高三文科数学专题复习--三角函数、解三角形-(教师版)汇编
- 格式:docx
- 大小:327.02 KB
- 文档页数:31
第7讲 解三角形应用举例最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题.知 识 梳 理1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫作方位角.如B 点的方位角为α(如图2).3.方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等. 4.坡度:坡面与水平面所成的二面角的正切值.诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)东北方向就是北偏东45°的方向.( )(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( )(3)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) 解析 (2)α=β.(3)俯角是视线与水平线所构成的角.答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.答案 B3.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km,速度为1 000 km/h,飞行员先看到山顶的俯角为30°,经过1 min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km,参考数据:3≈1.732)()A.11.4 km B.6.6 kmC.6.5 km D.5.6 km解析∵AB=1 000×160=503(km),∴BC=ABsin 45°·sin 30°=5032(km).∴航线离山顶h=5032×sin 75°=5032×sin(45°+30°)≈11.4(km).∴山高为18-11.4=6.6(km).答案 B4.(教材改编)如图,设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是m米,∠BAC=α,∠ACB=β,则A,B两点间的距离为()A.m sin αsin β B.m sin αsin(α+β)C.m sin βsin(α+β)D.m sin(α+β)sin α+sin β解析在△ABC中,∠ABC=π-(α+β),AC=m,由正弦定理,得ABsin β=ACsin∠ABC,所以AB=m sin βsin[π-(α+β)]=m sin βsin(α+β).答案 C5.轮船A和轮船B在中午12时同时离开海港C,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h,15 n mile/h,则下午2时两船之间的距离是______n mile.解析设两船之间的距离为d,则d2=502+302-2×50×30×cos 120°=4 900,∴d=70,即两船相距70 n mile.答案70考点一测量高度问题【例1】(2015·湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得BCsin∠BAC=ABsin∠ACB,即BCsin 30°=600sin 45°,所以BC=3002(m).在Rt△BCD中,∠CBD=30°,CD=BC tan∠CBD=3002·tan 30°=1006(m).答案100 6规律方法(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.【训练1】(2017·郑州一中月考)如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求山高CD.解由已知得,∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠CAD=β.在△ABC中,由正弦定理得ACsin∠ABC=BCsin∠BAC,即ACsin(90°-α)=BCsin(α-β),∴AC=BC cos αsin(α-β)=h cos αsin(α-β).在Rt△ACD中,CD=AC sin∠CAD=AC sin β=h cos αsin βsin(α-β).故山高CD为h cos αsin βsin(α-β).考点二测量距离问题【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出AB的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA =α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.解∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32(km).在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.∴AB=64(km).∴A,B两点间的距离为64km.规律方法(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【训练2】如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离,即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.解在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB,∴AB2=4002+6002-2×400×600cos 60°=280 000,∴AB=2007(m),即A,B两点间的距离为2007 m.考点三测量角度问题【例3】如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的________方向.解析由已知∠ACB=180°-40°-60°=80°,又AC=BC,∴∠A=∠ABC=50°,60°-50°=10°,∴灯塔A处于灯塔B的北偏西10°.答案北偏西10°规律方法解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的结合使用.【训练3】如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于()A.30°B.45°C.60°D.75°解析依题意可得AD=2010m,AC=305m,又CD=50 m,所以在△ACD中,由余弦定理得cos∠CAD=AC2+AD2-CD22AC·AD=(305)2+(2010)2-502 2×305×2010=6 0006 0002=22,又0°<∠CAD<180°,所以∠CAD=45°,所以从顶端A看建筑物CD的张角为45°.答案 B[思想方法]1.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型;(2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.2.在三角形和三角函数的综合问题中,要注意边角关系相互制约,推理题中的隐含条件.[易错防范]1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.基础巩固题组(建议用时:40分钟)一、选择题1.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C 两点之间的距离为()A. 6 kmB. 2 kmC. 3 km D.2 km解析如图,在△ABC中,由已知可得∠ACB=45°,∴ACsin 60°=2sin 45°,∴AC =22×32=6(km). 答案 A2.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A .102海里 B .103海里 C .203海里 D .202海里 解析如图所示,易知,在 △ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=AB sin 45°, 解得BC =102(海里). 答案 A3.(2017·合肥调研)如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与B 的距离为( )A .a km B. 3 a km C.2a km D .2a km解析 由题图可知,∠ACB =120°,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =a 2+a 2-2·a ·a ·⎝ ⎛⎭⎪⎫-12=3a 2,解得AB =3a (km).答案 B4.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A.8 km/h B.6 2 km/hC.234 km/h D.10 km/h解析设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎪⎫110v2=⎝⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v=6 2.选B.答案 B5.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A.5 6 B.15 3 C.5 2 D.15 6解析在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得BCsin 30°=30sin 135°,所以BC=15 2.在Rt△ABC中,AB=BC tan ∠ACB=152×3=15 6.答案 D二、填空题6.如图所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分.解析由已知得∠ACB=45°,∠B=60°,由正弦定理得ACsin B=ABsin∠ACB,所以AC=AB·sin Bsin∠ACB=20×sin 60°sin 45°=106,所以海轮航行的速度为10630=63(海里/分).答案6 37.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析如图,OM=AO tan 45°=30(m),ON=AO tan 30°=33×30=103(m),在△MON中,由余弦定理得,MN=900+300-2×30×103×3 2=300=103(m).答案10 38.在200 m高的山顶上,测得山下一塔顶和塔底的俯角分别是30°,60°,则塔高为________m.解析如图,由已知可得∠BAC=30°,∠CAD=30°,∴∠BCA=60°,∠ACD=30°,∠ADC =120°.又AB =200 m ,∴AC =40033(m).在△ACD 中,由余弦定理得, AC 2=2CD 2-2CD 2·cos 120°=3CD 2, ∴CD =13AC =4003(m). 答案 4003 三、解答题9.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解 (1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos 120°=784. 解得BC =28.所以渔船甲的速度为BC2=14海里/时.(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得ABsin α=BC sin 120°,即sin α=AB sin 120°BC =12×3228=3314.10.(2015·安徽卷)在△ABC 中,A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.解 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,由余弦定理,得a 2=b 2+c 2-2bc cos ∠BAC =(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90, 所以a =310.又由正弦定理,得sin B =b sin ∠BAC a =3310=1010,由题设知0<B <π4, 所以cos B =1-sin 2 B =1-110=31010.在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,所以∠ADB =π-2B . 由正弦定理,得AD =AB ·sin B sin (π-2B )=6sin B 2sin B cos B =3cos B =10.能力提升题组 (建议用时:20分钟)11.如图所示,D ,C ,B 三点在地面同一直线上,DC =a ,从D ,C 两点测得A 点仰角分别为α,β(α<β),则点A 离地面的高AB 等于( )A.a sin α·sin βsin (β-α)B.a sin α·sin βcos (β-α)C.a cos α·cos βsin (β-α) D.a cos α·cos βcos (β-α)解析 结合题图示可知,∠DAC =β-α.在△ACD 中,由正弦定理得:DC sin ∠DAC =ACsin α,∴AC =a sin αsin ∠DAC =a sin αsin (β-α).在Rt △ABC 中,AB =AC sin β=a sin αsin βsin (β-α).答案 A12.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3+1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 解析 如图,∠ACD =30°,∠ABD =75°,AD =60 m , 在Rt △ACD 中, CD =AD tan ∠ACD=60tan 30°=603(m),在Rt △ABD 中,BD =AD tan ∠ABD =60tan 75°=602+3=60(2-3)(m),∴BC =CD -BD =603-60(2-3)=120(3-1)(m). 答案 C13.(2017·西安调研)某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是________km 2.解析 如图,连接AC ,由余弦定理可知AC =AB 2+BC 2-2AB ·BC ·cos B =3,故∠ACB =90°,∠CAB =30°,∠DAC =∠DCA =15°,∠ADC =150°,AC sin ∠ADC =ADsin ∠DCA,即AD =AC sin ∠DCAsin ∠ADC=3·6-2412=32-62, 故S 四边形ABCD =S △ABC +S △ADC =12×1×3+12×⎝ ⎛⎭⎪⎫32-622×12=6-34(km 2).答案6-3414.如图,在海岸A 处,发现北偏东45°方向距A 为(3-1)海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则有CD =103t (海里),BD =10t (海里).在△ABC 中,∵AB =(3-1)海里,AC =2海里, ∠BAC =45°+75°=120°,根据余弦定理,可得BC =(3-1)2+22-2×2×(3-1)cos 120°=6(海里). 根据正弦定理,可得sin ∠ABC =AC sin 120°BC =2×326=22.∴∠ABC=45°,易知CB方向与正北方向垂直,从而∠CBD=90°+30°=120°.在△BCD中,根据正弦定理,可得sin∠BCD=BD sin∠CBDCD=10t·sin 120°103t=12,∴∠BCD=30°,∠BDC=30°,∴BD=BC=6(海里),则有10t=6,t=610≈0.245小时=14.7分钟.故缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.。
三角函数知识点一.考纲要求考试内容3 要求层次要求层次A B C 三角函数、 三角恒等 变换、 解三角形解三角形三角函数三角函数任意角的概念和弧度制任意角的概念和弧度制 √ △ 弧度与角度的互化◇弧度与角度的互化◇√ 任意角的正弦、余弦、正切的定义任意角的正弦、余弦、正切的定义√ 用单位圆中的三角函数线表示正弦、用单位圆中的三角函数线表示正弦、余弦和正切余弦和正切余弦和正切 √ 诱导公式诱导公式√ △ 同角三角函数的基本关系式同角三角函数的基本关系式√周期函数的定义、三角函数的周期性周期函数的定义、三角函数的周期性 √ 函数sin y x =,cos y x =,tan y x =的图象和性质和性质√函数sin()y A x w j =+的图象的图象 √ 用三角函数解决一些简单的实际问题◇用三角函数解决一些简单的实际问题◇√ 三角三角 恒等恒等 变换变换两角和与差的正弦、余弦、正切公式两角和与差的正弦、余弦、正切公式 √ 二倍角的正弦、余弦、正切公式二倍角的正弦、余弦、正切公式 √ 简单的恒等变换简单的恒等变换 √ 解三角形解三角形正弦定理、余弦定理正弦定理、余弦定理√ △ 解三角形解三角形√△二.知识点1.角度制与弧度制的互化:,23600p = ,1800p =1rad =p180°≈57.30°=57°18ˊ.ˊ.1°=180p ≈0.01745(rad )2.弧长及扇形面积公式弧长公式:r l .a = 扇形面积公式:S=rl .21a ----是圆心角且为弧度制。
是圆心角且为弧度制。
r-----是扇形半径是扇形半径 3.任意角的三角函数设a 是一个任意角,它的终边上一点p (x,y ), r=22y x +(1)正弦sin a =r y 余弦cos a =r x 正切tan a =xy (2)各象限的符号:各象限的符号:sin a cos a tan a4、三角函数线正弦线:正弦线:正弦线:MP; MP; MP; 余弦线:余弦线:余弦线:OM; OM; OM; 正切线:正切线:正切线: AT. AT.5.同角三角函数的基本关系:(1)平方关系:sin 2a + cos 2a =1。
