式,即可得到结论.【解答】解:设第n个观测点A股水流含沙量为a n kg/m3,B股水流含沙量为b n.a n=即:a n﹣b n=(a n﹣1﹣b n﹣1)∴{a n﹣b n}是以a1﹣b1为首项,为公比的等比数列.a n﹣b n=1.8•解不等式1.8•<10﹣2得2n﹣1>180,又由n正整数,∴n≥9因此,从第9个观测点开始,两股水流含沙量之差小于0.01kg/m3.22.已知椭圆的中心在原点,焦点在x轴上,F1、F2分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且||=2.(1)求椭圆方程;(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于P、Q两点,若存在x轴上的点S,使得对符合条件的L恒有∠PST=∠QST成立,我们称S为T的一个配对点,当T为左焦点时,求T 的配对点的坐标;(3)在(2)条件下讨论当T在何处时,存在有配对点?【考点】KG:直线与圆锥曲线的关系.【分析】(1)设椭圆的顶点为P,由||=2=2c可得c=1,由PF1=PF2=2结合椭圆的定义可得2a,结合b2=a2﹣c2可求椭圆的方程(2)可设过T的直线方程为y=k(x+1),(k≠0),联立椭圆方程整理可得(3+4k2)x2+8k2x+4(k2﹣3)=0,设P(x1,y1),Q(x2,y2),S (a,0),由∠PST=∠QST 可得k PS=﹣K QS即,结合方程的根与系数的关系代入可求a(3)设T(x0,0),直线PQ的方程y=k(x﹣x0),S (a,0),使得对符合条件的L恒有∠PST=∠QST成立,则T必须在P,Q 之间即﹣2<x0<2同(2)的整理方法,联立直线与椭圆方程由∠PST=∠QST可得,2x1x2﹣(a+x0)(x1+x2)+2ax0=0,同(2)的方法一样代入可求【解答】解:(1)设椭圆的顶点为P,由||=2=2c可得c=1PF1=PF2=2可得2a=4∴a=2,b2=a2﹣c2=3椭圆的方程为:(2)∵T(﹣1,0),则过可设过T的直线方程为y=k(x+1),(k≠0),联立椭圆方程整理可得(3+4k2)x2+8k2x+4(k2﹣3)=0设P(x1,y1),Q(x2,y2),S (a,0),则,∵∠PST=∠QST∴k PS=﹣K QS∴∴整理可得2x1x2+(1﹣a)(x1+x2)﹣2a=0即∴a=﹣4(3)设T(x0,0),直线PQ的方程y=k(x﹣x0),S (a,0)使得对符合条件的L恒有∠PST=∠QST成立,则T必须在P,Q 之间即﹣2<x0<2同(2)的整理方法,联立直线与椭圆方程可得,,由∠PST=∠QST可得,2x1x2﹣(a+x0)(x1+x2)+2ax0=0同(2)的方法一样代入可求a=。
2017年上海中学高考数学模拟试卷(1)一、填空题1.定义在R上的奇函数f(x)以2为周期,则f(1)=.2.如果复数(b∈R)的实部和虚部互为相反数,则b等于.3.若(1+2x)n展开式中含x3项的系数等于含x项系数的8倍,则正整数n=.4.(文)若,则目标函数z=2x+y的最小值为.5.已知a<0,则关于x的不等式的解集为.6.点P是椭圆上一点,F1、F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限内时,P点的纵坐标为.7.数列{a n}满足:a n=,它的前n项和记为S n,则S n=.8.某市为加强城市圈的建设,计划对周边如图所示的A、B、C、D、E、F、G、H八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的概率为.9.若方程仅有一个实数根,则k的取值范围是.10.在△ABC中,已知|AB|=2,,则△ABC面积的最大值为.11.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠,使P,Q,R,S四点重合,则需要个这样的几何体,就可以拼成一个棱长为12的正方体.12.若函数y=a x(a>1)和它的反函数的图象与函数y=的图象分别交于点A、B,若|AB|=,则a约等于(精确到0.1).13.老师告诉学生小明说,“若O为△ABC所在平面上的任意一点,且有等式,则P点的轨迹必过△ABC的垂心”,小明进一步思考何时P点的轨迹会通过△ABC的外心,得到的条件等式应为=.(用O,A,B,C四个点所构成的向量和角A,B,C的三角函数以及λ表示)二.选择题14.若函数y=cos2x与函数y=sin(x+φ)在区间上的单调性相同,则φ的一个值是()A.B.C.D.15.△ABC中,A=,BC=3,则△ABC的周长为()A.4sin(B+)+3 B.4sin(B+)+3 C.6sin(B+)+3 D.6sin (B+)+316.若点M(a,)和N(b,)都在直线l:x+y=1上,则点P(c,),Q(,b)和l 的关系是()A.P和Q都在l上B.P和Q都不在l上C.P在l上,Q不在l上D.P不在l上,Q在l上17.数列{a n}满足:a1=,a2=,且a1a2+a2a3+…+a n a n+1=na1a n+1对任何的正整数n都成立,则的值为()A.5032 B.5044 C.5048 D.5050三.解答题18.已知函数的最小正周期为π,且当x=时,函数有最小值.(1)求f(x)的解析式;(2)作出f(x)在[0,π]范围内的大致图象.19.设虚数z满足|2z+15|=|+10|.(1)计算|z|的值;(2)是否存在实数a,使∈R?若存在,求出a的值;若不存在,说明理由.20.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.21.在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:如果该公司今年有5位职工,计划从明年起每年新招5名职工.(1)若今年算第一年,将第n年该公司付给职工工资总额y(万元)表示成年限n的函数;(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p的最小值.22.已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.