最新文科数学解三角形专题(高考题)练习【附答案】50359资料讲解
- 格式:doc
- 大小:365.00 KB
- 文档页数:9
专题15 三角函数与解三角形综合【2024年】1.(2024·新课标Ⅱ)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【点睛】本题考查解三角形的相关学问,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.2.(2024·北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:假如选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin C =, S =. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 27a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin 816a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解实力,属中档题.3.(2024·山东卷)在①ac sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?注:假如选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】解法一:由sin 3sin AB 可得:ab=不妨设(),0a b m m =>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件=c 冲突,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=若选②,3csinA =,3=,c =;若选③,与条件=c 冲突.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采纳到正弦定理,出现边的二次式一般采纳到余弦定理.应用正、余弦定理时,留意公式变式的应用.解决三角形问题时,留意角的限制范围. 4.(2024·天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.【答案】(Ⅰ)4C π;(Ⅱ)sin A =(Ⅲ)sin 2426A π⎛⎫+= ⎪⎝⎭.【解析】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4C π;(Ⅱ)在ABC 中,由4Cπ,a c ==sin sin a C A c===13; (Ⅲ)由a c <知角A为锐角,由sin 13A =,可得cos A=13,进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算实力,是一道简单题.5.(2024·浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =. (I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II)13,22⎛⎤⎥ ⎝⎦ 【解析】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin 2B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【2024年】1.【2024年高考全国Ⅰ卷】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,即1sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 2.【2024年高考全国Ⅲ卷】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2).【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2C c Aa CC︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭. 3.【2024年高考北京卷】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯-⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 4.【2024年高考天津卷】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 5.【2024年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)3c =;(2)5.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭6.【2024年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型马路l ,湖上有桥AB (AB 是圆O 的直径).规划在马路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的全部点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321(百米). 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满意规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满意规划要求. 综上,P 和Q 均不能选在D 处. (3)先探讨点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上随意一点F ,OF ≥OB ,即线段PB 上全部点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再探讨点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上全部点到点O 的距离均不小于圆O的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满意规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满意规划要求. 综上,P 和Q 均不能选在D 处. (3)先探讨点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上随意一点F ,OF ≥OB ,即线段PB 上全部点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再探讨点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q(a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上全部点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+. 7.