2024年9~10月三角函数、解三角形大题汇编知识点一:基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A=b sin B =csin C =2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R;cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab.(2)面积公式:S ΔABC =12ab sin C =12bc sin A =12ac sin BS ΔABC =abc 4R=12(a +b +c )⋅r (r 是三角形内切圆的半径,并可由此计算R ,r .)知识点二:相关应用(1)正弦定理的应用①边化角,角化边⇔a :b :c =sin A :sin B :sin C ②大边对大角大角对大边a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B③合分比:a +b +csin A +sin B +sin C =a +b sin A +sin B =b +c sin B +sin C =a +c sin A +sin C =a sin A=b sin B =csin C =2R(2)△ABC 内角和定理:A +B +C =π①sin C =sin (A +B )=sin A cos B +cos A sin B ⇔c =a cos B +b cos A 同理有:a =b cos C +c cos B ,b =c cos A +a cos C .②-cos C =cos (A +B )=cos A cos B -sin A sin B ;③斜三角形中,-tan C =tan (A +B )=tan A +tan B1-tan A ⋅tan B⇔tan A +tan B +tan C =tan A ⋅tan B ⋅tan C④sin A +B 2 =cos C 2;cos A +B 2 =sin C2⑤在ΔABC 中,内角A ,B ,C 成等差数列⇔B =π3,A +C =2π3.知识点三:实际应用(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).【解题方法总结】1、方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b a ≤b解的个数一解两解一解一解无解2、在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有a ,b ,c 的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A +B +C =π.3、三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .【题型分类汇编】1.(湖南省长沙市2025届高三六校九月大联考解析第15题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(3b -a )sin A =(b +c )(sin B -sin C ).(1)求角C ;(2)若ΔABC 外接圆的半径为2,求ΔABC 面积的最大值.方法提供与解析:(1)解析:由已知及正弦定理可得(3b -a )a =(b +c )(b -c ),整理得a 2+b 2-c 2=3ab ,∴cos C =a 2+b 2-c 22ab=32,∵C ∈(0,π),∴C =π6.(2)解析:∵ΔABC 外接圆的半径为2,∴csin C=4,得c =2,∴a 2+b 2=4+3ab ,又a 2+b 2≥2ab ,∴ab ≤4(2+3),当且仅当a =b =6+2时,等号成立,∴S ΔABC =12ab sin C ≤12×4(2+3)×12=2+3,即ΔABC 面积的最大值为2+ 3.2.(辽宁省沈阳市郊联体2024年高三上学期开学联考解析第16题)已知函数f (x )=23cos 2x -2025π2+2sin (x -2024π)cos x - 3.(1)求曲线y =f (x )的对称轴;(2)已知25f m -π6=14,m ∈2π3,5π6,求sin2m 的值.解析:(1)f (x )=23cos 2x -2025π2+2sin (x -2024π)cos x -3,=23sin 2x +2sin x cos x -3=2sin x cos x -31-2sin 2x ,=sin2x -3cos2x =2sin 2x -π3,由2x -π3=π2+k π(k ∈Z ),得曲线y =f (x )的对称轴为x =5π12+k π2(k ∈Z );(2)由题意可得f m -π6 =1425,即sin 2m -2π3 =725,又m ∈2π3,5π6 ,则2m -2π3∈2π3,π ,即cos 2m -2π3<0,所以cos 2m -2π3 =-1-sin 22m -2π3 =-2425,故sin2m =sin 2m -2π3 +2π3 =sin 2m -2π3 cos 2π3+cos 2m -2π3 sin 2π3=725×-12 +-2425 ×32=-7+24350.3.(福建泉州市2025届高中毕业班模拟检测(一)解析第15题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a cos 2C 2+c cos 2A 2=32b .(1)证明:sin A +sin C =2sin B ;(2)若b =2,AB ⋅AC=3,求ΔABC 的面积.方法提供与解析:(1)解析:因为a cos 2C 2+c cos 2A 2=32b ,则a (1+cos C )+c (1+cos A )2=32b ,即a +c +a cos C +c cos A =3b ,由正弦定理可得3sin B =sin A +sin C +(sin A cos C +cos A sin C )=sin A +sin C +sin (A +C )=sin A +sin C +sin (π-B )=sin A +sin C +sin B ,因此sin A +sin C =2sin B .(2)解析:因为sin A +sin C =2sin B ,由正弦定理可得a +c =2b =4,由平面向量数量积的定义可得AB ⋅AC =cb cos A =3,所以2c ⋅b 2+c 2-a 22bc=4+c 2-a 22=3,可得c 2-a 2=2,即(c -a )(c +a )=4(c -a )=2,所以c -a =12,则c =94,a =74,所以cos A =3bc =32×94=23,则A 为锐角,得sin A =1-cos 2A =1-23 2=53,因此S ΔABC =12bc sin A =12=12×2×94×53=354.4.(长沙市雅礼中学2025届高三上学期(9月)综合自主测试解析第16题)在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ΔABC 的面积为S ,433S =b 2sin (2A +B )sin B+1 .(1)求角A ;(2)若ΔABC 的面积为33,a =13,D 为边BC 的中点,求AD 的长.方法提供与解析:(1)解析:由题意得433S =sin2A cos B +cos2A sin Bsin B+1 ⋅b 2=2sin A cos A cos B +2cos 2A sin B sin B ⋅b 2=2cos A sin (A +B )sin B b 2=2cos A sin C sin B b 2,由正弦定理,得433S =2c cos A b⋅b 2,即433×12bc sin A =2bc cos A ,所以tan A = 3.又A ∈(0,π),所以A =π3.(2)解析:因为ΔABC 的面积为33,所以12bc sin π3=33,所以bc =12.因为a =13,所以b 2+c 2-2bc cos π3=13,即b 2+c 2-bc =13,所以b 2+c 2=25.因为D 是边BC 的中点,所以AD =12(AC +AB),所以|AD |2=14b 2+c 2+2bc cos A =14b 2+c 2+bc =374,所以|AD |=372,所以AD 的长为372.5.(山东省日照市2024-2025学年高三上学期开学校际联考解析第16题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =2.(1)若sin B -sin C =12,求b ;(2)若sin B +sin C =2sin A ,求ΔABC 的面积.方法提供与解析:(1)解析:(正余弦定理)由正弦定理可得,b sin B =c sin C =a sin A =2sin π3=433,则sin B =34b ,sin C =34c ,由sin B -sin C =12,可得34b -34c =12,即b -c =233由余弦定理可得,a 2=b 2+c 2-2bc cos A ,即4=b 2+c 2-bc ,即4=(b -c )2+bc ,解得bc =83,联立bc =83b -c =233,解得b =433c =233 .(2)解析:(正余弦定理)因为sin B +sin C =2sin A ,由正弦定理的边角互化可得,b +c =2a =4,由余弦定理可得,a 2=b 2+c 2-2bc cos A ,即4=b 2+c 2-bc ,所以4=(b +c )2-3bc ,解得bc =4,则S ΔABC =12bc sin A =12×4×32= 3.6.(黄冈市2024年高三年级9月调研考试解析第16题)函数f (x )=sin ωx ⋅cos ωx +cos 2ωx ,ω>0,函数的最小正周期为π.(1)求函数f (x )的单调递增区间以及对称中心;(2)将函数f (x )的图象先向右平移π8个单位,再向下平移12个单位,得到函数g (x )的图象,在函数g (x )图象上从左到右依次取点A 1,A 2,⋯,A 2024,该点列的横坐标依次为x 1,x 2,⋯,x 2024,其中x 1=π4,x n +1-x n =πn ∈N * ,求g x 1 +g x 2 +⋯+g x 2024 .方法提供与解析:(1)解析:f(x)=12sin2ωx+1+cos2ωx2=12+22sin2ωx+π4,因为f(x)的最小正周期为π,故2π2ω=π,即ω=1,所以f(x)=12+22sin2x+π4,令2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,故kπ-3π8≤x≤kπ+π8,k∈Z,故f(x)的增区间为kπ-3π8,kπ+π8,k∈Z.令2x+π4=lπ,l∈Z,则x=lπ2-π8,l∈Z,故f(x)图象的对称中心为lπ2-π8,12,l∈Z.(2)解析:由题设有g(x)=12-12+22sin2x-π4+π4=22sin2x,则g(x)的周期为π,而x n+3-x n=π3×3=π,故g x n+3=g x n,而g x1=22,g x2=gπ4+π3=22sinπ2+2π3=-24,g x3 =gπ4+2π3=22sinπ2+4π3=-24,故g x1+g x2+⋯+g x2024=g x1+g x2+674g x1+g x2+g x3=22-24+67422-24-24=24.7.(黄冈市2024年高三年级9月调研考试解析第18题)在ΔABC中,角A,B,C所对的边分别为a,b,c.(1)证明:tan A2=1-cos Asin A=sin A1+cos A;(2)若a,b,c成等比数列.(i)设ba=q,求q的取值范围;(ii)求tan A2tan C2的取值范围.方法提供与解析:(1)解析:1-cos Asin A =1-1-2sin2A22sin A2cos A2=2sin2A22sin A2cos A2=tan A2,sin A 1+cos A =2sin A2cos A21+2cos2A2-1=2sin A2cos A22cos2A2=tan A2,故tan A2=1-cos Asin A=sin A1+cos A.(2)解析:(i)由题意设b=aq,c=aq2,由三角形三边关系知q>0a+aq>aq2a+aq2>aqaq+aq2>a,解之得:q∈5-12,5+12.(ii)由(1)的结论可知:tan A2tan C2=sin A1+cos A⋅1-cos Csin C=sin Asin C⋅1-cos C1+cos A=ac⋅1-a2+b2-c22ab1+b2+c2-a22bc=a+c-b a+c+b =a+aq2-aqa+aq2+aq=1+q2-q1+q2+q=1+q2+q-2q1+q2+q=1-2q1+q2+q=1-2q+1q+1∈13,3-52,故tan A2tan C2的取值范围为13,3-52.8.(福建省漳州市2025届高三毕业班第一次教学质量检测解析第15题)在ΔABC 中,A ,B ,C 的对边分别为a ,b ,c ,且满足.请在①(a -b )sin (A +C )=(a -c )(sin A +sin C );②sin π6-C cos C +π3=14,这两个中任选一个作为条件,补充在横线上,并解答问题.(1)求C ;(2)若ΔABC 的面积为53,D 为AC 的中点,求BD 的最小值.方法提供与解析:(1)解析:选择条件①,(a -b )sin (A +C )=(a -c )(sin A +sin C ),则(a -b )sin B =(a -c )(sin A +sin C ),由正弦定理可得(a -b )b =(a -c )(a +c ),即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab=12,由C ∈(0,π),所以C =π3.选择条件②,sin π6-C cos C +π3 =14,即sin π2-π3+C cos C +π3 =14,所以cos 2C +π3 =14,由C ∈(0,π),π3<C +π3<4π3,则cos C +π3 =-12,所以C +π3=2π3,则C =π3.(2)解析:由S =12ab sin C =12ab ×32=53,解得ab =20.又BD =BC +CD ,所以BD 2=(BC +CD )2=BC 2+2BC ⋅CD +CD2=a 2+2a ×12b ×-12 +12b 2=a 2+b 24-12ab ≥ab -12ab =12ab =10,所以|BD|≥10,当且仅当a =10,b =210时等式成立,所以BD 的最小值是10.9.(唐山市2024-2025学年度高三年级摸底考试解析第15题)已知ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3sin2A +cos2A =2,b =2a .(1)求B ;(2)若B 为锐角,AC 边上的高为2+6,求ΔABC 的周长.方法提供与解析:(1)解析:易知3sin2A +cos2A =2sin 2A +π6=2⇒sin 2A +π6=1,所以2A +π6=π2+2k π⇒A =π6+k π(k ∈Z ),因为ΔABC 中A ,B ,C ∈(0,π),所以A =π6,而b =2a ⇒sin B =2sin A =22,则B =π4或B =3π4.(2)解析:由上可知A =π6,B =π4,则C =π-π6-π4=7π12,如图BD ⊥AC ,则BD =2+6,∠BCD =5π12,∠CBD =π12,所以sin A =BD AB⇒AB =22+26,cos ∠CBD =cos π4-π6 =22×32+22×12=6+24=BDBC,则BC =4,AC =42,所以ΔABC 的周长为C ΔABC =AB +BC +AC =22+26+4+42=62+26+4.10.(山东百师联盟2025届高三开学摸底联考解析第15题)已知ΔABC的内角A,B,C的对边分别为a,b,c,C=π3,6b=ab+6c cos A.(1)求b的值;(2)若c=19,求ΔABC的面积.方法提供与解析:(1)解析:因为6b=ab+6c cos A,由正弦定理得6sin B=b sin A+6sin C cos A,即6sin(A+C)=b sin A+6sin C cos A,可得6sin A cos C+6cos A sin C=b sin A+6sin C cos A,整理得6sin A cos C=b sin A,因为A∈(0,π),可得sin A≠0,所以b=6cos C,又因为C=π3,所以b=3.(2)解析:由余弦定理,可得c2=b2+a2-2ab cosπ3,因为b=3,c=19,代入得a2-3a-10=0,解得a=5或a=-2(舍),所以ΔABC的面积S=12ab sin C=12×3×5×sinπ3=1534.11.(2024年9月嘉兴市高三基础测试解析第15题)已知ΔABC的内角A,B,C的对边分别为a,b,c,已知(b+c-a)(b+c+a)=bc.(1)求A;(2)若D为BC边上一点,∠BAD=3∠CAD,AC=4,AD=3,求sin B.方法提供与解析:(1)解析:(b+c-a)(b+c+a)=(b+c)2-a2=b2+2bc+c2-a2=bc,则b2+c2-a2=-bc,所以cos A=b2+c2-a22bc=-12,因为0<A<π,所以A=2π3.(2)解析::由(1)得,A=2π3,因为∠BAD=3∠CAD,所以∠CAD=π6,在ΔACD中,由余弦定理CD2=AD2+AC2-2AD⋅AC cos∠DAC=3+16-23×4×32=7,即CD=7,在ΔACD中由正弦定理CDsin∠DAC=ADsin C,即712=3sin C,所以sin C=327,因为0<C<π3,故cos C=1-sin2C=527,在ΔABC中sin B=sin(A+C)=sin A cos C+cos A sin C=32×527-12×327=217.12.(江西省红色十校2025届高三上学期第一次联考解析第15题)已知ΔABC中,内角A,B,C所对的边分别为a,b,c,且a(1-3cos C)=3c cos A.(1)求ba的值;(2)若c=2,求B最大时ΔABC的面积.方法提供与解析:(1)解析:因为a(1-3cos C)=3c cos A,由正弦定理得sin A(1-3cos C)=3sin C cos A,得sin A=3sin A cos C+3cos A sin C=3sin(A+C)=3sin B,由正弦定理得a=3b,所以ba=13.(2)解析:由余弦定理得cos B=a2+c2-b22ac =9b2+4-b212b=2b3+13b≥22b3⋅13b=223,当且仅当2b3=1,即b =22时取等号,当cos B 取最小值时,B 最大,此时a =3b =322,c =2,sin B =1-cos 2B =13,ΔABC 的面积为12ac sin B =12×322×2×13=22.13.(河北省邯郸市2024-2025学年高三第一次调研解析第15题)设ΔABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且(b +a )(sin ∠ABC -sin ∠BAC )=c (sin ∠ABC -sin C ),BC 、AC 边上的两条中线AD 、BE 相交于点P .(1)求∠BAC ;(2)若AD =7,BE =2,cos ∠DPE =714,求ΔABC 的面积.方法提供与解析:解析:(1)因为(b +a )(sin ∠ABC -sin ∠BAC )=c (sin ∠ABC -sin C ),所以由正弦定理得b 2+c 2-a 2=bc ,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc=12,又0<∠BAC <π,所以∠BAC =π3.(2)因为P 是BC ,AC 边上的两条中线AD ,BE 的交点,所以点P 是ΔABC 的重心.又AD =7,BE =2,∠APB =∠DPE ,所以在ΔABP 中,由余弦定理c 2=AB 2=P A 2+PB 2-2P A ⋅PB cos ∠APB=273 2+43 2-2×273×43×714=4,所以c =2,又BE =2,∠BAC =π3,所以AE =BE =2,所以b =2AE =4,所以ΔABC 的面积为12×4×2×sin π3=2 3.14.(湘豫名校联考2024-2025学年新高考适应性调研考试解析第15题)在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知c =2,a 2+c 2-b 2=23-2cos A bc .(1)求b 的值;(2)设∠BAC 的平分线交BC 于点D ,若ΔABC 的面积为33,求线段AD 的长.方法提供与解析:(1)解析:在ΔABC 中,由余弦定理得2bc cos A =b 2+c 2-a 2,代入已知条件,得a 2+c 2-b 2=23bc -b 2+c 2-a 2 .整理,得2c 2=23bc ,所以b =3c =6.(2)解析:由于S ΔABC =12bc sin ∠BAC .所以sin ∠BAC =2S ΔABC bc=32.又∠BAC ∈(0,π),所以∠BAC =π3或2π3.所以sin 12∠BAC =12或32,由点D 在∠BAC 的平分线上,知点D 到边AB 和边AC 的距离相等.设这个距离为d ,则S ΔABC =12(b +c )d ,所以d =2S ΔABC b +c =2×332+6=334,所以AD =d sin 12∠BAC=332或32.15.(山东省2024年9月高三七校联考解析第15题)已知锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a -c =2c cos B .(1)证明:B =2C ;(2)若a=2,求cos Cb +1c的取值范围.方法提供与解析:(1)解析:因为a-c=2c cos B,由正弦定理得sin A-sin C=2sin C cos B,所以sin B cos C+sin C cos B-sin C=2sin C cos B,所以sin B cos C-sin C cos B=sin C⇔sin(B-C)=sin C,而0<B<π,0<C<π,则B-C=C或B-C+C=π,即B=2C或B=π(舍去),故B=2C.(2)解析:因为ΔABC是锐角三角形,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4,所以cos C的取值范围是22<cos C<32,由正弦定理可得:bc=sin Bsin C,则b=sin Bsin C⋅c=sin2Csin C⋅c=2cos C⋅c,所以cos Cb=12c,所以cos Cb+1c=32c,因为a-c=2c cos B,所以2-c=2c cos2C,所以2-c=2c cos2C,所以c=22cos2C+1,所以cos Cb+1c=32c=342cos2C+1=3(2cos2C+1)4=34cos2C-14,因为cos C∈22,32,所以4cos2C-1∈(1,2),所以cos Cb+1c=34cos2C-14的取值范围是34,32.16.(T8联考解析第16题)在ΔABC中,三个内角A,B,C所对的边分别为a,b,c,4cos C+cos(A-B)=3,c=3.(1)求证:a+b=2c;(2)若点M是边AB上靠近点B的三等分点,求CM的最小值.方法提供与解析:(1)解析:由题意得1+cos(A-B)=4[1+cos(A+B)],即2cos2A-B2=4⋅2cos2A+B2,即cos A-B2=2cos A+B2=2sin C2,∵sin A+sin B=sin A+B2+A-B2+sin A+B2-A-B2,即sin A+sin B=2sin A+B2cos A-B2=2sinπ-C2⋅2sin C2=4sin C2cos C2=2sin C,由正弦定理可得a+b=2c.(2)解析:设CM=x,∠CMB=θ,由题可知AM=2,BM=1,在ΔACM中,由余弦定理,得cos(π-θ)=x2+4-b24x,在ΔBCM中,由余弦定理,得cosθ=x2+1-a22x,两式相加得3x2+6=2a2+b2=2a2+(6-a)2=3(a-2)2+24≥24,解得x≥6,∴CM的最小值是6,当且仅当a=2,b=4,c=3时取等号.17.(重庆市南开中学校2025届高三上学期第一次质量检测解析第15题)在ΔABC中,角A,B,C的对边分别为a,b,c,a sin A=b-c 2sin B+c-b2sin C.(1)求A;(2)若ΔABC的面积为3,周长为8,求a.方法提供与解析:(1)解析:(正弦定理)由正弦定理可得:a2=b-c 2b+c-b2c,整理得a2=b2+c2-bc∴cos A=b2+c2-a22bc=bc2bc=12,∴A=π3(2)解析:(余弦定理)由SΔABC=12bc sin A=3可得bc=4,∴a2=b2+c2-bc=(b+c)2-12又a+b+c=8,∴a2=(8-a)2-12,解得a=13 4.。