(1)当b=2,m=﹣4时,f(x)≥g(x)恒成立,求实数c的取值范围;(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.23.若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,,问λ1+λ2是否为定值?说明理由.2017年上海中学高考数学模拟试卷(1)参考答案与试题解析一、填空题1.定义在R上的奇函数f(x)以2为周期,则f(1)=0.【考点】3Q:函数的周期性;3L:函数奇偶性的性质.【分析】根据f(x)是奇函数可得f(﹣x)=﹣f(x),又根据f(x)是以2为周期的周期函数得f(x+2)=f(x),取x=﹣1可求出f(1)的值.【解答】解:∵f(x)是以2为周期的周期函数,∴f(1)=f(﹣1),又函数f(x)是奇函数,∴﹣f(1)=f(﹣1)=f(1),∴f(1)=f(﹣1)=0故答案为:02.如果复数(b∈R)的实部和虚部互为相反数,则b等于0.【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成复数的代数标准形式,根据实部和虚部互为相反数,得到实部和虚部和为0,得到结果.【解答】解:∵===,∵实部和虚部互为相反数,∴,∴,∴b=0,故答案为:03.若(1+2x)n展开式中含x3项的系数等于含x项系数的8倍,则正整数n=5.【考点】DC:二项式定理的应用.=C n r(2x)r=2r C n r x r分别令r=3,r=1可得含x3,x项的系【分析】由题意可得T r+1数,从而可求=C n r(2x)r=2r C n r x r【解答】解:由题意可得二项展开式的通项,T r+1令r=3可得含x3项的系数为:8C n3,令r=1可得含x项的系数为2C n1∴8C n3=8×2C n1∴n=5故答案为:54.(文)若,则目标函数z=2x+y的最小值为4.【考点】7C:简单线性规划.【分析】先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+y,过可行域内的点A(1,2)时的最小值,从而得到z最小值即可.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,A(1,2),(4,2),C(1,5),则目标函数z=2x+y的最小值为4.故答案为:4.5.已知a<0,则关于x的不等式的解集为(2a,﹣a)∪(﹣a,﹣4a).【考点】R2:绝对值不等式.【分析】把不等式转化为0<|x+a|<﹣3a,利用绝对值不等式的几何意义,即可求出不等式的解集.【解答】解:因为a<0,则关于x的不等式,所以不等式0<|x+a|<﹣3a,根据绝对值不等式的几何意义:数轴上的点到﹣a的距离大于0并且小于﹣3a,可知不等式的解集为:(2a,﹣a)∪(﹣a,﹣4a).故答案为:(2a,﹣a)∪(﹣a,﹣4a).6.点P是椭圆上一点,F1、F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限内时,P点的纵坐标为.【考点】K4:椭圆的简单性质.【分析】由椭圆的定义可知|PF1|+|PF2|=10,根据椭圆方程求得焦距,利用内切圆的性质把三角形PF1F2分成三个三角形分别求出面积,再利用面积相等建立等式求得P点纵坐标.【解答】解:根据椭圆的定义可知|PF1|+|PF2|=10,|F1F2|=6,令内切圆圆心为O则=++=(|PF1|r+|PF2|r+|F1F2|r)=(|PF1|+|PF2|+|F1F2|)•1=8又∵=|F1F2|•y P=3y P.所以3y p=8,y p=.故答案为7.数列{a n}满足:a n=,它的前n项和记为S n,则S n=.【考点】8E:数列的求和;6F:极限及其运算.【分析】先分奇数与偶数分别求前n项和记为S n,再求它们的极限.【解答】解:当n=2k时,当n=2k+1时,∴S n=故答案为8.某市为加强城市圈的建设,计划对周边如图所示的A、B、C、D、E、F、G、H八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的概率为.【考点】C7:等可能事件的概率.【分析】把城市A被选中的情况和城市A未被选中的情况都找出来,即可得到城市A被选中的概率.【解答】解:从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的情况有:ACE、ACF、ACG、ACH、ADF、ADG、ADH、AEG、AEH、AFH,共10种.则城市A未被选中的情况有:BDF、BDG、BDH、BEG、BEH、BFH、CEG、CEH、CFH、DFH 共10种.故城市A被选中的概率为:=,故答案为:.9.若方程仅有一个实数根,则k的取值范围是(﹣∞,﹣1)∪(1,+∞)∪{0} .【考点】J9:直线与圆的位置关系.【分析】据题意设y1=,y2=﹣kx+2,画出函数y1=图象,结合图象,即可得到k的取值范围.【解答】解:根据题意设y1=,y2=﹣kx+2,当k=0时,方程只有一个解x=0,满足题意;当k≠0时,根据题意画出图象,如图所示:根据图象可知,当﹣k>1或﹣k<﹣1时,直线y=﹣kx+2与y=只有一个交点,即方程只有一个解,综上,满足题意k的取值范围为k=0或k>1或k<﹣1.故答案为:(﹣∞,﹣1)∪(1,+∞)∪{0}10.在△ABC中,已知|AB|=2,,则△ABC面积的最大值为.【考点】9S:数量积表示两个向量的夹角;93:向量的模;HP:正弦定理.【分析】由题意可得:|AC|=|BC|,设△ABC三边分别为2,a,a,三角形面积为S,根据海仑公式得:16S2=﹣a4+24a2﹣16=﹣(a2﹣12)2+128,再结合二次函数的性质求出答案即可.【解答】解:由题意可得:|AC|=|BC|,设△ABC三边分别为2,a,a,三角形面积为S,所以设p=所以根据海仑公式得:S==,所以16S2=﹣a4+24a2﹣16=﹣(a2﹣12)2+128,当a2=12时,即当a=2时,△ABC的面积有最大值,并且最大值为2.故答案为.11.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠,使P,Q,R,S四点重合,则需要24个这样的几何体,就可以拼成一个棱长为12的正方体.【考点】L3:棱锥的结构特征;L2:棱柱的结构特征.