【2024年高考浙江卷】设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对随意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭ 3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【2024年】1. (2024年浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满意sin (α+β)=,求cos β的值. 【答案】(Ⅰ) , (Ⅱ)或【解析】(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.2. (2024年天津卷)在中,内角A,B,C所对的边分别为a,b,c.已知. (I)求角B的大小;(II)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,3. (2024年北京卷)在△ABC中,a=7,b=8,cos B= –.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】(1) ∠A=(2) AC边上的高为【解析】(Ⅰ)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.4. (2024年江苏卷)已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.5. (2024年全国I卷理数)在平面四边形中,,,,. (1)求;(2)若,求.【答案】 (1) .(2).【解析】 (1)在中,由正弦定理得. 由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得,所以.【2024年】1.【2024课标1,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【答案】(1)23.(2)333【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A =.由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-. 所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得33b c +=故△ABC 的周长为333+.2.【2024课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2BA C +=, (1)求cosB ;(2)若6a c +=,ABC ∆的面积为2,求b 。
2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
专题2解三角形(文科)解答题30题1.(广西邕衡金卷2023届高三第二次适应性考试数学(文)试题)记ABC 的面积为S ,其内角,,A B C 的对边分别为a ,b ,c ,已知1c =,)2214a b S +-=.(1)求C ;(2)求ABC 面积的最大值.2.(内蒙古自治区赤峰市2022届高三模拟考试数学(文科)4月20日试题)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求tan B 的值;(2)设3a =,1c =,求b 和△ABC 的面积.3.(山西省运城市2022届高三5月考前适应性测试数学(文)试题(A 卷))在ABC中,内角A ,B ,C 的对边分别为a ,b ,c ,cos sin cos sin )a C A A c A =-.(1)求A ;(2)a =,ABC 的外接圆圆心为点P ,求PBC 的周长.4.(贵州省贵阳市白云区2023届高三上学期阶段性质量监测数学(文)试题)在ABC中,内角、、A B C 的对边分别为a 、b 、c ,在条件:①sin cos a C A ;()sin 0B C A ++=;③222sin sin sin sin sin B C B C A +-=,从上述三个条件中任选一个作为题目的补充条件,你的选择是______,并解答下面问题:(1)求角A 的大小;(2)若b c a +=ABC 的面积.5.(江西省宜春市丰城中学2022届高三高考模拟数学(文)试题)在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,sin sin 2B Cb a B +⋅=,(1)求角A ;(2)若2AB AC ⋅=,求a 的最小值.6.(山西省太原市2022届高三下学期三模文科数学试题)已知锐角ABC中,()()sin sinA B A B+=-=.(1)求tan tanAB;(2)若7AB=,求ABC的面积S.7.(陕西省西安市莲湖区2022届高三下学期高考模拟考试文科数学试题)在①()cos 2cos A B C =+,②sin cos a C A =这两个条件中任选一个作为已知条件,然后解答问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,______.(1)求角A ;(2)若2b =,4c =,求ABC 的BC 边上的中线AD 的长.8.(陕西省西安地区八校2022届高三下学期5月联考文科数学试题)如图,在平面四边形ABCD 中,E 为AD 2AB =,3BC AE ==,5CD DE ==.(1)若2BE =,求()tan ABE BEA ∠+∠的值;(2)若120BCD ∠=︒,求BE 的长.(2)连接BD .在BCD △中,3BC =,CD 2235235cos1203430BD =+-⨯⨯⨯︒=-由余弦定理,得22232cos 23BE AEB BE +-∠=⨯⨯余弦定理,得22257cos BE BED +-==∠9.(2023·河南信阳·河南省信阳市第二高级中学校联考一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=.(1)求证:2A B =;(2)若3cos 4B =,点D 为边AB 上的一点,CD 平分ACB ∠,1CD =,求边长b .中,由正弦定理可得:在ACD10.(2022·贵州贵阳·贵阳一中校考模拟预测)在①10ac =,②a =③()sin sin 6sin b A C B +=这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值及三角形ABC 的面积;若问题中的三角形不存在,请说明理由.问题:是否存在,ABC 它的内角A ,B ,C 的对边分别为a ,b ,c ,且cos2,3,sin Bb bc C==___________?注:如果选择多个条件分别解答,按第一个解答计分.11.(广东省潮州市2022届高三下学期二模数学试题)已知在ABC 中,A ,B ,C 为三个内角,a ,b ,c 为三边,2cos c b B =,2π3C =.(1)求角B 的大小;(2)在下列两个条件中选择一个作为已知,求出BC 边上的中线的长度.①ABC 的面积为4;②ABC 的周长为4+的三个12.(贵州省铜仁市2023届高三上学期期末质量监测数学(文)试题)设ABC的面积为S.且有关系式:内角A,B,C所对的边长为a,b,c,ABC2+=+.cos2cos22cos2sin sinA B C A B(1)求C;(2)求2cS的最小值.13.