第三章 三角函数、解三角形第一节 任意角、弧度制及任意角的三角函数2019考纲考题考情1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角。
(2)从终边位置来看,角可分为象限角与轴线角。
(3)若β与α是终边相同的角,则β用α表示为β=2k π+α,k ∈Z 。
2.弧度与角度的互化 (1)1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角。
(2)角α的弧度数如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr 。
(3)角度与弧度的换算①1°=π180rad ;②1 rad =⎝ ⎛⎭⎪⎫180π°。
(4)弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则l =|α|r ,扇形的面积为S =12lr =12|α|·r 2。
3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0)。
(2)几何表示:三角函数线可以看作是三角函数的几何表示。
正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是点(1,0)。
如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线。
1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角。
(2)不相等的角未必终边不相同,终边相同的角也未必相等。
2.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦。
3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=x r ,tan α=y x 。
一、走进教材1.(必修4P 10A 组T 7改编)角-225°=________弧度,这个角在第________象限。
答案 -5π4 二2.(必修4P 15练习T 2改编)设角θ的终边经过点P (4,-3),那么2cos θ-sin θ=________。
决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。
第三章 三角函数、解三角形第一节任意角和弧度制及任意角的三角函数[知识能否忆起]1.任意角 (1)角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数 (1)任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=yx ,它们都是以角为自变量,以单位圆上点的坐标或坐标比值为函数值的函数.(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.[小题能否全取]1.-870°的终边在第几象限( ) A .一 B .二 C .三D .四解析:选C 因-870°=-2×360°-150°.-150°是第三象限角. 2.已知角α的终边经过点(3,-1),则角α的最小正值是( ) A.2π3 B.11π6 C.5π6D.3π4解析:选B ∵sin α=-12=-12,且α的终边在第四象限,∴α=116π.3.(教材习题改编)若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选C 由sin α<0,知α在第三、第四象限或α终边在y 轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限.4.若点P 在2π3角的终边上,且P 的坐标为(-1,y ),则y 等于________.解析:因tan 2π3=-3=-y ,∴y = 3.答案: 35.弧长为3π,圆心角为135°的扇形半径为________,面积为________. 解析:弧长l =3π,圆心角α=34π,由弧长公式l =α·r 得r =l α=3π34π=4,面积S =12lr =6π.答案:4 6π1.对任意角的理解(1)“小于90°的角”不等同于“锐角”“0°~90°的 角”不等同于“第一象限的角”.其实锐角的集合是{α|0° <α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°, k ∈Z }.(2)终边相同的角不一定相等,相等的角终边一定相同, 终边相同的角的同一三角函数值相等.2.三角函数定义的理解三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx .典题导入[例1] 已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2×180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4×180°+45°,k ∈Z ,判断两集合的关系. [自主解答] (1)所有与角α有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M N .由题悟法1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.以题试法1.(1)给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四角限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个(2)如果角α是第二象限角,则π-α角的终边在第________象限. 解析:(1)-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.(2)由已知π2+2k π<α<π+2k π(k ∈Z ),则-π-2k π<-α<-π2-2k π(k ∈Z ),即-π+2k π<-α<-π2+2k π(k ∈Z ),故2k π<π-α<π2+2k π(k ∈Z ),所以π-α是第一象限角. 答案:(1)C (2)一典题导入[例2] (1)已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1 B .2 C.12D. 2(2)(2012·大庆模拟)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π3D.11π6[自主解答] (1)根据已知条件得tan α=t 2+1t =t +1t ≥2,当且仅当t =1时,tan α取得最小值2.(2)由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.[答案] (1)B (2)D由题悟法定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.以题试法2.(1)(2012·东莞调研)已知角α的终边与单位圆的交点P ⎝⎛⎭⎫x ,32,则tan α=( ) A. 3 B .±3 C.33D .±33(2)(2012·潍坊质检)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114B.114 C .-4D .4解析:(1)选B 由|OP |2=x 2+34=1,得x =±12,tan α=±3.(2)选C 由题意可知,cos α=m m 2+9=-45,又m <0,解得m =-4.典题导入[例3] (1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? [自主解答] (1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +rθ=1012θ·r 2=4⇒⎩⎪⎨⎪⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12.(2)设圆心角是θ,半径是r , 则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r ) =-(r -10)2+100 ≤100,当且仅当r =10时,S max =100.所以当r =10,θ=2时,扇形面积最大.若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为R ,则圆内接正方形的对角线长为2R , ∴正方形边长为2R ,∴圆心角的弧度数是2RR= 2. 答案: 2由题悟法1.在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.2.记住下列公式:①l =αR ;②S =12lR ;③S =12αR 2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.以题试法3.若扇形的面积为定值,当扇形的圆心角为多少弧度时,该扇形的周长取到最小值? 解:设扇形的圆心角为α,半径为R ,弧长为l ,根据已知条件12lR =S 扇,则扇形的周长为:l +2R =2S 扇R +2R ≥4S 扇,当且仅当2S 扇R =2R ,即R =S 扇时等号成立,此时l =2S 扇,α=lR=2, 因此当扇形的圆心角为2弧度时,扇形的周长取到最小值.[典例] (2011·江西高考)已知角θ的顶点为坐 标原点,始边为x 轴的正半轴.若P (4,y )是角θ终 边上一点,且sin θ=25-y = .[尝试解题] r =x 2+y 2=16+y 2,且sin θ=-255,所以sin θ=y r =y 16+y 2=-255,所以θ为第四象限角,解得y =-8.[答案] -8——————[易错提醒]——————————————————————————— 1.误认为点P 在单位圆上,而直接利用三角函数定义,从而得出错误结果.2.利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.—————————————————————————————————————— 针对训练已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A .-12B .-32C.12D.32解析:选C 由点P (-8m ,-6sin 30°)在角α的终边上且cos α=-45,知角α的终边在第三象限,则m >0 ,又cos α=-8m(-8m )2+9=-45,所以m =12.1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6 C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1或4 B .1 C .4D .8解析:选A 设扇形的半径和弧长分别为r ,l ,则易得⎩⎪⎨⎪⎧l +2r =6,12lr =2,解得⎩⎪⎨⎪⎧ l =4r =1或⎩⎪⎨⎪⎧l =2,r =2.故扇形的圆心角的弧度数是4或1. 3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32C .-12D.12解析:选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.4.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选B ∵θ是第三象限角,∴θ2为第二或第四象限角.又∵⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0,知θ2为第二象限角.5.(2012·宜春模拟)给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan17π9,其中符号为负的是( )A .①B .②C .③D .④解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°) =cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0; sin7π10cos πtan 17π9=-sin 7π10tan17π9,sin 7π10>0,tan 17π9<0,∴原式>0. 6.已知sin θ-cos θ>1,则角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由已知得(sin θ-cos θ)2>1,1-2sin θcos θ>1,sin θcos θ<0,且sin θ>cos θ,因此sin θ>0>cos θ,所以角θ的终边在第二象限.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)8.若β的终边所在直线经过点P ⎝⎛⎭⎫cos 3π4,sin 3π4,则sin β=________,tan β=________. 解析:因为β的终边所在直线经过点P ⎝⎛⎭⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限.所以sin β=22或-22,tan β=-1. 答案:22或-22-19.如图,角α的终边与单位圆(圆心在原点,半径为1)交于第二象限的点A ⎝⎛⎭⎫cos α,35,则cos α-sin α=________. 解析:由题图知sin α=35,又点A 在第二象限,故cos α=-45.∴cos α-sin α=-75.答案:-7510.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解:设圆的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H .则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm).11.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝⎛⎭⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解:(1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 12.(1)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=24x ,求sin α与tan α的值;(2)已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.解:(1)∵r =x 2+5,∴cos α=xx 2+5, 从而24x =x x 2+5, 解得x =0或x =±3. ∵90°<α<180°, ∴x <0,因此x =- 3.故r =22,sin α=522=104,tan α=5-3=-153.(2)∵θ的终边过点(x ,-1), ∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22.1.(2012·聊城模拟)三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( )A .1B .-1C .3D .4解析:选B 因为三角形ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin (90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1.2.(2012·山东高考)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP ―→的坐标为________.解析:设A (2,0),B (2,1),由题意知劣弧 PA 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎫2-π2=2-sin 2,y =1+1×sin ⎝⎛⎭⎫2-π2=1-cos 2,∴OP的坐标为(2-sin 2,1-cos 2).答案:(2-sin 2,1-cos 2) 3.(1)确定tan (-3)cos 8·tan 5的符号;(2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号. 解:(1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan 5<0,cos 8<0,∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α,∴sin α+cos α=MP +OM >OP =1. 若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝⎛⎭⎫π2,π. 于是有sin α-cos α>0.1.已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 由已知sin α-cos α>0,tan α>0故⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4. 2.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 解:∵角α的终边在直线3x +4y =0上, ∴在角α的终边上任取一点P (4t ,-3t )(t ≠0), 则x =4t ,y =-3t ,r =x 2+y 2=(4t )2+(-3t )2=5|t |, 当t >0时,r =5t , sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,t =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34.综上可知,sin α=-35,cos α=45,tan α=-34;或sin α=35,cos α=-45,tan α=-34.3.已知0<α<π2,求证:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:如图,设α的终边与单位圆交于P 点,作PM ⊥x 轴,垂足为M ,过点A (1,0)作AT ⊥x 轴,交α的终边于T ,则sin α=MP ,cos α=OM ,tan α=AT .(1)在△OMP 中,∵OM +MP >OP , ∴cos α+sin α>1.(2)连接P A ,则S △OP A <S 扇形OP A <S △OTA , 即12OA ·MP <12OA ·α<12OA ·AT , 即sin α<α<tan α.第二节同角三角函数的基本关系与诱导公式[知识能否忆起]1.同角三角函数的基本关系式 (1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.六组诱导公式对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.[小题能否全取]1.sin 585°的值为( ) A .-22 B.22 C .