【分析】先把判断几何体的形状,把展开图沿虚线折叠,得到一个四棱锥,求出体积,再计算棱长为12的正方体的体积,让正方体的体积除以四棱锥的体积,结果是几,就需要几个四棱锥.【解答】解:把该几何体沿图中虚线将其折叠,使P,Q,R,S四点重合,所得几何体为下图中的四棱锥,且底面四边形ABCD为边长是6的正方形,侧棱PD⊥平面ABCD,PD=6=×6×6×6=72∴V四棱锥P﹣ABCD∵棱长为12的正方体体积为12×12×12=1728∵,∴需要24个这样的几何体,就可以拼成一个棱长为12的正方体.故答案为2412.若函数y=a x(a>1)和它的反函数的图象与函数y=的图象分别交于点A、B,若|AB|=,则a约等于8.4(精确到0.1).【考点】4R:反函数.【分析】根据题意画出图形,如图,设A(x,a x),函数y=a x(a>1)和它的反函数的图象与函数y=的图象关于直线x﹣y=0 对称,得出点A到直线y=x的距离为AB的一半,利用点到直线的距离公式及A(x,a x)在函数y=的图象上得到a=()≈8.4即可.【解答】解:根据题意画出图形,如图,设A(x,a x),∵函数y=a x(a>1)和它的反函数的图象与函数y=的图象关于直线x﹣y=0 对称,∴|AB|=,⇒点A到直线y=x的距离为,∴⇒a x﹣x=2,①又A(x,a x)在函数y=的图象上,⇒a x=,②由①②得:﹣x=2⇒x=,∴a﹣(﹣1)=2,⇒a=()≈8.4故答案为:8.4.13.老师告诉学生小明说,“若O为△ABC所在平面上的任意一点,且有等式,则P点的轨迹必过△ABC的垂心”,小明进一步思考何时P点的轨迹会通过△ABC的外心,得到的条件等式应为=.(用O,A,B,C四个点所构成的向量和角A,B,C的三角函数以及λ表示)【考点】F3:类比推理;LL:空间图形的公理.【分析】由题意可得:•=0,即与垂直,设D为BC的中点,则=,可得=,即可得到,进而得到点P在BC的垂直平分线上,即可得到答案.【解答】解:由题意可得:•=﹣||+||=0∴与垂直设D为BC的中点,则=,所以,所以=,因为与垂直所以,又∵点D为BC的中点,∴点P在BC的垂直平分线上,即P的轨迹会通过△ABC的外心.故答案为:.二.选择题14.若函数y=cos2x与函数y=sin(x+φ)在区间上的单调性相同,则φ的一个值是()A.B.C.D.【考点】H5:正弦函数的单调性;HA:余弦函数的单调性.【分析】可把A,B,C,D四个选项中的值分别代入题设中进行验证,只有D项的符合题意.【解答】解:y=cos2x在区间上是减函数,y=sin(x+)[0,]上单调增,在[,]上单调减,故排除A.y=sin(x+)在[0,]单调增,在[,]上单调减,故排除B.y=sin(x+)在[0,]单调增,在[,]上单调减,故排除C.在区间上也是减函数,故选D.15.△ABC中,A=,BC=3,则△ABC的周长为()A.4sin(B+)+3 B.4sin(B+)+3 C.6sin(B+)+3 D.6sin (B+)+3【考点】HP:正弦定理.【分析】根据正弦定理分别求得AC和AB,最后三边相加整理即可得到答案.【解答】解:根据正弦定理,∴AC==2sinB,AB==3cosB+sinB∴△ABC的周长为2sinB+3cosB+sinB+3=6sin(B+)+3故选D.16.若点M(a,)和N(b,)都在直线l:x+y=1上,则点P(c,),Q(,b)和l 的关系是()A.P和Q都在l上B.P和Q都不在l上C.P在l上,Q不在l上D.P不在l上,Q在l上【考点】IH:直线的一般式方程与直线的性质.【分析】先根据点M、N在直线上,则点坐标适合直线方程,通过消元法可求得a与c的关系,从而可判定点P(c,),Q(,b)和l 的关系,选出正确选项.【解答】解:∵点M(a,)和N(b,)都在直线l:x+y=1上∴a+=1,b+=1则b=即+=1化简得c+=1∴点P(c,)在直线l上而b+=1则Q(,b)在直线l上故选A.17.数列{a n }满足:a 1=,a 2=,且a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1对任何的正整数n 都成立,则的值为( ) A .5032B .5044C .5048D .5050【考点】8H :数列递推式;8E :数列的求和.【分析】a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1,①;a 1a 2+a 2a 3+…+a n a n +1+a n +1a n +2=(n +1)a 1a n +2,②;①﹣②,得﹣a n +1a n +2=na 1a n +1﹣(n +1)a 1a n +2,,同理,得=4,整理,得,是等差数列.由此能求出.【解答】解:a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1,① a 1a 2+a 2a 3+…+a n a n +1+a n +1a n +2=(n +1)a 1a n +2,② ①﹣②,得﹣a n +1a n +2=na 1a n +1﹣(n +1)a 1a n +2,∴, 同理,得=4,∴=,整理,得,∴是等差数列.∵a 1=,a 2=,∴等差数列的首项是,公差,.∴==5044.故选B .三.解答题18.已知函数的最小正周期为π,且当x=时,函数有最小值.(1)求f(x)的解析式;(2)作出f(x)在[0,π]范围内的大致图象.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(1)利用三角函数的恒等变换化简函数f(x)=1﹣sin,再由它的周期等于π求出ω=1,故f(x)=1﹣sin.(2)由x∈[0,π],可得2x+∈[,],列表作图即得所求.【解答】解:(1)∵=+1﹣=1﹣sin.由于它的最小正周期为π,故=π,∴ω=1.故f(x)═1﹣sin.(2)∵x∈[0,π],∴2x+∈[,].列表如下:如图:19.设虚数z满足|2z+15|=|+10|.(1)计算|z|的值;(2)是否存在实数a,使∈R?若存在,求出a的值;若不存在,说明理由.【考点】A8:复数求模.