(广西四市2022届高三4月教学质量检测数学(文)试题)设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=.(1)证明:()sin 2sin sin A B B A -=;(2)若3A B =,求B 的值.14.(广西南宁市第十九中学2023届高三数学(文)信息卷(三)试题)在ABC 中,内角A ,B ,C 所对的边分别为a 、b 、c ,已知2222cos cos b c a ac C c A +-=+.(1)求角A 的大小;(2)若5a =,2c =,求ABC 的面积.15.(江西省南昌市2022届高三第二次模拟测试数学(文)试题)如图,锐角OAB 中,OA OB =,延长BA 到C ,使得3AC =,4AOC π∠=,sin 3OAC =∠.(1)求OC ;(2)求sin BOC ∠.16.(江西省重点中学盟校2022届高三第二次联考数学(文)试题)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,从条件①:sin sin 2B C b a B +=,条件②:1cos 2b a Cc =+,条件③:tan (2)tan b A c b B =-这三个条件中选择一个作为已知条件.(1)求角A ;(2)若3AB AC ⋅=,求a 的最小值.17.(江西省景德镇市2023届高三上学期第二次质检数学(文)试题)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin tan cos 2cos C B C A =-且角A 为锐角.(1)求角B ;(2)若ABC b 的最小值.18.(宁夏银川一中2022届高三二模数学(文)试题)ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积tan S B =⋅.(1)求B ;(2)若a 、b 、c 成等差数列,ABC ∆的面积为32,求2b .19.(宁夏平罗中学2022届高三下学期第三次模拟数学(文)试题)已知函数()f x m n =⋅,向量()sin cos n x x x =+ ,()cos sin ,2sin m x x x =-,在锐角ABC 中内角,,A B C 的对边分别为,,a b c ,(1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a =c b +的最大值.20.(内蒙古包头市2022届高三第一次模拟考试文科数学试题(A 卷))如图所示,经过村庄B 有两条夹角为60︒的公路BA 和BC ,根据规划拟在两条公路之间的区域内建一工厂F ,分别在两条公路边上建两个仓库D 和E (异于村庄B ),设计要求3FD FE DE ===(单位:千米).(1)若30BDE ∠=︒,求BF 的值(保留根号);(2)若设BDE θ∠=,当θ为何值时,工厂产生的噪音对村庄B 的居民影响最小(即工厂F 与村庄B 的距离最远),并求其最远距离.(精确到0.1 1.732≈)21.(内蒙古赤峰市2022届高三下学期5月模拟考试数学(文科)试题)ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且()()()sin sin sin b c C B c a A +-=-(1)求B ;(2)若2a =,b =ABC 的面积.22.(山西省晋中市2022届高三下学期5月模拟数学(文)试题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在①23coscos cos 24A C A C --=;②()22sin sin sin 3sin sin A C B A C +=+;③2cos 2b C c a +=这三个条件中任选一个作为已知条件.(1)求角B 的大小;(2)若a c +=ABC 周长的最小值.23.(陕西省宝鸡中学2022届高三下学期高考模拟文科数学试题)已知())cos ,cos ,,cos a x x b x x ==-,()f x a b =⋅ ,(1)求()f x 的单调递增区间;(2)设ABC 的内角,,A B C所对的边分别为,,a b c ,若()12f A =,且a 22b c +的取值范围.24.(广西桂林市第十八中学2020-2021学年高二上学期第一次阶段性考试数学(文)试题)已知ABC 的三个内角、、A B C 的对边分别为a b c 、、,若角A B C ,,成等差数列,且2b =,(1)求ABC 的外接圆直径;(2)求a c +的取值范围.25.(甘肃省天水市田家炳中学2022-2023学年高三下学期开学考试数学(文科)试题)记ABC 的内角,,A B C 的对边分别为,,a b c .已知()()sin sin a B C b c B +=+,D 为边BC 的中点.(1)证明:2A B =;(2)若π3A =,AD ABC 的周长l .26.(河南省平顶山市汝州市2022届高三3月联考文科数学试题)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积S AB AC →→=⋅.(2)延长AC 至点D ,使得CD =AC ,且BD =2BC ,若c =6,求△ABC 的周长.27.(甘肃省酒泉市2022届高三5月联考文科数学试题)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知cos cos 26A C b C ππ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭.(2)若a b =,P 为ABC 内一点,2PA =,4PC =,则从下面①②③中选取两个作为条件,证明另外一个成立:①BP CP ⊥;②PB =;③150∠= BPA .28.(青海省海东市第一中学2022届高考模拟(一)数学(文)试题)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin b A B =,求ABC 面积的最大值.29.(河南省2022-2023年度高三模拟考试数学(文科)试题)已知ABC 的内角,,A B C 所对的边分别为,,a b c ,且(sin sin )sin sin a A C c C b B -+=.(1)求角B ;(2)若5b =,求ABC 周长的最大值.30.(河南省郑州市2023届高三第一次质量预测文科数学试题)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且cos sin b c a B B +=+.(1)求角A 的大小;(2)若D 是BC 边上一点,且2CD DB =,若2AD =,求△ABC 面积的最大值.因为2CD DB=,23 AD AB=由222133AD AB AC⎛⎫=+⎪⎝⎭,所以。
这是经过我整理的一些解三角形的题目,部分题目没有答案,自己去问老师同学,针对高考数学第一道大题,一定不要失分。
——(下载之后删掉我)1、在b 、c ,向量()2sin ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