-32D.32解析:选A sin 585°=sin(360°+225°) =sin 225°=sin(180°+45°)=-sin 45° =-22. 2.(教材习题改编)已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3解析:选D ∵sin(π+θ)=-3cos(2π-θ), ∴-sin θ=-3cos θ,∴tan θ= 3. ∵|θ|<π2,∴θ=π3.3.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=( )A .2B .-2C .0D.23解析:选B 原式=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.4.(教材习题改编)如果sin(π+A )=12,那么cos ⎝⎛⎭⎫3π2-A 的值是________. 解析:∵sin(π+A )=12,∴-sin A =12.∴cos ⎝⎛⎭⎫32π-A =-sin A =12. 答案:125.已知α是第二象限角,tan α=-12,则cos α=________.解析:由题意知cos α<0,又sin 2α+cos 2α=1, tan α=sin αcos α=-12.∴cos α=-255.答案:-255应用诱导公式时应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意 角的三角函数为锐角三角函数,其步骤:去负号—脱周期 —化锐角.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特 别注意判断符号.(3)注意求值与化简后的结果要尽可能有理化、整式化.典题导入[例1] (1)(2012·江西高考)若tan θ+1tan θ=4,则sin 2θ=( ) A.15 B.14 C.13D.12(2)已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,则sin α-4cos α5sin α+2cos α=________.[自主解答] (1)∵tan θ+1tan θ=4,∴sin θcos θ+cos θsin θ=4, ∴sin 2θ+cos 2θcos θsin θ=4,即2sin 2θ=4,∴sin 2θ=12.(2)法一:由sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α得tan α=2. 原式=tan α-45tan α+2=2-45×2+2=-16.法二:由已知得sin α=2cos α. 原式=2cos α-4cos α5×2cos α+2cos α=-16.[答案] (1)D (2)-16在(2)的条件下,sin 2α+sin 2α=________.解析:原式=sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=85.答案:85由题悟法1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二(参阅本节题型技法点拨).3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.以题试法1.(1)(2012·长沙模拟)若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-1(2)已知sin α=2sin β,tan α=3tan β,则cos α=________. 解析:(1)由角α的终边落在第三象限得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.(2)∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β, ① tan 2α=9tan 2β,② 由①÷②得:9cos 2α=4cos 2β,③①+③得:sin 2α+9cos 2α=4, ∵cos 2α+sin 2α=1, ∴cos 2α=38,即cos α=±64.答案:(1)B (2)±64典题导入[例2] (1)tan (π+α)cos (2π+α)sin ⎝⎛⎭⎫α-3π2cos (-α-3π)sin (-3π-α)=________.(2)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[自主解答] (1)原式=tan αcos αsin ⎣⎡⎦⎤-2π+⎝⎛⎭⎫α+π2cos (3π+α)[-sin (3π+α)]=tan αcos αsin ⎝⎛⎭⎫π2+α(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.[答案] (1)-1 (2)C由题悟法利用诱导公式化简求值时的原则(1)“负化正”,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数.(2)“大化小”,利用k ·360°+α(k ∈Z )的诱导公式将大于360°的角的三角函数化为0°到360°的三角函数.(3)“小化锐”,将大于90°的角化为0°到90°的角的三角函数.(4)“锐求值”,得到0°到90°的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得.以题试法2.(1)(2012·滨州模拟)sin 600°+tan 240°的值等于( ) A .-32B.2C.3-12D.3+12(2)已知f (x )=a sin(πx +α)+b cos(πx -β),其中α,β,a ,b 均为非零实数,若f (2 012)=-1,则f (2 013)等于________.解析:(1)sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. (2)由诱导公式知f (2 012)=a sin α+b cos β=-1,∴f (2 013)=a sin(π+α)+b cos(π-β)=-(a sin α+b cos β)=1. 答案:(1)B (2)1典题导入[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.[自主解答] 由已知得sin A =2sin B ,3cos A =2cos B 两式平方相加得2cos 2A =1, 即cos A =22或cos A =-22. (1)当cos A =22时,cos B =32,又角A 、B 是三角形的内角, ∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)当cos A =-22时,cos B =-32, 又角A 、B 是三角形的内角,∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.由题悟法1.诱导公式在三角形中经常使用,常用的角的变形有:A +B =π-C,2A +2B =2π-2C ,A 2+B 2+C 2=π2等,于是可得sin(A +B )=sin C ,cos A +B 2=sin C2等; 2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.以题试法3.在三角形ABC 中, (1)求证:cos 2A +B 2+cos 2C2=1;(2)若cos ⎝⎛⎭⎫π2+A sin ⎝⎛⎭⎫32π+B tan (C -π)<0,求证:三角形ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,则A +B 2=π2-C2,所以cos A +B 2=cos ⎝⎛⎭⎫π2-C 2=sin C2, 故cos 2A +B 2+cos 2C2=1.(2)若cos ⎝⎛⎭⎫π2+A sin ⎝⎛⎭⎫32π+B tan (C -π)<0, 则(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0,∵在△ABC 中,0<A <π,0<B <π,0<C <π,∴sin A >0,⎩⎪⎨⎪⎧ cos B <0,tan C >0或⎩⎪⎨⎪⎧tan C <0,cos B >0,∴B 为钝角或C 为钝角,故△ABC 为钝角三角形.[典例] 已知-π2<x <0,sin x +cos x =15则sin x -cos x = .[常规解法] 由sin x +cos x =15,与sin 2x +cos 2x =1联立方程组⎩⎪⎨⎪⎧sin x +cos x =15,sin 2x +cos 2x =1,解得⎩⎨⎧sin x =45,cos x =-35或⎩⎨⎧ sin x =-35,cos x =45,∵-π2<x <0,∴⎩⎨⎧sin x =-35,cos x =45,∴sin x -cos x =-75.[答案] -75——————[高手支招]—————————————————————————— 1.上述解法易理解掌握,但计算量较大,很容易出错.若利用sin α+cos α,sin α·cos α,sin α-cos α三者之间的关系,即(sin α+cos α)2=1+2sin αcos α;(sin α-cos α)2=1-2sin αcos α;(sin α+cos α)2+(sin α-cos α)2=2,问题迎刃而解.2.对所求式子进行恒等变形时,注意式子正、负号的讨论与确定.—————————————————————————————————————— [巧思妙解] sin x +cos x =15,两边平方得,1+sin 2x =125,∴sin 2x =-2425.∴(sin x -cos x )2=1-sin 2x =4925,又∵-π2<x <0,∴sin x <0,cos x >0,∴sin x -cos x =-75.针对训练已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两根,则a =________. 解析:由题意知,原方程判别式Δ≥0, 即(-a )2-4a ≥0,∴a ≥4或a ≤0.∵⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a ,又(sin θ+cos θ)2=1+2sin θcos θ, ∴a 2-2a -1=0,∴a =1-2或a =1+2(舍去). 答案:1- 21.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0.∴cos θ<0.2.(2012·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.3.(2012·江西高考)若sin α+cos αsin α-cos α=12,则tan 2α=( )A .-34B.34 C .-43D.43解析:选B ∵sin α+cos αsin α-cos α=tan α+1tan α-1=12,∴tan α=-3.∴tan 2α=2tan α1-tan 2α=34. 4.(2012·淄博模拟)已知sin 2α=-2425,α∈⎝⎛⎭⎫-π4,0,则sin α+cos α=( ) A .-15B.15 C .-75D.75解析:选B (sin α+cos α)2=1+2sin αcos α=1+sin 2α=125,又α∈⎝⎛⎭⎫-π4,0,sin α+cos α>0,所以sin α+cos α=15.5.已知cos ⎝⎛⎭⎫π2-φ=32,且|φ|<π2,则tan φ=( ) A .-33B.33C .- 3D. 3解析:选D cos ⎝⎛⎭⎫π2-φ=sin φ=32, 又|φ|<π2,则cos φ=12,所以tan φ= 3.6.已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 7.cos ⎝⎛⎭⎫-17π4-sin ⎝⎛⎭⎫-17π4的值是________. 解析:原式=cos 17π4+sin 17π4=cos π4+sin π4= 2.答案: 28.若sin θ+cos θsin θ-cos θ=2,则sin(θ-5π)sin ⎝⎛⎭⎫3π2-θ=________. 解析:由sin θ+cos θsin θ-cos θ=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得:1+2sin θcos θ=4(1-2sin θcos θ),故sin θcos θ=310,∴sin(θ-5π)sin ⎝⎛⎭⎫3π2-θ=sin θcos θ=310. 答案:3109.(2012·中山模拟)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 解析:sin ⎝⎛⎭⎫α-2π3=sin ⎣⎡⎦⎤-π2-⎝⎛⎭⎫π6-α =-sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. 答案:-2310.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 11.已知cos(π+α)=-12,且α是第四象限角,计算:(1)sin(2π-α);(2)sin [α+(2n +1)π]+sin [α-(2n +1)π]sin (α+2n π)cos (α-2n π)(n ∈Z ).解:∵cos(π+α)=-12,∴-cos α=-12,cos α=12.又∵α是第四象限角, ∴sin α=-1-cos 2α=-32. (1)sin(2π-α)=sin [2π+(-α)]=sin(-α) =-sin α=32; (2)sin [α+(2n +1)π]+sin [α-(2n +1)π]sin (α+2n π)·cos (α-2n π)=sin (2n π+π+α)+sin (-2n π-π+α)sin (2n π+α)·cos (-2n π+α)=sin (π+α)+sin (-π+α)sin α·cos α=-sin α-sin (π-α)sin α·cos α=-2sin αsin αcos α=-2cos α=-4.12.(2012·信阳模拟)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值.解:(1)∵|OP |=1, ∴点P 在单位圆上.由正弦函数的定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由余弦函数的定义得cos α=45.故所求式子的值为54.1.已知1+sin x cos x =-12,那么cos xsin x -1的值是( )A.12B .-12C .2D .-2解析:选A 由于1+sin x cos x ·sin x -1cos x =sin 2x -1cos 2x =-1,故cos x sin x -1=12. 2.若角α的终边上有一点P (-4,a ),且sin α·cos α=34,则a 的值为( ) A .4 3B .±4 3C .-43或-433D. 3解析:选C 依题意可知角α的终边在第三象限,点P (-4,a )在其终边上且sin α·cos α=34易得tan α=3或33,则a =-43或-433. 3.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根. (1)求角A ; (2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tan B .解:(1)由已知可得,3sin A -cos A =1.① 又sin 2A +cos 2A =1,所以sin 2A +(3sin A -1)2=1,即4sin 2A -23sin A =0, 得sin A =0(舍去)或sin A =32, 则A =π3或2π3,将A =π3或2π3代入①知A =2π3时不成立,故A =π3.(2)由1+2sin B cos Bcos 2B -sin 2B=-3,得sin 2B -sin B cos B -2cos 2B =0, ∵cos B ≠0,∴tan 2B -tan B -2=0, ∴tan B =2或tan B =-1.∵tan B =-1使cos 2B -sin 2B =0,舍去, 故tan B =2.1.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α等于( ) A .mB .-m C.1-m 2D .-1-m 2解析:选A ∵sin ⎝⎛⎭⎫π4-α=m , ∴cos ⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=m . 2.求证:sin θ(1+tan θ)+cos θ⎝⎛⎭⎫1+1tan θ=1sin θ+1cos θ. 证明:左边=sin θ⎝⎛⎭⎫1+sin θcos θ+cos θ⎝⎛⎭⎫1+cos θsin θ =sin θ+sin 2θcos θ+cos θ+cos 2θsin θ=⎝⎛⎭⎫sin θ+cos 2θsin θ+⎝⎛⎭⎫cos θ+sin 2θcos θ =sin 2θ+cos 2θsin θ+cos 2θ+sin 2θcos θ=1sin θ+1cos θ=右边. 3.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.求下列各式的值:(1)sin α-cos α;(2)sin 3⎝⎛⎭⎫π2-α+cos 3⎝⎛⎭⎫π2+α. 解:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方,得1+2sin α·cos α=29,故2sin α·cos α=-79.又π2<α<π,∴sin α>0,cos α<0. (1)(sin α-cos α)2=1-2sin α·cos α=1-⎝⎛⎭⎫-79=169,∴sin α-cos α=43. (2)sin 3⎝⎛⎭⎫π2-α+cos 3⎝⎛⎭⎫π2+α=cos 3α-sin 3α=(cos α-sin α)(cos 2α+cos α·sin α+sin 2α)=-43×⎝⎛⎭⎫1-718=-2227. 第三节三角函数图象与性质[知识能否忆起]1.周期函数 (1)周期函数的定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数.T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质[小题能否全取]1.函数y =tan ⎝⎛⎭⎫π4-x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4,x ∈R B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π4,x ∈R C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π-3π4,k ∈Z ,x ∈R D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+3π4,k ∈Z ,x ∈R 解析:选D ∵x -π4≠k π+π2,∴x ≠k π+3π4,k ∈Z .2.(教材习题改编)下列函数中,最小正周期为π的奇函数是( ) A .y =cos 2xB .y =sin 2xC .y =tan 2xD .y =sin ⎝⎛⎭⎫2x -π2 解析:选B 选项A 、D 中的函数均为偶函数,C 中函数的最小正周期为π2,故选B.3.函数y =|sin x |的一个单调增区间是( ) A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2D.⎝⎛⎭⎫3π2,2π解析:选C 作出函数y =|sin x |的图象观察可知,函数y =|sin x |在⎝⎛⎭⎫π,3π2上递增. 4.比较大小,sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10. 解析:因为y =sin x 在⎣⎡⎦⎤-π2,0上为增函数且-π18>-π10,故sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10. 答案:>5.(教材习题改编)y =2-3cos ⎝⎛⎭⎫x +π4的最大值为________.此时x =________. 解析:当cos ⎝⎛⎭⎫x +π4=-1时,函数y =2-3cos ⎝⎛⎭⎫x +π4取得最大值5,此时x +π4=π+2k π,从而x =34π+2k π,k ∈Z .答案:5 34π+2k π,k ∈Z1.