【分析】(1)设z=a+bi(a,b∈R且b≠0)则代入条件|2z+15|=|+10|然后根据复数的运算法则和模的概念将上式化简可得即求出了|z|的值(2)对于此种题型可假设存在实数a使∈R根据复数的运算法则设(z=c+bi(c,b∈R且b≠0))可得=+()∈R即=0再结合b≠0和(1)的结论即可求解.【解答】解:(1)设z=a+bi(a,b∈R且b≠0)则∵|2z+15|=|+10|∴|(2a+15)+2bi|=|(a+10)﹣bi|∴=∴a2+b2=75∴∴|z|=(2)设z=c+bi(c,b∈R且b≠0)假设存在实数a使∈R则有=+()∈R∴=0∵b≠0∴a=由(1)知=5∴a=±520.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.【考点】MI:直线与平面所成的角;LF:棱柱、棱锥、棱台的体积.【分析】(1)判断知,B1C与C1A垂直,可在平面BA1内,过B1作B1D⊥AB于D,证明B1C⊥平面ABC1,再由线面垂直的定义得出线线垂直;(2)由图形知,,变换棱锥的底与高后,求出它的体积即可;【解答】解:(1)B1C⊥C1A证明如下:在平面BA1内,过B1作B1D⊥AB于D,∵侧面BA1⊥平面ABC,∴B1D⊥平面ABC,∠B1BA是BB1与平面ABC所成的角,∴∠B1BA=π﹣=,连接BC1,∵BB1CC1是菱形,∴BC1⊥B1C,CD⊥平面A1B,B1D⊥AB,∴B 1C ⊥AB , ∴B 1C ⊥平面ABC 1, ∴B 1C ⊥C 1A .(2)解:由题意及图,答:四棱锥B ﹣ACC 1A 1的体积为221.在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:如果该公司今年有5位职工,计划从明年起每年新招5名职工.(1)若今年算第一年,将第n 年该公司付给职工工资总额y (万元)表示成年限n 的函数;(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p 的最小值. 【考点】8B :数列的应用.【分析】(1)y=10n(1+10%)n +0.2n 2+1.8n ,n ∈N * (2)由0.2n 2+1.8n ≤10n ⋅1.1n ⋅p%,得p%≥,令a n =,由此能求出p 的最小值.【解答】解:(1)y=10n (1+10%)n +0.2n 2+1.8n ,n ∈N * (2)由0.2n 2+1.8n ≤10n ⋅1.1n ⋅p%, 得p%≥, 令a n =,由,得1≤n≤2,∴p%≥a1=a2=,∴p≥.22.已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.(1)当b=2,m=﹣4时,f(x)≥g(x)恒成立,求实数c的取值范围;(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.【考点】3R:函数恒成立问题.【分析】(1)将b=2,m=﹣4代入函数解析式,根据f(x)≥g(x)恒成立将c 分离出来,研究不等式另一侧函数的最大值即可求出c的取值范围;(2)将c=﹣3,m=﹣2代入函数解析式得(|x|﹣b)2=x+1有四个不同的解,然后转化成(x﹣b)2=x+1(x≥0)有两个不同解以及(x+b)2=x+1(x<0)也有两个不同解,最后根据根的分布建立关系式,求出b的取值范围.【解答】解:(1)∵当b=2,m=﹣4时,f(x)≥g(x)恒成立,∴c≥x﹣4﹣(|x|﹣2)2=,由二次函数的性质得c≥﹣.(2)(|x|﹣b)2﹣3=x﹣2,即(|x|﹣b)2=x+1有四个不同的解,∴(x﹣b)2=x+1(x≥0)有两个不同解以及(x+b)2=x+1(x<0)也有两个不同解,由根的分布得b≥1且1<b<,∴1<b<.23.若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,,问λ1+λ2是否为定值?说明理由.【考点】KG:直线与圆锥曲线的关系.【分析】(1),由根的差别式能得到l与椭圆C相切.(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C 的外部.是真命题.联立方程得(aby02+a2x02)x2﹣2ax0x+1﹣by02=0.由△=4a2x02﹣4a(by02+ax02)(1﹣by02)>0,能求出N(x0,y0)在椭圆C的外部.(3)此时l与椭圆相离,设M(x1,y1),A(x,y)则代入椭圆C:ax2+by2=1,利用M在l上,得(ax02+by02﹣1)λ12+ax12+by12﹣1=0.由此能求出λ1+λ2=0.【解答】解:(1)即ax2﹣2ax0x+ax02=0∴△=4a2x02﹣4a2x02=0∴l与椭圆C相切.(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C 的外部.是真命题.联立方程得(aby02+a2x02)x2﹣2ax0x+1﹣by02=0则△=4a2x02﹣4a(by02+ax02)(1﹣by02)>0∴ax02﹣by02+b2y04﹣ax02+abx02y02>0∴by02+ax02>1∴N(x0,y0)在椭圆C的外部.(3)同理可得此时l与椭圆相离,设M(x1,y1),A(x,y)则代入椭圆C:ax2+by2=1,利用M在l上,即ax0x1+by0y1=1,整理得(ax02+by02﹣1)λ12+ax12+by12﹣1=0同理得关于λ2的方程,类似.即λ1、λ2是(ax02+by02﹣1)λ2+ax12+by12﹣1=0的两根∴λ1+λ2=0.2017年7月7日。
2017年上海市八校联考高考数学模拟试卷一、填空(本大题共54分,1-6每题4分,7-12每题5分)1.关于x ,y 的二元一次方程的增广矩阵为.若D x =5,则实数m= .2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石.3.已知复数z 1=1+i ,|z 2|=3,z 1z 2是正实数,则复数z 2= .4.在的二项式展开式中,x 3的系数是,则实数a= .5.在Rt △ABC 中,A=90°,AB=1,AC=2,D 是斜边BC 上一点,且BD=2DC ,则•(+)= .6.已知集合A={x|},集合B={x|(x ﹣a )(x ﹣b )<0},若“a=﹣3”是“A∩B ≠∅”的充分条件,则实数b 的取值范围是 .7.已知M 是球O 半径OP 的中点,过M 做垂直于OP 的平面,截球面得圆O 1,则以圆O 1为大圆的球与球O 的体积比是 .8.从集合{,,2,3}中任取一个数记做a ,从集合{﹣2,﹣1,1,2}中任取一个数记做b ,则函数y=a x +b 的图象经过第三象限的概率是 .9.已知m >0,n >0,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切,则m+n 的取值范围是 .10.如图,在地上有同样大小的5块积木,一堆2个,一堆3个,要把积木一块一块的全部放到某个盒子里,每次只能取出其中一堆最上面的一块,则不同的取法有 种(用数字作答).11.定义H n =为数列{a n }的均值,已知数列{b n }的均值,记数列{b n ﹣kn}的前n 项和是S n ,若S n ≤S 3对于任意的正整数n 恒成立,则实数k 的取值范围是 .12.已知函数f (x )=|x ﹣a|+m|x+a|(0<m <1,m ,a ∈R ),若对于任意的实数x 不等式f (x )≥2恒成立时,实数a 的取值范围是{a|a ≤﹣5或a ≥5},则所有满足条件的m 的组成的集合是 .二、选择题(本大题满分20分,每题5分)13.已知两点O (0,0),Q (a ,b ),点P 1是线段OQ 的中点,点P 2是线段QP 1的中点,P 3是线段P 1P 2的中点,┅,P n +2是线段P n P n +1的中点,则点P n 的极限位置应是( )A .(,)B .()C .() D .()14.已知函数f (x )=sin (ωx ﹣)+(ω>0),且f (a )=﹣,f (β)=,若|α﹣β|的最小值为,则函数的单调递增区间为( )A .[﹣+2kπ,π+2kπ],k ∈Z B .[﹣+3kπ,π+3kπ],k ∈ZC .[π+2kπ, +2kπ],k ∈ZD .[π+3kπ,+3kπ],k ∈Z15.已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,下列命题中正确的是( )A .若α⊥β,β⊥γ,则α∥γB .若m ⊊α,n ⊊β,m ∥n ,则α∥βC .若m ,n 是异面直线,m ⊊α,m ∥β,n ⊊β,n ∥α,则α∥βD .平面α内有不共线的三点到平面β的距离相等,则α∥β16.若点P 是△ABC 的外心,且++λ=,∠C=120°,则实数λ的值为( )A .B .﹣C .﹣1D .1三、解答题(本大题满分76分)17.如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=,四边形ABCD是正方形.(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由.(2)求四面体EABC的体积.18.一栋高楼上安放了一块高约10米的LED广告屏,一测量爱好者在与高楼底部同一水平线上的C处测得广告屏顶端A处的仰角为31.80°.再向大楼前进20米到D处,测得广告屏顶端A处的仰角为37.38°(人的高度忽略不计).(1)求大楼的高度(从地面到广告屏顶端)(精确到1米);(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长椅的高度忽略不计),长椅需安置在距大楼底部E处多远?已知视角∠AMB(M为观测者的位置,B为广告屏底部)越大,观看得越清晰.19.已知双曲线C经过点(2,3),它的渐近线方程为y=±x,椭圆C1与双曲线C有相同的焦点,椭圆C1的短轴长与双曲线C的实轴长相等.(1)求双曲线C和椭圆C1的方程;(2)经过椭圆C1左焦点F的直线l与椭圆C1交于A、B两点,是否存在定点D,使得无论AB怎样运动,都有∠ADF=∠BDF;若存在,求出D点坐标;若不存在,请说明理由.20.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是定义在R上的偶函数和奇函数.(1)求函数h(x)的反函数;(2)已知φ(x)=g(x﹣1),若函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),求实数a的取值范围;(3)若对于任意x∈(0,2]不等式g(2x)﹣ah(x)≥0恒成立,求实数a的取值范围.21.若存在常数k(k∈N*,k≥2)、d、t(d,t∈R),使得无穷数列{a n}满足=,则称数列{a n}为“段差比数列”,其中常数k、d、t分别叫做a n+1段长、段差、段比,设数列{b n}为“段差比数列”.(1)已知{b n}的首项、段长、段差、段比分别为1、2、d、t,若{b n}是等比数列,求d、t的值;(2)已知{b n}的首项、段长、段差、段比分别为1、3、3、1,其前3n项和为S3n,若不等式对n∈N*恒成立,求实数λ的取值范围;(3)是否存在首项为b,段差为d(d≠0)的“段差比数列”{b n},对任意正整数n都有b n=b n.若存在,写出所有满足条件的{b n}的段长k和段比t组成的有序+6数组(k,t);若不存在,说明理由.2017年上海市八校联考高考数学模拟试卷(3月份)参考答案与试题解析一、填空(本大题共54分,1-6每题4分,7-12每题5分)1.关于x,y的二元一次方程的增广矩阵为.若D x=5,则实数m=﹣2.【考点】矩阵变换的性质.【分析】由题意,D x==5,即可求出m的值.【解答】解:由题意,D x==5,∴m=﹣2,故答案为﹣2.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为168石.【考点】简单随机抽样.【分析】根据254粒内夹谷28粒,可得比例,即可得出结论.【解答】解:由题意,这批米内夹谷约为1524×≈168石,故答案为:168.3.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2=z2=.【考点】复数代数形式的乘除运算.【分析】设复数z2=a+bi(a,b∈R),求出z1z2,再根据已知条件列出方程组,求解即可得答案.【解答】解:设复数z2=a+bi(a,b∈R),z1z2=,∵|z2|=3,z1z2是正实数,∴,解得:.则复数z2=.故答案为:z2=.4.在的二项式展开式中,x3的系数是,则实数a=4.