求三角函数的单调区间时,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式,再根据三角函数的单调区间,求出 x 所在的区间.应特别注意,考虑问题应在函数的定义域内. 注意区分下列两种形式的函数单调性的不同:(1)y =sin ⎝⎛⎭⎫ωx -π4;(2)y =sin ⎝⎛⎭⎫π4-ωx . 2.周期性是函数的整体性质,要求对于函数整个定义 域内的每一个x 值都满足f (x +T )=f (x ),其中T 是不为零的 常数.如果只有个别的x 值满足f (x +T )=f (x ),或找到哪怕 只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x ) 的周期.典题导入[例1] (1)(2012·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1D.⎣⎡⎦⎤-1,54 [自主解答] (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z .(2)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎡⎦⎤-54,1. [答案] (1)⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z (2)C若本例(2)中x ∈⎣⎡⎦⎤0,π2,试求其值域. 解:令t =sin x ,则t ∈[0,1]. ∴y =t 2+t -1=⎝⎛⎭⎫t +122-54. ∴y ∈[-1,1].∴函数的值域为[-1,1].由题悟法1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).以题试法1.(1)函数y =2+log 12x +tan x 的定义域为________.(2)(2012·山西考前适应性训练)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332D.⎣⎡⎦⎤-332,3 解析:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z ⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z ). 利用数轴可得函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4.(2)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 答案:(1)⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4 (2)B典题导入[例2] (2012·华南师大附中模拟)已知函数y =sin ⎝⎛⎭⎫π3-2x ,求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.[自主解答] 由y =sin ⎝⎛⎭⎫π3-2x 可化为y =-sin ⎝⎛⎭⎫2x -π3. (1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z . 从而x ∈[-π,0]时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为⎣⎡⎦⎤-π,-7π12,⎣⎡⎦⎤-π12,0.由题悟法求三角函数的单调区间时应注意以下几点:(1)形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间,基本思路是把ωx +φ看作是一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )求得函数的增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k∈Z )求得函数的减区间.(2)形如y =A sin(-ωx +φ)(A >0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y =-A sin(ωx -φ),由-π2+2k π≤ωx -φ≤π2+2k π(k ∈Z )得到函数的减区间,由π2+2k π≤ωx -φ≤3π2+2k π(k ∈Z )得到函数的增区间.(3)对于y =A cos(ωx +φ),y =A tan(ωx +φ)等,函数的单调区间求法与y =A sin(ωx +φ)类似.以题试法2.(1)函数y =|tan x |的增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析:(1)作出y =|tan x |的图象,观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z .(2)f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因为函数f (x )在⎣⎡⎦⎤0,π6上单调递增,所以f ⎝⎛⎭⎫π7<f ⎝⎛⎭⎫π6,而c =f ⎝⎛⎫π3=2sin 2π3=2sin π3=f (0)<f ⎝⎛⎭⎫π7, 所以c <a <b .答案:(1)⎣⎡⎭⎫k π,k π+π2,k ∈Z (2)B典题导入[例3] (2012·广州调研)已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),给出下面四个命题: ①函数f (x )的最小正周期为π;②函数f (x )是偶函数;③函数f (x )的图象关于直线x =π4对称;④函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4[自主解答] 函数f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,则其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由f (x )的图象易知函数f (x )在⎣⎡⎦⎤0,π2上是增函数,故④正确.综上可知,选C. [答案] C由题悟法1.三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法 (1)利用周期函数的定义.(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(3)利用图象. 3.三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.以题试法3.(1)(2012·青岛模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2 (2)(2012·遵义模拟)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B .(0,0) C.⎝⎛⎭⎫-18,0D.⎝⎛⎭⎫18,0解析:(1)选A 对于选项A ,注意到y =sin ⎝⎛⎭⎫2x +π2=cos 2x 的周期为π,且在⎣⎡⎦⎤π4,π2上是减函数.(2)选C 由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa =1,∴a =2π,故f (x )=2sin ⎝⎛⎭⎫2πx +π4.将x =-18代入得函数值为0.含有参数的三角函数问题,一般属于逆向型思 维问题,难度相对较大一些.正确利用三角函数的 性质求解此类问题,是以熟练掌握三角函数的各 条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参 数问题进行策略性的分类解析. 1.根据三角函数的单调性求解参数[典例1] 已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ),单调递减区间为⎣⎡⎦⎤k π+π12,k π+7π12(k ∈Z ),则ω的值为________. [解析] 由题意,得⎝⎛⎭⎫k π+7π12-⎝⎛⎭⎫k π-5π12=π,即函数f (x )的周期为π,则ω=2. [答案] 2[题后悟道] 解答此类问题时要注意单调区间的给出方式,如“函数f (x )在⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )上单调递增”与“函数f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )”,二者是不相同的.针对训练1.(2012·荆州模拟)若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( )A .2 B.12 C .3D.13解析:选B 由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎫ω×2π3=1, 即cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 2.根据三角函数的奇偶性求解参数[典例2] 已知f (x )=cos ()3x +φ-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6D .-π3[解析]f (x )=2⎣⎡⎦⎤12cos (3x +φ)-32sin (3x +φ)=2cos ⎣⎡⎦⎤(3x +φ)+π3=2cos ⎣⎡⎦⎤3x +⎝⎛⎭⎫φ+π3,由f (x )为偶函数,知φ+π3=k π(k ∈Z ),即φ=k π-π3(k ∈Z ),由所给选项。
数学讲义之三角函数、解三角形【主干内容】1 1 21. 弧长公式:l I |r. 扇形面积公式:s扇形尹| r22. 三角函数的定义域:4. 同角三角函数的基本关系式:si^ tan sin2cos21cosk5. 诱导公式:把亍的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”。
重要公式:cos() cos cos sin sin6•三角函数图象的作法:描点法及其特例一一五点作图法(正、余弦曲线)三点二线作图法(正切曲线)【注意!!!】本专题主要思想方法1. 等价变换。
熟练运用公式对问题进行转化,化归为熟悉的基本问题;2. 数形结合。
充分利用单位圆中的三角函数线及三角函数图象帮助解题;3. 分类讨论。
【题型分类】题型一:三角运算,要求熟练使用各种诱导公式、倍角公式等。
〖例1〗(10全国卷I文)cos300A.31-C1n .3B.— D. 2222C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解析】cos300cos36601cos602〖例2〗(10全国卷n文)已知sin2,则cos(x 2 )3A. JB.1C.1D V5D.3993【解析】B:本题考查了二倍角公式及诱导公式,•••SINA=2/3 , cos( 2 )cos2(12sin 2) -9〖例3〗(10福建文)计算12sin 22.5的结果等于()A.-B.豆C.D.迈2232【答案】B2故选B.【解原式=cos 45 - 51例4〗(10浙江文)函数f(x) sin2(2x -)的最小正周期是 ___________4最小正周期为2,本题主要考察了二倍角余弦公式的灵活运用,属容易题。
题型二:三角函数的图象:三角函数图象从“形”上反应了三角函数的性质。
是()D解析:对解析式进行降幕扩角,转化为f x】cos 4x —1,可知其2 2 21例1〗(10重庆文)下列函数中,周期为,且在[壬,?]上为减函数的是A. y sin(2x -)B. y cos(2x )C. y sin(x 【答案】AD.cos(x —)1例2〗(09浙江文)已知 a 是实数,则函数 f (x ) 1 a sin ax 的图象不可能1例3〗为得到y sin2x 的图象A.向左平移丸个长度单位12C.向左平移4个长度单位6分析:先统一函数名称,在根据平移的法则解决.B .向右平移个长度单位12D.向右平移士个长度单位6n解析:函数 y cos 2x sin 2x — —33 2sin 2xsin2 x512故要将函数y sin2x的图象向左平移丸个长度单位,选择答案A.121例4〗(10江西文)四位同学在同一个坐标系中分别选定了一个适当的区间,y sin(x ), y sin(x )各自作出三个函数y sin2x,63的图像如下,结果发现恰有一位同学作出的图像有错误,那么有错误的图像是 【答案】C【命题意图】考查三角函数的图像与性质•【解析】作出三个函数图像对比分析即可选择 Co2最小正周期为 -.3(I)求 的最小正周期.〖例6〗(11浙江文)已知函数 f(x) As in (§x ) , x R , A 0 ,0 -. y f (x)的部分图像,如图所示, P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1, A).(I)求f (x)的最小正周期及 (n)若点R 的坐标为(1,0),1例5〗(09重庆文)设函数f(x )2 2(sin x cos x) 2cos x( 0)的(n)若函数y g(x)的图像是由y f(x)的图像向右平移三个单位长度得到,求y g(x)的单调增区间.解:(I)2 2依题意得————,故2 3的最小正周期为由2k 2 解得三k3依题意得:5w 3x w 2k24 2 w x w k 4 3-(kZ) 寻(kZ)\故y g(x)的单调增区间为:拿的值;PRQ —,求A 的值.题型三:三角函数的最值: 最值是三角函数最为重要的内容之一, 其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问 题。
第五节 三角恒等变换[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos _αsin_β; (2)cos(α±β)=cos_αcos_β∓sin_αsin_β; (3)t a n(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)t a n 2α=2tan α1-tan 2α. [常用结论]1.公式T (α±β)的变形:(1)t a n α+t a n β=t a n(α+β)(1-t a n αt a n β); (2)t a n α-t a n β=t a n(α-β)(1+t a n αt a n β). 2.公式C 2α的变形: (1)sin 2α=12(1-cos 2α);(2)cos 2α=12(1+cos 2α).3.公式逆用:(1)sin ⎝ ⎛⎭⎪⎫π4±α=cos ⎝ ⎛⎭⎪⎫π4∓α;(2)sin ⎝ ⎛⎭⎪⎫π3±α=cos ⎝ ⎛⎭⎪⎫π6∓α;(3)sin ⎝⎛⎭⎪⎫π6±α=cos ⎝ ⎛⎭⎪⎫π3∓α.4.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中t a n α=b a),特别的sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4; sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3; 3sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π6. [基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 的大小关系不确定.( ) (3)公式t a n(α+β)=tan α+tan β1-tan αtan β可以变形为t a n α+t a n β=t a n(α+β)(1-t a n αt a n β),且对任意角α,β都成立.( )(4)函数y =3sin x +4cos x 的最大值为7. ( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12 D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]3.(教材改编)已知cos α=-35,α是第三象限角,则cos ⎝ ⎛⎭⎪⎫π4+α的值为( ) A.210 B .-210C.7210 D .-7210A [由cos α=-35,α是第三象限角知sin α=-45,则cos ⎝⎛⎭⎪⎫π4+α=cos π4cos α-sin π4sin α=22×⎝ ⎛⎭⎪⎫-35-22×⎝ ⎛⎭⎪⎫-45=210.故选A.] 4.已知sin(α-π)=35,则cos 2α=________.725 [由sin(α-π)=35,得sin α=-35,则 cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫-352=725.]5.(教材改编)11-tan 15°-11+tan 15°=________.33 [11-tan 15°-11+tan 15°=1+tan 15°-1-tan 15°1-tan 15°1+tan 15° =2tan 15°1-tan 215°=t a n 30°=33. ]三角函数式的化简1.已知sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫6+α,则t a n α=( )A .-1B .0C.12D .1A [因为sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α.所以1-32cos α=3-12sin α.所以t a n α=sin αcos α=-1,故选A.]2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( ) A .-12B.12C.32 D .-32B [sin 110°sin 20°cos 2155°-sin 2155°=sin70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.]3.已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=( ) A.23B.43C.34D.32D [由sin θ-cos θ=-144得sin ⎝⎛⎭⎪⎫π4-θ=74,因为θ∈⎝ ⎛⎭⎪⎫0,π4,所以0<π4-θ<π4,所以cos ⎝ ⎛⎭⎪⎫π4-θ=34.2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝⎛⎭⎪⎫π4-θ=32.]4.已知0<θ<π,则1+sin θ+cos θ⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ=________.-cos θ [原式=⎝⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ24cos2θ2=cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2·cos θ⎪⎪⎪⎪⎪⎪cos θ2.因为0<θ<π,所以0<θ2<π2,所以cos θ2>0.所以原式=-cos θ.][规律方法]1.三角函数式的化简要遵循“三看”原则2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次.三角函数式的求值►考法1 【例1】 (1)(2018·全国卷Ⅲ)若sin α=13,则cos 2α=( )A.89B.79C .-79D .-89(2)(2019·某某模拟)已知角α是锐角,若sin ⎝ ⎛⎭⎪⎫α-π6=13,则cos ⎝ ⎛⎭⎪⎫α-π3等于( )A.26+16 B.3-28 C.3+28D.23-16(3)若α,β是锐角,且sin α-sin β=-12,cos α-cos β=12,则t a n(α-β)=________.(1)B (2)A (3)-73 [(1)cos 2α=1-2sin 2α=1-2×132=79.故选B.(2)由0<α<π2得-π6<α-π6<π3又sin ⎝ ⎛⎭⎪⎫α-π6=13, ∴cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫132=223∴cos ⎝ ⎛⎭⎪⎫α-π3=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6-π6=cos ⎝ ⎛⎭⎪⎫α-π6cos π6+sin ⎝ ⎛⎭⎪⎫α-π6sin π6 =223×32+13×12=26+16,故选A. (3)因为sin α-sin β=-12,cos α-cos β=12,两式平方相加得:2-2cos αcosβ-2sin αsin β=12,即2-2cos(α-β)=12,所以cos(α-β)=34,因为α、β是锐角,且sin α-sin β=-12<0,所以0<α<β<π2.