【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式即可得出.=【解答】解:在的二项式展开式中,通项公式T r+1=,令﹣9=3,解得r=8.∴=,解得a=4.故答案为:4.5.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜边BC上一点,且BD=2DC,则•(+)=3.【考点】平面向量数量积的运算.【分析】由题意画出图形,把转化为含有的式子求解.【解答】解:如图,∵BD=2DC,∴=.∴•(+)===.故答案为:3.6.已知集合A={x|},集合B={x|(x﹣a)(x﹣b)<0},若“a=﹣3”是“A∩B≠∅”的充分条件,则实数b的取值范围是b>﹣1.【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出关于A、B的不等式,通过A∩B≠∅”,求出b的范围即可.【解答】解:A={x|}={x|x>﹣1},B={x|(x﹣a)(x﹣b)<0}=(﹣3,b)或(b,﹣3),由“A∩B≠∅”,得b>﹣1,故答案为:b>﹣1.7.已知M是球O半径OP的中点,过M做垂直于OP的平面,截球面得圆O1,则以圆O1为大圆的球与球O的体积比是.【考点】球的体积和表面积.【分析】由题意,设出圆M的半径,球的半径,二者与OM构成直角三角形,求出半径关系,然后可求以圆O1为大圆的球与球O的体积比.【解答】解:由题意,设出圆M的半径r,球的半径R,由勾股定理得R2=r2+()2,r=R.∴以圆O1为大圆的球与球O的体积比是.故答案为:.8.从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,则函数y=a x+b的图象经过第三象限的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件(a,b)的个数n=4×4=16,再利用列举法求出函数y=a x+b 的图象经过第三象限的情况,由此能求出函数y=a x+b的图象经过第三象限的概率.【解答】解:从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,基本事件(a,b)的个数n=4×4=16,∵函数y=a x+b的图象经过第三象限有:①当a=3、b=﹣1时,②当a=3、b=﹣2时,③当a=4、b=﹣1时,④当a=4、b=﹣2时,⑤当a=,b=﹣2 时,⑥当a=,b=﹣2 时,共6种情况,∴函数y=a x+b的图象经过第三象限的概率是p=.故答案为:.9.已知m>0,n>0,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是[2+2,+∞).【考点】直线与圆的位置关系.【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤()2,设m+n=x(x>0),则有x+1≤,即x2﹣4x﹣4≥0,解得:x≥2+2,则m+n的取值范围为[2+2,+∞).故答案为[2+2,+∞).10.如图,在地上有同样大小的5块积木,一堆2个,一堆3个,要把积木一块一块的全部放到某个盒子里,每次只能取出其中一堆最上面的一块,则不同的取法有10种(用数字作答).【考点】排列、组合的实际应用.【分析】根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,分析可得必须先取1或4,据此分2种情况讨论,分别列举2种情况下的取法数目,由分类计数原理计算可得答案.【解答】解:根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,分2种情况讨论:若先取1,有12345、12453、12435、14235、14253、14523,共6种取法;若先取4,有45123、41523、41253、41235,共4种取法;则一共有6+4=10中不同的取法;故答案为:10.11.定义H n=为数列{a n}的均值,已知数列{b n}的均值,记数列{b n﹣kn}的前n项和是S n,若S n≤S3对于任意的正整数n恒成立,则实数k的取值范围是[,] .【考点】数列的求和.【分析】由题意,b1+2b2+…+2n﹣1b n=n•2n+1,b1+2b2+…+2n﹣2b n﹣1=(n﹣1)•2n,从而求出b n=2(n+1),可得数列{b n﹣kn}为等差数列,从而将S n≤S5对任意的n(n ∈N*)恒成立化为b5≥0,b6≤0;从而求解.【解答】解:由题意,H n==2n+1,则b1+2b2+…+2n﹣1b n=n•2n+1,=(n﹣1)•2n,b1+2b2+…+2n﹣2b n﹣1则2n﹣1b n=n•2n+1﹣(n﹣1)•2n=(n+1)•2n,则b n=2(n+1),对b1也成立,故b n=2(n+1),则b n﹣kn=(2﹣k)n+2,则数列{b n﹣kn}为等差数列,故S n≤S5对任意的n(n∈N*)恒成立可化为:b5≥0,b6≤0;即,解得,≤k≤,故答案为:[,].12.已知函数f(x)=|x﹣a|+m|x+a|(0<m<1,m,a∈R),若对于任意的实数x不等式f(x)≥2恒成立时,实数a的取值范围是{a|a≤﹣5或a≥5},则所有满足条件的m的组成的集合是{} .【考点】绝对值三角不等式.【分析】根据绝对值的性质得到2m|a|≥2,解出a,得到关于m的方程,解出即可.【解答】解:f(x)=|x﹣a|+m|x+a|=m(|x﹣a|+|x+a|)+(1﹣m)|x﹣a|≥2m|a|+(1﹣m)|x﹣a|≥2m|a|≥2,解得:a≤﹣或a≥,∵数a的取值范围是{a|a≤﹣5或a≥5},故=5,解得:m=,∴实数m的集合是{}.故答案为{}.二、选择题(本大题满分20分,每题5分)13.已知两点O(0,0),Q(a,b),点P1是线段OQ的中点,点P2是线段QP1的中点,P3是线段P1P2的中点,┅,P n+2是线段P n P n+1的中点,则点P n的极限位置应是()A.(,)B.()C.() D.()【考点】中点坐标公式;极限及其运算.【分析】由中点坐标公式求得部分中点的坐标,再寻求规律,求极限得之.【解答】解:∵点P n的位置应是(∴点P n的极限位置应是().故答案选C.14.