所以-π2<α-β<0.所以sin(α-β)=-1-cos2α-β=-74. 所以t a n(α-β)=sin α-βcos α-β=-73.]►考法2 给角求值【例2】 (1)t a n 20°+t a n 40°+3t a n 20°t a n 40°=________. (2)sin 50°(1+3t a n 10°)=________.(1)3(2)1[(1)由t a n(20°+40°)=tan 20°+t an 40°1-tan 20°tan 40°=3得t a n 20°+t a n 40°=3(1-t a n 20°t a n 40°)∴原式=3(1-t a n 20°t a n 40°)+3t a n 20°t a n 40°= 3. (2)sin 50°(1+3t a n 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]►考法3 给值求角 【例3】 (1)若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( )A.7π4B.9π4 C.5π4或7π4D.5π4或9π4(2)已知α,β∈(0,π),且t a n(α-β)=12,t a n β=-17,则2α-β的值为________.(1)A (2)-3π4[(1)∵α∈⎣⎢⎡⎦⎥⎤π4,π,∴2α∈⎣⎢⎡⎦⎥⎤π2,2π.又sin 2α=55>0,∴2α∈⎣⎢⎡⎦⎥⎤π2,π, ∴cos 2α=-255且α∈⎣⎢⎡⎦⎥⎤π4,π2. 又β∈⎣⎢⎡⎦⎥⎤π,3π2,∴β-α∈⎣⎢⎡⎦⎥⎤π2,5π4. ∵sin(β-α)=1010>0, ∴cos(β-α)=-31010且β-α∈⎣⎢⎡⎦⎥⎤π2,π, ∴cos(α+β)=cos[2α+(β-α)]=cos 2αcos(β-α)-sin 2αsin(β-α)=-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22. ∵2α∈⎣⎢⎡⎦⎥⎤π2,π,β-α∈⎣⎢⎡⎦⎥⎤π2,π,∴α+β∈[]π,2π,∴α+β=7π4,故选A.(2)因为t a n α=t a n[(α-β)+β] =tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,所以0<α<π2,又因为t a n 2α=2tan α1-tan 2α==34>0,所以0<2α<π2, 所以t a n(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.因为t a n β=-17<0,所以π2<β<π,-π<2α-β<0,所以2α-β=-3π4.][规律方法] 三角函数求值的三种情况1“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的X 围,最后确定角.(1)若0<α<π,-π<β<0,cos ⎛⎪⎫π+α=1,cos ⎛⎪⎫π-β=3,则cos ⎝⎛⎭⎪⎫α+β2=( ) A.539B .-69C.33D .-33(2)1-cos 210°cos 80°1-cos 20°=________.(3)(2019·某某模拟)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β值是________.(1)A (2)22 (3)π4 [(1)由0<α<π2得π4<π4+α<3π4,又cos ⎝ ⎛⎭⎪⎫π4+α=13, ∴sin ⎝ ⎛⎭⎪⎫π4+α=223,由-π2<β<0得π4<π4-β2<π2.又cos ⎝⎛⎭⎪⎫π4-β2=33,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63.∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos π4+αcos π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.(2)原式=sin 210°cos 80°2sin 210°=sin 210°2sin 210°=22. (3)∵α,β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. ∴β=π4.]三角恒等变换的综合应用【例4】 (2019·某某模拟)已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.[解] (1)由已知得f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π. (2)由(1)知f (x )=12sin ⎝ ⎛⎭⎪⎫2x -π6.∵-π3≤x ≤π4,∴-5π6≤2x -π6≤π3,∴当2x -π6=-π2,即x =-π6时,f (x )有最小值,且f ⎝ ⎛⎭⎪⎫-π6=-12,当2x -π6=π3,即x =π4时,f (x )有最大值,且f ⎝ ⎛⎭⎪⎫π4=34. 所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12. [规律方法] 三角恒等变换在三角函数图象和性质中的应用,解决此类问题可先根据和角公式、倍角公式把函数表达式变为正弦型函数y =A sin ωx +φ+t 或余弦型函数y =A cos ωx +φ+t 的形式,再利用三角函数的图象与性质求解.(2019·某某模拟)已知函数f (x )=3sin x cos x +cos 2x .(1)求函数f (x )的最小正周期;(2)若-π2<α<0,f (α)=56,求sin 2α的值.[解] (1)∵函数f (x )=3sin x cos x +cos 2x =32sin 2x +1+cos 2x 2=sin ⎝ ⎛⎭⎪⎫2x +π6+12, ∴函数f (x )的最小正周期为2π2=π. (2)若-π2<α<0, 则2α+π6∈⎝⎛⎭⎪⎫-5π6,π6, ∴f (α)=sin ⎝⎛⎭⎪⎫2α+π6+12=56, ∴sin ⎝⎛⎭⎪⎫2α+π6=13, ∴2α+π6∈⎝⎛⎭⎪⎫0,π6, ∴cos ⎝ ⎛⎭⎪⎫2α+π6 =1-sin 2⎝ ⎛⎭⎪⎫2α+π6=223, ∴sin 2α=sin ⎝ ⎛⎭⎪⎫2α+π6-π6=sin ⎝ ⎛⎭⎪⎫2α+π6cos π6-cos ⎝⎛⎭⎪⎫2α+π6sin π6=13×32-223×12=3-226.1.(2017·全国卷Ⅲ)函数f (x )=15sin x +π3+cos ⎝⎛⎭⎪⎫x -π6的最大值为( ) A.65B .1 C.35 D.15A [法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6 =15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x=35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3, ∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65. 故选A.法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2, ∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6 =15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x =15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝⎛⎭⎪⎫x +π3 =65sin ⎝⎛⎭⎪⎫x +π3≤65. ∴f (x )m ax =65,故选A.] 2.(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( ) A.725 B.15C .-15D .-725 D [因为cos ⎝ ⎛⎭⎪⎫π4-α=35, 所以sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.] 3.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15 B.55 C.255 D .1B[由题意知cos α>0.因为cos 2α=2cos2α-1=23,所以cos α=56,sin α=±16,得|t a n α|=55.由题意知|t a n α|=a-b1-2,所以|a-b|=55.] 4.(2018·全国卷Ⅱ)已知t a nα-5π4=15,则t a n α=________.32[法一:因为t a n α-5π4=15,所以tan α-tan5π41+tan αtan5π4=15,即tan α-11+tan α=15,解得t a n α=32.法二:因为t a nα-5π4=15,所以t a n α=t a nα-5π4+5π4=tanα-5π4+tan5π41-tanα-5π4tan5π4=15+11-15×1=32.]5.(2017·全国卷Ⅱ)函数f(x)=2cos x+sin x的最大值为________.5[f(x)=2cos x+sin x=5⎝⎛⎭⎪⎫255cos x+55sin x,设sin α=255,cos α=55,则f(x)=5sin(x+α),∴函数f(x)=2cos x+sin x的最大值为 5.]自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。
高三文科数学专题复习 三角函数、解三角形专题一 三角函数的概念、同角三角函数的关系式及诱导公式A 组 三年高考真题(2016~2014年)1.(2015·福建,6)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125 B.-125 C.512 D.-5121.解析 ∵sin α=-513,且α为第四象限角, ∴cos α=1213,∴tan α=sin αcos α=-512,故选D. 答案 D2.(2014·大纲全国,2)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C.-35 D.-452.解析 记P (-4,3),则x =-4,y =3,r =|OP |=(-4)2+32=5, 故cos α=x r =-45=-45,故选D.3.(2014·新课标全国Ⅰ,2)若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0 3.解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin 2α=2sin αcos α>0,故选C. 答案 C4.(2016·新课标全国Ⅰ,14)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 4.解析 由题意,得cos ⎝⎛⎭⎫θ+π4=45,∴tan ⎝⎛⎭⎫θ+π4=34.∴tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2=-1tan ⎝⎛⎭⎫θ+π4=-43. 答案 -43 5.(2016·四川,11)sin 750°=________.5.解析 ∵sin θ=sin(k ·360°+θ),(k ∈Z ), ∴sin 750°=sin(2×360°+30°)=sin 30°=12. 答案 126.(2015·四川,13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 6.解析 ∵sin α+2cos α=0, ∴sin α=-2cos α,∴tan α=-2,又∵2sin αcos α-cos 2α=2sin α·cos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1, ∴原式=2×(-2)-1(-2)2+1=-1. 答案 -1B 组 两年模拟精选(2016~2015年)1.(2016·济南一中高三期中)若点(4,a )在12y x =图象上,则tan a6π的值为( )A.0B.33C.1D.3 1.解析 ∵a =412=2, ∴tan a6π= 3. 答案 D2.(2016·贵州4月适应性考试)若sin ⎝⎛⎭⎫π2+α=-35,且α∈⎝⎛⎭⎫π2,π,则sin ()π-2α=( ) A.2425 B.1225 C.-1225 D.-2425 2.解析 由sin ⎝⎛⎭⎫π2+α=-35得cos α=-35, 又α∈⎝⎛⎭⎫π2,π, 则sin α=45, 所以sin(π-2α)=sin 2α=2sin αcos α=-2425. 答案 D3.(2016·南充市第一次适应性考试)已知角α的终边经过点P (2,-1),则sin α-cos αsin α+cos α=( )A.3B.13C.-13D.-33.解析 因为角α终边经过点P (2,-1),所以tan α=-12,sin α-cos αsin α+cos α=tan α-1tan α+1=-12-1-12+1=-3,故选D.4.(2015·乐山市调研)若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于( )A.-33 B.33C.- 3D.3 4.解析 -10π3=-4π+2π3,所以-10π3与2π3的终边相同,所以tan 2π3=-3=-y ,则y = 3. 答案 D5.(2015·石家庄一模)已知cos α=k ,k ∈R ,α∈⎝⎛⎭⎫π2,π,则sin(π+α)=( )A.-1-k 2B.1-k 2C.-kD.±1-k 25.解析 因为α∈⎝⎛⎭⎫π2,π,所以sin α>0,则sin ()π+α=-sin α=-1-cos 2 α=-1-k 2,故选A. 答案 A 6.(2015·洛阳市统考)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B ,3cos A -1)位于( ) A.第一象限B.第二象限C.第三象限D.第四象限6.解析 由题意得,A +B >π2即A >π2-B ,且A ∈⎝⎛⎭⎫0,π3,π2-B >0, 故sin A >sin ⎝⎛⎭⎫π2-B =cos B ,即sin A -cos B >0, 3cos A -1>3×12-1=12, 故点P 在第一象限. 答案 A 7.(2016·山东日照第一次模拟)已知角α为第二象限角,cos ⎝⎛⎭⎫π2-α=45,则cos α=________. 7.解析 sin α=cos ⎝⎛⎭⎫π2-α=45, 又α为第二象限角, 所以cos α=-1-sin 2α=-35. 答案 -358.(2015·湖南长沙一模)在平面直角坐标系xOy 中,将点A (3,1)绕原点O 逆时针旋转90°到点B ,那么点B 坐标为________,若直线OB 的倾斜角为α,则tan 2α的值为________.8.解析 设点A (3,1)为角θ终边上一点,如图所示,|OA |=2,由三角函数的定义可知:sin θ=12,cos θ=32,则θ=2k π+π6(k ∈Z ), 则A (2cos θ,2sin θ),设B (x ,y ),由已知得x =2cos ⎝⎛⎭⎫θ+π2=2cos ⎝⎛⎭⎫2k π+2π3=-1,y =2sin ⎝⎛⎭⎫θ+π2=2sin ⎝⎛⎭⎫2k π+23π=3,所以B (-1,3),且tan α=-3,所以tan 2α=2tan α1-tan 2α= 3. 答案 (-1,3)3专题二 三角函数的图象与性质 A 组 三年高考真题(2016~2014年)1.(2016·新课标全国Ⅰ,6)若将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A.y =2sin ⎝⎛⎭⎫2x +π4 B.y =2sin ⎝⎛⎭⎫2x +π3 C.y =2sin ⎝⎛⎭⎫2x -π4 D.y =2sin ⎝⎛⎭⎫2x -π3 1.解析 函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3,故选D. 答案 D 2.(2016·新课标全国卷Ⅱ,3)函数y =A sin(ωx +φ)的部分图象如图所示,则( ) A.y =2sin ⎝⎛⎭⎫2x -π6 B.y =2sin ⎝⎛⎭⎫2x -π3 C.y =2sin ⎝⎛⎭⎫x +π6 D.y =2sin ⎝⎛⎭⎫x +π3 2.解析 由题图可知,T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π,所以ω=2,由五点作图法可知2×π3+φ=π2,所以φ=-π6, 所以函数的解析式为y =2sin ⎝⎛⎭⎫2x -π6,故选A. 答案 A 3.(2016·四川,4)为了得到函数y =sin ⎝⎛⎭⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( ) A.向左平行移动π3个单位长度B.向右平行移动π3个单位长度C.向上平行移动π3个单位长度D.向下平行移动π3个单位长度3.解析 由y =sin x 得到y =sin(x ±a )的图象,只需记住“左加右减”的规则即可. 答案 A4.(2015·新课标全国Ⅰ,8)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( ) A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z4.解析 由图象知T 2=54-14=1, ∴T =2.由选项知D 正确. 答案 D5.(2015·山东,4)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位5.解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 答案 B 6.(2014·天津,8)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C.πD.2π 6.解析 由题意得函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0), 又曲线y =f (x )与直线y =1相邻交点距离的最小值是π3, 由正弦函数的图象知,ωx +π6=π6和ωx +π6=5π6对应的x 的值相差π3, 即2π3ω=π3,解得ω=2,所以f (x )的最小正周期是T =2πω=π. 答案 C 7.(2014·陕西,2)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B.πC.2πD.4π 7.解析 由余弦函数的复合函数周期公式得T =2π2=π. 答案 B8.(2014·四川,3)为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度 8.解析 由图象平移的规律“左加右减”,可知选A. 答案 A9.(2014·浙江,4)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A.向右平移π12个单位 B.向右平移π4个单位 C.向左平移π12个单位 D.向左平移π4个单位9.解析 因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4,所以将y =2cos 3x 的图象向右平移π12个单位后可得到 y =2cos ⎝⎛⎭⎫3x -π4的图象.答案 A 10.(2014·安徽,7)若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π4 10.解析 方法一 f (x )=2sin ⎝⎛⎭⎫2x +π4, 将函数f (x )的图象向右平移φ个单位后所得图象对应的函数解析式为y =2sin ⎝⎛⎭⎫2x +π4-2φ,由该函数为偶函数可知2φ-π4=k π+π2,k ∈Z , 即φ=k π2+3π8,k ∈Z , 所以φ的最小正值为3π8.方法二 f (x )=2cos ⎝⎛⎭⎫2x -π4,将函数f (x )的图象向右平移φ个单位后所得图象对应的函数为 y =2cos ⎝⎛⎭⎫2x -π4-2φ,且该函数为偶函数, 故2φ+π4=k π,k ∈Z , 所以φ的最小正值为3π8. 答案 C 11.(2014·新课标全国Ⅰ,7)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6, ④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③11.解析 ①y =cos|2x |,最小正周期为π;②y =|cos x |,最小正周期为π;③y =cos ⎝⎛⎭⎫2x +π6,最小正周期为π; ④y =tan ⎝⎛⎭⎫2x -π4,最小正周期为π2,所以最小正周期为π的所有函数为①②③,故选A. 答案 A 12.(2014·福建,7)将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是( )A.y =f (x )是奇函数B.y =f (x )的周期为πC.y =f (x )的图象关于直线x =π2对称 D.y =f (x )的图象关于点⎝⎛⎭⎫-π2,0对称 12.解析 函数y =sin x 的图象向左平移π2个单位后,得到函数f (x )=sin ⎝⎛⎭⎫x +π2=cos x 的图象,f (x )=cos x 为偶函数,排除A ;f (x )=cos x 的周期为2π,排除B ;因为f ⎝⎛⎭⎫π2=cos π2=0,所以f (x )=cos x 不关于直线x =π2对称,排除C ;故选D. 答案 D13.(2016·新课标全国Ⅲ,14)函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.13.解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,由y =2sin x 的图象至少向右平移π3个单位长度得到. 答案 π314.(2015·天津,11)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数 y =f (x )的图象关于直线x =ω对称,则ω的值为________.14.解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 由-π2+2k π≤ωx +π4≤π2+2k π,k ∈Z , 得-3π4+2k π≤ωx ≤π4+2k π, 由题意f (x )在区间(-ω,ω)内单调递增,可知k =0,ω≥π2,又函数y =f (x )的图象关于直线x =ω对称, 所以sin(ω2+π4)=1,ω2+π4=π2, 所以ω=π2. 答案 π215.(2015·陕西,14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.15.解析 由题干图易得y min =k -3=2,则k =5, ∴y max =k +3=8. 答案 816.(2015·湖南,15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.16.解析 由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx ,知sin ωx =cos ωx , 即sin ωx -cos ωx =0, ∴2sin ⎝⎛⎭⎫ωx -π4=0, ∴ωx =π4+k π,x =1ω⎝⎛⎭⎫π4+k π(k ∈Z ), ∴两函数交点坐标为⎝⎛⎭⎫1ω⎝⎛⎭⎫π4+k π,2(k =0,2,4,…), 或⎝⎛⎭⎫1ω⎝⎛⎭⎫π4+k π,-2(k =…,-3,-1,1,3,…) ∴最短距离为(22)2+π2ω2=23, ∴π2ω2=4, ∴ω=π2. 答案 π217.(2014·重庆,13)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=________. 17.解析 把函数y =sin x 的图象向左平移π6个单位长度得到y =sin ⎝⎛⎭⎫x +π6的图象, 再把函数y =sin ⎝⎛⎭⎫x +π6图象上每一点的横坐标伸长为原来的2倍,纵坐标不变, 得到函数f (x )=sin ⎝⎛⎭⎫12x +π6的图象, 所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12×π6+π6=sin π4=22. 答案 2218.(2015·湖北,18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:ωx +φπ2π3π22π(1) (2)将y =f (x )图象上所有点向左平移π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.18.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0. 19.(2014·湖北,18)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系: f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.19.解 (1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24, 所以π3≤π12t +π3<7π3, -1≤sin ⎝⎛⎭⎫π12t +π3≤1. 当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 20.(2014·四川,17)已知函数f (x )=sin ⎝⎛⎭⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 20.解 (1)由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z , 得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,有sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α), 所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2 α-sin 2 α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z ,此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或cos α-sin α=-52. 21.(2014·福建,18)已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝⎛⎭⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间. 21.解 f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π4+1. (1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . 22.(2014·北京,16)函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图象如图所示. (1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值. 22.解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0. 于是当2x +π6=0,即x =-π12时,f (x )取得最大值0; 当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.B 组 两年模拟精选(2016~2015年)1.(2016·四川成都第二次诊断)将函数f (x )=cos ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变,得到函数g (x )的图象,则函数g (x )的解析式为( )A.g (x )=cos ⎝⎛⎭⎫2x +π3B.g (x )=cos ⎝⎛⎭⎫2x +π6C.g (x )=cos ⎝⎛⎭⎫x 2+π3D.g (x )=cos ⎝⎛⎭⎫x 2+π6 1.解析 横坐标缩短为原来的12倍,纵坐标不变,则有g (x )=cos ⎝⎛⎭⎫2x +π6. 答案 B 2.(2016·山西四校联考)已知函数f (x )=cos ⎝⎛⎭⎫ωx +φ-π2⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝⎛⎭⎫x +π6取得最小值时x 的集合为( ) A.⎩⎨⎧⎭⎬⎫x |x =k π-π6,k ∈Z B.⎩⎨⎧⎭⎬⎫x |x =k π-π3,k ∈Z C.⎩⎨⎧⎭⎬⎫x |x =2k π-π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z2.解析 依题意得T =2πω=4⎝⎛⎭⎫7π12-π3=π,ω=2,f ⎝⎛⎭⎫π3=cos ⎝⎛⎭⎫φ+π6=1, 又|φ|<π2,因此φ=-π6,所以f (x )=cos ⎝⎛⎭⎫2x -2π3. 当f ⎝⎛⎭⎫x +π6=cos ⎝⎛⎭⎫2x -π3取得最小值时,2x -π3=2k π-π,k ∈Z ,即x =k π-π3,k ∈Z , 答案 B 3.(2015·石家庄模拟)将函数f (x )=sin(2x +φ)的图象向左平移π8个单位,所得到的函数图象关于y 轴对称,则φ的一个可能取值为( )A.3π4B.π4C.0D.-π43.解析 函数f (x )=sin(2x +φ)的图象向左平移π8个单位, 得g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ的图象, 又g (x )的函数图象关于y 轴对称,所以g (x )为偶函数, 所以π4+φ=k π+π2(k ∈Z ),即φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选B. 答案 B4.(2015·黄冈模拟)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x 是( ) A.奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B.偶函数且图象关于点(π,0)对称 C.奇函数且图象关于直线x =π2对称 D.偶函数且图象关于点⎝⎛⎭⎫π2,0对称 4.解析 当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,即π4+φ=-π2+2k π,k ∈Z ,即φ=-3π4+2k π,k ∈Z ,所以f (x )=A sin ⎝⎛⎭⎫x -3π4(A >0), 所以y =f (3π4-x )=A sin ⎝⎛⎭⎫3π4-x +3π4=-A cos x , 所以函数为偶函数且图象关于点⎝⎛⎭⎫π2,0对称,选D. 答案 D5.(2015·河南焦作市统考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( )A.关于点⎝⎛⎭⎫π2,0对称B.关于直线x =5π12对称C.关于点⎝⎛⎭⎫5π12,0对称D.关于直线x =π12对称 5.解析 f (x )=2sin ⎝⎛⎭⎫π3-2x =2cos ⎝⎛⎭⎫2x +π6, π+2k π≤2x +π6≤2π+2k π,k ∈Z , 即5π12+k π≤x ≤11π12+k π,k ∈Z . 答案 ⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z )6.(2015·怀化市监测)函数y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间为________.6.解析 由于函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π, 故2πω=π,ω=2. 把其图象向右平移π12个单位后得到函数的解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+φ=sin ⎝⎛⎭⎫2x -π6+φ,为奇函数, ∴-π6+φ=k π,∴φ=k π+π6,k ∈Z , ∴φ=π6,∴函数f (x )=sin ⎝⎛⎭⎫2x +π6. 令2x +π6=k π,k ∈Z ,可得x =k π2-π12,k ∈Z , 故函数的对称中心为⎝⎛⎭⎫k π2-π12,0(k ∈Z ). 故点⎝⎛⎭⎫5π12,0是函数的一个对称中心. 答案 C 7.(2015·辽宁五校联考)已知函数f (x )=32sin ωx +32cos ωx (ω>0)的周期为4. (1)求f (x )的解析式;(2)将f (x )的图象沿x 轴向右平移23个单位得到函数g (x )的图象,P ,Q 分别为函数g (x )图象的最高点和最低点(如图),求∠OQP 的大小.7.解 (1)f (x )=32sin ωx +32cos ωx =3⎝⎛⎭⎫12sin ωx +32cos ωx =3⎝⎛⎭⎫sin ωx cos π3+cos ωx sin π3=3sin ⎝⎛⎭⎫ωx +π3. ∵T =4,ω>0,∴ω=2π4=π2. ∴f (x )=3sin ⎝⎛⎭⎫π2x +π3. (2)将f (x )的图象沿x 轴向右平移23个单位得到函数g (x )=3sin π2x .∵P ,Q 分别为该图象的最高点和最低点, ∴P (1,3),Q (3,-3). ∴OP =2,PQ =4,OQ =12, ∴cos ∠OQP =OQ 2+PQ 2-OP 22OQ ·QP =32.∵∠OQP 是△OPQ 的一个内角, ∴∠OQP =π6.专题三 三角恒等变换A 组 三年高考真题(2016~2014年)1.(2016·新课标全国Ⅲ,6)若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.451.解析 tan θ=-13,则cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 答案 D2.(2016·新课标全国Ⅱ,11)函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.72.解析 因为f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x =1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112, 所以当sin x =1时函数的最大值为5,故选B. 答案 B 3.(2015·重庆,6)若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16C.57D.563.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 答案 A4.(2016·浙江,11)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________. 4.解析 ∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎫22cos 2x +22sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1=A sin(ωx +φ)+b (A >0), ∴A =2,b =1. 答案 2 15.(2016·山东,17)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值.5.解 (1)由f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos 2x )+sin 2x -1=sin 2x -3cos 2x +3-1=2sin ⎝⎛⎭⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )⎝⎛⎭⎫或⎝⎛⎭⎫k π-π12,k π+5π12(k ∈Z ). (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象. 再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象,即g (x )=2sin x +3-1. 所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 6.(2016·北京,16)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值; (2)求f (x )的单调递增区间.6.解 (1)f (x )=2sin ωx ·cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2⎝⎛⎭⎫22sin 2ωx +22cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π4 由ω>0,f (x )最小正周期为π得2π2ω=π, 解得ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π4,令-π2+2k π≤2x +π4≤π2+2k π,k ∈Z , 解得-3π8+k π≤x ≤π8+k π,k ∈Z , 即f (x )的单调递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ). 7.(2015·广东,16)已知tan α=2.(1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 7.解 (1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=tan α+11-tan α=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.8.(2015·北京,15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期; (2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 8.解 (1)因为f (x )=sin x +3cos x - 3.=2sin ⎝⎛⎭⎫x +π3- 3. 所以f (x )的最小正周期为2π. (2)因为0≤x ≤2π3时,所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. 9.(2015·福建,21)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2. ①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.9.(1)解 因为f (x )=103sin x 2cos x 2+10cos 2x2=53sin x +5cos x +5=10sin ⎝⎛⎭⎫x +π6+5, 所以函数f (x )的最小正周期T =2π.(2)证明 ①将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5的图象,再向下平移a(a >0)个单位长度后得到g (x )=10sin x +5-a 的图象.又已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.②要证明存在无穷多个互不相同的正整数x 0,使得g (x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得10sin x 0-8>0,即sin x 0>45. 由45<32知,存在0<α0<π3,使得sin α0=45.由正弦函数的性质可知,当x ∈(α0,π-α0)时,均有sin x >45. 因为y =sin x 的周期为2π,所以当x ∈(2k π+α0,2k π+π-α0)(k ∈Z )时,均有sin x >45.因为对任意的整数k ,(2k π+π-α0)-(2k π+α0)=π-2α0>π3>1,所以对任意的正整数k ,都存在正整数x 0∈(2k π+α0,2k π+π-α0),使得sin x k >45.亦即,存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.10.(2014·广东,16)已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值; (2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ. 