已知函数f(x)=sin(ωx﹣)+(ω>0),且f(a)=﹣,f(β)=,若|α﹣β|的最小值为,则函数的单调递增区间为()A.[﹣+2kπ,π+2kπ],k∈Z B.[﹣+3kπ,π+3kπ],k∈ZC.[π+2kπ, +2kπ],k∈Z D.[π+3kπ, +3kπ],k∈Z【考点】正弦函数的图象.【分析】根据f(a)=﹣,f(β)=求出α、β的值,再根据|α﹣β|的最小值求出ω的值,写出f(x)的解析式,从而求出f(x)的单调增区间.【解答】解:函数f(x)=sin(ωx﹣)+(ω>0),且f(a)=﹣,f(β)=,∴f(α)=sin(ωα﹣)+=﹣,可得ωα﹣=2k1π﹣,k1∈Z,解得:α=,k1∈Z;f(β)=sin(ωβ﹣)+=,可得ωβ﹣=k2π,k2∈Z,解得:β=,k2∈Z;∵|α﹣β|的最小值为,∴|α﹣β|=||=|2k1﹣k2﹣|≥,k1∈Z,k2∈Z,可解得:ω≤|2k1﹣k2﹣|,k1∈Z,k2∈Z,取k1=1.k2=2,可得ω=;∴f(x)=sin(x﹣)+,由2kπ﹣≤x﹣≤2kπ+,k∈Z,解得3kπ﹣≤x≤3kπ+π,k∈Z;∴函数f(x)的单调递增区间为:[3kπ﹣,3kπ+π],k∈Z.故选:B.15.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,下列命题中正确的是()A.若α⊥β,β⊥γ,则α∥γB.若m⊊α,n⊊β,m∥n,则α∥βC.若m,n是异面直线,m⊊α,m∥β,n⊊β,n∥α,则α∥βD.平面α内有不共线的三点到平面β的距离相等,则α∥β【考点】空间中直线与平面之间的位置关系.【分析】在A中,α与γ相交或平行;在B中,α与β相交或平行;在C中,由面面平行的判定定理得α∥β;在D中,α与β相交或平行.【解答】解:由m、n是两条不同的直线,α、β、γ是三个不同的平面,知:在A中,若α⊥β,β⊥γ,则α与γ相交或平行,故A错误;在B中,若m⊊α,n⊊β,m∥n,则α与β相交或平行,故B错误;在C中,若m,n是异面直线,m⊊α,m∥β,n⊊β,n∥α,则由面面平行的判定定理得α∥β,故C正确;在D中,平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故D错误.故选:C.16.若点P是△ABC的外心,且++λ=,∠C=120°,则实数λ的值为()A.B.﹣ C.﹣1 D.1【考点】向量的线性运算性质及几何意义.【分析】如图所示,利用点P是△ABC的外心,∠C=120°,可得||=||=||=R,∠APB=120°.由于++λ=,可得+=﹣λ.两边做数量积可得(+)2=λ22,展开相比较即可得出λ.【解答】解:如图所示,∵++λ=,∴+=﹣λ.,∴(+)2=λ22,展开为2+2+2||||cos∠APB=λ2||2.∵点P是△ABC的外心,∠C=120°,∴||=||=||=R,∠APB=120°.∴2R2﹣R2=λ2R2,化为λ2=1.∵++λ=,∴λ=﹣1.故选:C.三、解答题(本大题满分76分)17.如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=,四边形ABCD是正方形.(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由.(2)求四面体EABC的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(1)推导出AE⊥EC,AE⊥EB,AE⊥BC,从而BC⊥AB,再上BC⊥面ABE,知BC⊥BE,从而得到四面体EABC是鳖臑.(2)AE是三棱锥A﹣BCE的高,求出正方形ABCD的边长,由此能求出四面体EABC的体积.【解答】解:(1)∵AE⊥底面BCFE,EC,EB,BC都在底面BCFE上,∴AE⊥EC,AE⊥EB,AE⊥BC,∵四边形ABCD是正方形有,∴BC⊥AB,∴BC⊥面ABE,又BE⊂面ABE,∴BC⊥BE,∴四面体EABC是鳖臑.(2)由(1)得AE是三棱锥A﹣BCE的高,设正方形ABCD的边长为x,则AB=BC=x,BE==,EC=,在Rt△BEC中,EC2=BE2+BC2,即()2=x2+x2﹣1,解得x=2,∴,∴四面体EABC的体积=.18.一栋高楼上安放了一块高约10米的LED广告屏,一测量爱好者在与高楼底部同一水平线上的C处测得广告屏顶端A处的仰角为31.80°.再向大楼前进20米到D处,测得广告屏顶端A处的仰角为37.38°(人的高度忽略不计).(1)求大楼的高度(从地面到广告屏顶端)(精确到1米);(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长椅的高度忽略不计),长椅需安置在距大楼底部E处多远?已知视角∠AMB(M为观测者的位置,B为广告屏底部)越大,观看得越清晰.【考点】解三角形的实际应用.【分析】(1)由正弦定理可得AD=≈101.2,即可求大楼的高度;(2)tanα=tan(∠AME﹣∠BME)==≤,即可得出结论.【解答】解:(1)由题意,∠ACD=31.80°,∠ADE=37.78°,∠CAD=5.98°,CD=20,由正弦定理可得AD=≈101.2,∴AE=ADsin∠ADE≈62m;(2)设∠AMB=α,,EM=x,x>0,tan∠AME=,tan∠AME=,tanα=tan(∠AME﹣∠BME)==≤当且仅当x=≈57m时,tanα取得最大值,此时α也最大.19.已知双曲线C经过点(2,3),它的渐近线方程为y=±x,椭圆C1与双曲线C有相同的焦点,椭圆C1的短轴长与双曲线C的实轴长相等.(1)求双曲线C和椭圆C1的方程;(2)经过椭圆C1左焦点F的直线l与椭圆C1交于A、B两点,是否存在定点D,使得无论AB怎样运动,都有∠ADF=∠BDF;若存在,求出D点坐标;若不存在,请说明理由.【考点】椭圆的简单性质;双曲线的简单性质.【分析】(1)双曲线C和椭圆C1的方程为:3x2﹣y2=λ,则λ=3×22﹣32=3.设椭圆C1的方程;椭圆C1的短轴长与双曲线C的实轴长相等,椭圆C1与双曲线C有相同的焦点(±2,0)即即可得b、c、a(2)直线l垂直x轴时,A、B两点关于x轴对称,要使∠ADF=∠BDF,则点D 必在x轴上,设D(a,0),直线l不垂直x轴时,l的方程设为:y=k(x+2),设A(x1,y1),B(x2,y2),联立得(1+5k2)x2+20k2x+20k2﹣5=0.要使∠ADF=∠BDF,即直线AD、BD的斜率互为相反数,即,求得a【解答】解:(1)双曲线C和椭圆C1的方程为:3x2﹣y2=λ,则λ=3×22﹣32=3.∴双曲线C的方程为.设椭圆C1的方程;椭圆C1的短轴长与双曲线C的实轴长相等,∴椭圆C1的短轴长为2b=2,椭圆C1与双曲线C有相同的焦点(±2,0),即c=2,∴a=,椭圆C1的方程为:;(2)直线l垂直x轴时,A、B两点关于x轴对称,∵F(﹣2,0),∴要使∠ADF=∠BDF,则点D必在x轴上,设D(a,0),直线l不垂直x轴时,l的方程设为:y=k(x+2),设A(x1,y1),B(x2,y2),联立得(1+5k2)x2+20k2x+20k2﹣5=0.∴.∵∠ADF=∠BDF,∴直线AD、BD的斜率互为相反数,即,k=0时恒成立.k≠0时,a=;∴存在定点D(﹣,0),使得无论AB怎样运动,都有∠ADF=∠BDF.20.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是定义在R上的偶函数和奇函数.(1)求函数h(x)的反函数;(2)已知φ(x)=g(x﹣1),若函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),求实数a的取值范围;(3)若对于任意x∈(0,2]不等式g(2x)﹣ah(x)≥0恒成立,求实数a的取值范围.【考点】反函数;指数函数的图象与性质.【分析】(1)由题意可得:e x=g(x)+h(x),e﹣x=g(﹣x)+h(﹣x)=g(x)﹣h(x),联立解得:g(x),h(x).由y=,化为:(e x)2﹣2ye x﹣1=0,e x>0,解得e x=y+.可得h﹣1(x).(2)φ(x)=g(x﹣1),函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),转化为:函数g(x)在[﹣2,2]上满足:g(2a)>g(﹣﹣1),由于函数g(x)在[0,+∞)上单调递增,且函数g(x)为偶函数,可得|2a|>|﹣﹣1|,﹣2≤2a≤2,﹣2≤﹣﹣1≤2,解得a范围.(3)不等式g(2x)﹣ah(x)≥0,即﹣≥0,令t=e x﹣e﹣x,由x∈(0,2],可得t∈(0,e2﹣e﹣2],不等式转化为:t2+2﹣at≥0,a≤t+,利用基本不等式的性质即可得出.【解答】解:(1)由题意可得:e x=g(x)+h(x),e﹣x=g(﹣x)+h(﹣x)=g(x)﹣h(x),联立解得:g(x)=,h(x)=.由y=,化为:(e x)2﹣2ye x﹣1=0,e x>0,解得e x=y+.∴h﹣1(x)=ln(x∈R).(2)φ(x)=g(x﹣1),函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),转化为:函数g(x)在[﹣2,2]上满足:g(2a)>g(﹣﹣1),由于函数g(x)在[0,+∞)上单调递增,且函数g(x)为偶函数,∴|2a|>|﹣﹣1|,﹣2≤2a≤2,﹣2≤﹣﹣1≤2,解得a∈∪.(3)不等式g(2x)﹣ah(x)≥0,即﹣≥0,令t=e x﹣e﹣x,由x∈(0,2],可得t∈(0,e2﹣e﹣2],不等式转化为:t2+2﹣at≥0,∴a≤t+,∵t+≥2,当且仅当t=时取等号.∴a≤2.21.若存在常数k(k∈N*,k≥2)、d、t(d,t∈R),使得无穷数列{a n}满足a n+1=,则称数列{a n}为“段差比数列”,其中常数k、d、t分别叫做段长、段差、段比,设数列{b n}为“段差比数列”.(1)已知{b n}的首项、段长、段差、段比分别为1、2、d、t,若{b n}是等比数列,求d、t的值;(2)已知{b n}的首项、段长、段差、段比分别为1、3、3、1,其前3n项和为S3n,若不等式对n∈N*恒成立,求实数λ的取值范围;(3)是否存在首项为b,段差为d(d≠0)的“段差比数列”{b n},对任意正整数n都有b n+6=b n.若存在,写出所有满足条件的{b n}的段长k和段比t组成的有序数组(k,t);若不存在,说明理由.【考点】数列的应用.【分析】(1){b n}的前4项依次为1,1+d,t(1+d),t(1+d)+d,先求出t,再代入验证,可得结论;(2)由{b n}的首项、段长、段比、段差,⇒b3n+2﹣b3n﹣1=(b3n+1+d)﹣b3n﹣1=(qb3n+d)﹣b3n﹣1=[q(b3n﹣1+d)+d]﹣b3n﹣1=2d=6,⇒{b3n﹣1}是等差数列,又b3n﹣2+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,即可求S3n,从而求实数λ的取值范围;(3)k取2,3,4时存在,有序数组可以是(2,),(3,),(3,﹣1),(6,).【解答】解:(1){b n}的前4项依次为1,1+d,t(1+d),t(1+d)+d,由前三项成等比数列得(1+d)2=t(1+d),∵1+≠0,∴t=1+d,那么第2,3,4项依次为t,t2,t2+t﹣1,∴t4=t(t2+t﹣1),∴t=±1.t=1时,d=0,b n=1,满足题意;t=﹣1时,d=﹣2,b n=(﹣1)n﹣1,满足题意;(2)∵{b n}的首项、段长、段比、段差分别为1、3、1、3,∴b3n+2﹣b3n﹣1=(b3n+1+d)﹣b3n﹣1=(qb3n+d)﹣b3n﹣1=[q(b3n﹣1+d)+d]﹣b3n﹣1=2d=6,∴{b3n﹣1}是以b2=4为首项、6为公差的等差数列,又∵b3n﹣2+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,∴S3n=(b1+b2+b3)+(b4+b5+b6)+…+(b3n﹣2+b3n﹣1+b3n)=3(b2+b5+…+b3n﹣1)=3[4n+]=9n2+3n,…∵,∴,设c n=,则λ≥(c n)max,又c n+1﹣c n=,当n=1时,3n2﹣2n﹣2<0,c1<c2;当n≥2时,3n2﹣2n﹣2>0,c n+1<c n,∴c1<c2>c3>…,∴(c n)max=c2=14,…∴λ≥14,得λ∈[14,+∞).…(3)k取2,3,4时存在,有序数组可以是(2,),(3,),(3,﹣1),(6,).。