10.解 (1)∵f (x )=A sin ⎝⎛⎭⎫x +π3,且f ⎝⎛⎭⎫5π12=322, ∴A sin ⎝⎛⎭⎫5π12+π3=322⇒A sin 3π4=322⇒A =3. (2)由(1)知f (x )=3sin ⎝⎛⎭⎫x +π3, ∵f (θ)-f (-θ)=3, ∴3sin(θ+π3)-3sin ⎝⎛⎭⎫-θ+π3=3, 展开得3⎝⎛⎭⎫12sin θ+32cos θ-3⎝⎛⎭⎫32cos θ-12sin θ=3, 化简得sin θ=33.∵θ∈⎝⎛⎭⎫0,π2,∴cos θ=63. ∴f ⎝⎛⎭⎫π6-θ=3sin ⎣⎡⎦⎤⎝⎛⎭⎫π6-θ+π3=3sin ⎝⎛⎭⎫π2-θ=3cos θ= 6. 11.(2014·浙江,18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B 2+4sin A sin =2+ 2.(1)求角C 的大小; (2)已知b =4,△ABC 的面积为6,求边长c 的值. 11.解 (1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2,化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22. 所以A +B =3π4,从而C =π4. (2)因为S △ABC =12ab sin C , 由S △ABC =6,b =4,C =π4,得a =32,由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10.B 组 两年模拟精选(2016~2015年)1.(2016·江西九校联考)已知α∈⎝⎛⎭⎫π,32π,cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( ) A.7 B.17 C.-17 D.-71.解析 ∵α∈⎝⎛⎭⎫π,3π2,cos α=-45, ∴sin α=-35, ∴tan α=sin αcos α=34, ∴tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=17. 答案 B2.(2016·洛阳统考)若α∈[0,2π),则满足1+sin 2α=sin α+cos α的α的取值范围是( ) A.⎣⎡⎦⎤0,π2 B.[]0,πC.⎣⎡⎦⎤0,3π4 D.⎣⎡⎦⎤0,3π4∪⎣⎡⎭⎫7π4,2π 2.解析 由1+sin 2α=sin α+cos α得sin α+cos α=2sin ⎝⎛⎭⎫α+π4≥0, 又因为α∈[0,2π),所以α的取值范围为⎣⎡⎦⎤0,3π4∪⎣⎡⎭⎫7π4,2π,故选D. 答案 D 3.(2016·河南六市联考)设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c =1-cos 50°2,则有( ) A.a <c <b B.a <b <c C.b <c <a D.c <a <b3.解析 利用三角公式化简得a =12cos 2°-32sin 2°=cos(60°+2°)=cos 62°=sin 28°,b =tan 28°,c =sin 2 25°=sin 25°.因为sin 25°<sin 28°<tan 28°, 所以c <a <b ,故选D. 答案 D4.(2015·大庆市质检二)已知sin α=54,则sin 2α-cos 2α的值为( ) A.-18 B.-38 C.18 D.384.解析 sin 2α-cos 2α=-cos 2α=2sin 2α-1=-38. 答案 B5.(2015·烟台模拟)已知cos α=35,cos(α+β)=-513,α,β都是锐角,则cos β等于( )A.-6365B.-3365C.3365D.63655.解析 ∵α,β是锐角,∴0<α+β<π,又cos(α+β)=-513<0,cos α=35,∴π2<α+β<π, ∴sin(α+β)=1213,sin α=45. 又cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-513×35+1213×45=3365. 答案 C6.(2015·河北唐山模拟)已知2sin 2α=1+cos 2α,则tan 2α=( ) A.43 B.-43 C.43或0 D.-43或0 6.解析 因为2sin 2α=1+cos 2α,所以2sin 2α=2cos 2 α, 所以2cos α·(2sin α-cos α)=0,解得cos α=0或tan α=12.若cos α=0,则α=k π+π2,k ∈Z , 2α=2k π+π,k ∈Z ,所以tan 2α=0;若tan α=12,则tan 2α=2tan α1-tan 2 α=43. 综上所述,故选C. 答案 C7.(2015·巴蜀中学一模)已知sin αcos α1-cos 2α=12,tan(α-β)=12,则tan β=________.7.解析 ∵sin αcos α1-cos 2α=sin αcos α2sin 2α=cos α2sin α=12, ∴tan α=1.∵tan(α-β)=tan α-tan β1+tan αtan β=12,∴tan β=13. 答案 138.(2015·河南洛阳统考)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=41313. (1)求cos(α-β)的值; (2)若0<α<π2,-π2<β<0且sin β=-45,求sin α的值.8.解 (1)∵a -b =(cos α-cos β,sin α-sin β),∴|a -b |2=(cos α-cos β)2+(sin α-sin β)2=2-2cos(α-β), ∴1613=2-2cos(α-β),∴cos(α-β)=513. (2)∵0<α<π2,-π2<β<0且sin β=-45,∴cos β=35且0<α-β<π.又∵cos(α-β)=513,∴sin(α-β)=1213.∴sin α=sin[(α-β)+β]=sin(α-β)·cos β+cos(α-β)·sin β=1213×35+513×⎝ ⎛⎭⎪⎫-45=1665.专题四 解三角形A 组 三年高考真题(2016~2014年)1.(2016·新课标全国Ⅰ,4)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3C.2D.31.解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝⎛⎭⎫b =-13舍去,故选D.答案 D 2.(2016·山东,8)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4 B.π3 C.π4 D.π62.解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.答案 C3.(2015·广东,5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( ) A. 3 B.2 2 C.2 D. 3 3.解析 由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+12-2×b ×23×32,即b 2-6b +8=0, ∴b =4或b =2,又b <c ,∴b =2. 答案 C4.(2014·四川,8)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 4.解析 ∵tan 15°=tan(60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=2-3,∴BC =60tan 60°-60tan 15°=120(3-1)(m),故选C. 答案 C5.(2016·新课标全国Ⅱ,15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.5.解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113.答案 21136.(2016·北京,13)在△ABC 中,∠A =2π3,a =3c ,则bc=________.6.解析 由a sin A =c sin C 得sin C =c sin A a =13×32=12, 又0<C <π3,所以C =π6,B =π-(A +C )=π6.所以b c =sin Bsin C =sin π6sin π6=1. 答案 17.(2015·北京,11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.7.解析 由正弦定理得sin ∠B =b sin ∠Aa=6sin2π33=22,因为∠A 为钝角,所以∠B =π4. 答案 π48.(2015·重庆,13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 且a =2,cos C =-14,3sin A =2sin B ,则c =________.8.解析 由3sin A =2sin B ,得3a =2b ,∴b =32a =32×2=3,在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos C =22+32-2×2×3×⎝⎛⎭⎫-14=16, 解得c =4. 答案 4 9.(2015·安徽,12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.9.解析 已知∠C =60°,由正弦定理得AC sin ∠B =AB sin ∠C,∴AC =6sin 45°sin 60°=6×2232=2. 答案 210.(2015·湖北,15)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.10.解析 依题意,在△ABC 中,AB =600,∠BAC =30°,∠ACB =45°,由正弦定理得600sin 45°=BCsin 30°,得BC =3002, 在Rt △BCD 中,CD =BC ·tan 30°=1006(m).答案 1006 11.(2014·新课标全国Ⅰ,16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________m.11.解析 在三角形ABC 中,AC =1002,在三角形MAC 中,MA sin 60°=ACsin 45°,解得MA =1003,在三角形MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m .答案 15012.(2014·湖北,13)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.12.解析 由正弦定理a sin A =b sin B 得sin B =b sin A a =32,又B ∈⎝⎛⎭⎫π6,5π6,所以B =π3或2π3.答案 π3或2π3 13.(2014·福建,14)在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. 13.解析 在△ABC 中,根据正弦定理,得AC sin B =BC sin A ,所以2sin B =3sin 60°,解得sin B =1,因为B ∈(0,π),所以B =π2,所以AB =22-(3)2=1. 答案 114.(2014·北京,12)在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.14.解析 根据余弦定理,c 2=a 2+b 2-2ab cos C =12+22-2×1×2×14=4,故c =2,因为cos C =14,于是sin C =1-⎝⎛⎭⎫142=154, 于是,由正弦定理,sin A =a sin C c =1×1542=158(或:由a =1,b =2,c =2,得cos A =22+22-122×2×2=78,于是,sin A =1-⎝⎛⎭⎫782=158). 答案 2 15815.(2016·浙江,16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B. (1)证明:A =2B ; (2)若cos B =23,求cos C 的值.15.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B , 所以A =2B . (2)解 由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.16.(2016·四川,18)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B.16.(1)证明 根据正弦定理,可设a sin A =b sin B =c sin C=k (k >0). 则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C ,变形可得:sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C . (2)解由已知,b 2+c 2-a 2=65bc , 根据余弦定理,有cos A =b 2+c 2-a 22bc =35. 所以sin A =1-cos 2A =45. 由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin Bcos B =4.17.(2015·江苏,15)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.17.解 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7, 所以BC =7.(2)由正弦定理知,AB sin C =BC sin A , 所以sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角,则cos C =1-sin 2C =1-37=277. 所以sin 2C =2sin C ·cos C =2×217×277=437. 18.(2015·新课标全国Ⅱ,17)在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin ∠Bsin ∠C; (2)若∠BAC =60°,求∠B . 18.解 (1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DCsin ∠CAD .因为AD 平分∠BAC ,BD =2DC ,所以sin ∠B sin ∠C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin ∠C =sin(∠BAC +∠B )=32cos ∠B +12sin ∠B . 由(1)知2sin ∠B =sin ∠C , 所以tan ∠B =33,即∠B =30°. 19.(2015·天津,16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝⎛⎭⎫2A +π6的值. 19.解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158.(2)cos ⎝⎛⎭⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A =15-7316. 20.(2015·山东,17)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33, sin (A +B )=69,ac =23, 求sin A 和c 的值. 20.解 在△ABC 中,由cos B =33,得sin B =63. 因为A +B +C =π,所以sin C =sin(A +B )=69. 因为sin C <sin B ,所以C <B ,可知C 为锐角, 所以cos C =539.所以sin A =sin(B +C )=sin B cos C +cos B sin C =63×539+33×69=223. 由a sin A =c sin C ,可得a =c sin Asin C =223c 69=23c , 又ac =23,所以c =1. 21.(2015·湖南,17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A . (1)证明:sin B =cos A ; (2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .21.解 (1)由正弦定理知a sin A =b sin B =csin C=2R , ∴a =2R sin A ,b =2R sin B ,代入a =b tan A ,得sin A =sin B ·sin A cos A , 又∵A ∈(0,π),∴sin A >0, ∴1=sin Bcos A ,即sin B =cos A .(2)由sin C -sin A cos B =43知,sin(A +B )-sin A cos B =43, ∴cos A sin B =34.由(1)知sin B =cos A ,∴cos 2A =34, 由于B 是钝角,故A ∈⎝⎛⎭⎫0,π2, ∴cos A =32,A =π6,sin B =32,B =2π3, ∴C =π-(A +B )=π6.22.(2015·浙江,16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2. (1)求sin 2A sin 2A +cos 2 A的值; (2)若B =π4,a =3,求△ABC 的面积. 22.解 (1)由tan ⎝⎛⎭⎫π4+A =2,得tan A =13, 所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)因为tan A =13,A ∈(0,π), 所以sin A =1010,cos A =31010.又由a =3,B =π4及正弦定理a sin A =b sin B 得b =3 5. 由sin C =sin(A +B )=sin ⎝⎛⎭⎫A +π4得sin C =255, 设△ABC 的面积为S ,则S =12ab sin C =9.23.(2015·新课标全国Ⅰ,17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积. 23.解 (1)由题设及正弦定理可得b 2=2ac .又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1.24.(2014·重庆,18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.24.解 (1)由题意可知:c =8-(a +b )=72.由余弦定理得:cos C =a 2+b 2-c 22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得:sin A ·1+cos B 2+sin B ·1+cos A 2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C . 因为sin A cos B +cos A sin B =sin(A +B )=sin C , 所以sin A +sin B =3sin C . 由正弦定理可知:a +b =3c . 又因a +b +c =8,故a +b =6. 由于S =12ab sin C =92sin C ,所以ab =9, 从而a 2-6a +9=0,解得a =3,b =3.25.(2014·山东,17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.25.解 (1)在△ABC 中,由题意知sin A =1-cos 2 A =33,又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63. 由正弦定理可得b =a sin Bsin A =3×6333=3 2.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33. 由A +B +C =π,得C =π-(A +B ). 所以sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13. 因此△ABC 的面积S =12ab sin C =12×3×32×13=322.。