(1)解:m ∥n ⇒ 2sinB(2cos2B2-1)=-3cos2B⇒2sinBcosB =-3cos2B ⇒ tan2B =- 3 ……4分∵0<2B <π,∴2B =2π3,∴锐角B =π3 ……2分(2)由tan2B =- 3 ⇒ B =π3或5π6①当B =π3时,已知b =2,由余弦定理,得: 4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立) ……3分∵△ABC 的面积S △ABC =12 acsinB =34ac ≤ 3∴△ABC 的面积最大值为 3 ……1分②当B =5π6时,已知b =2,由余弦定理,得: 4=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) ∴ac ≤4(2-3)……1分∵△ABC 的面积S △ABC =12 acsinB =14ac ≤2- 3∴△ABC 的面积最大值为2- 3……1分5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅BC BA ,且22=b ,求c a 和b 的值. 解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B …………6分 (II )解:由2cos ,2==⋅B a BC BA 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又所以a =c = 6 6、在ABC ∆中,5cos 5A =,10cos 10B =. (Ⅰ)求角C ; (Ⅱ)设2AB =,求ABC ∆的面积.(Ⅰ)解:由5cos 5A =,10cos 10B =,得02A B π⎛⎫∈ ⎪⎝⎭、,,所以23sin sin .510A B ==, …… 3分因为2cos cos[()]cos()cos cos sin sin 2C A B A B A B A B π=-+=-+=-+=…6分且0C π<< 故.4C π=………… 7分(Ⅱ)解:根据正弦定理得sin 6sin sin sin 10AB AC AB B AC C B C ⋅=⇒==, ………….. 10分所以ABC ∆的面积为16sin .25AB AC A ⋅⋅= 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.解:(1)由m//n 得0cos 1sin 22=--A A……2分即01cos cos 22=-+A A1cos 21cos -==∴A A 或 ………………4分1cos ,-=∆A ABC A 的内角是 舍去3π=∴A ………………6分(2)a c b 3=+ 由正弦定理,23sin 3sin sin ==+A C B (8)分π32=+C B23)32sin(sin =-+∴B B π ………………10分23)6sin(23sin 23cos 23=+=+∴πB B B 即8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
第六单元 解三角形教材复习课“解三角形”相关基础知识一课过1.正弦定理a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径. 由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin A ,b =2R sin B ,c =2R sin C . 2.余弦定理a 2=b 2+c 2-2bc cos_A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .[小题速通]1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =2 3,cos A =32,且b <c ,则b =( )A .3B .2 2C .2D. 3解析:选C 由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4,∵b <c ,∴b =2.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 的大小为( )A .30°B .60°C .120°D .150°解析:选B 由余弦定理可得b 2+c 2-a 2=2bc cos A ,又因为b 2+c 2-a 2=bc ,所以cos A =12,则A =60°.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选C 根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,所以角C 是钝角,故选C.4.(2018·郑州质量预测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为( )A .30°B .45°C .60°D .120°解析:选A 由正弦定理及(b -c )(sin B +sin C )=(a -3c )·sin A ,得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,所以a 2+c 2-b 2=3ac ,又因为cos B =a 2+c 2-b 22ac,所以cos B =32,所以B =30°. 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a =0,则B =________.解析:由正弦定理可得sin B cos C +3sin B sin C =sin A =sin(B +C )=sin B cos C +sin C cos B ,则3sin B sin C =sin C cos B ,又sin C ≠0,所以tan B =33,则B =30°. 答案:30°[清易错]1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制. 1.在△ABC 中,若a =18,b =24,A =45°,则此三角形解的情况是( ) A .无解 B .两解 C .一解D .不确定解析:选B ∵a sin A =b sin B ,∴sin B =b a sin A =2418sin 45°=223.又∵a <b ,∴B 有两个解, 即此三角形有两解.2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b=________.解析:在△ABC 中,∵sin B =12,0<B <π,∴B =π6或B =5π6.又∵B +C <π,C =π6,∴B =π6,∴A =2π3.∵a sin A =b sin B ,∴b =a sin B sin A=1. 答案:13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =7,b =8,c =13,则角C 的大小为________.解析:∵在△ABC 中,a =7,b =8,c =13,∴由余弦定理可得cos C =a 2+b 2-c 22ab =72+82-1322×7×8=-12,∵C ∈(0,π),∴C =2π3. 答案:2π3设△ABC 的边为a ,b ,c ,所对的三个角为A ,B ,C ,其面积为S . (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为△ABC 内切圆的半径).[小题速通]1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a =1,b =3,B =60°,则△ABC 的面积为( )A.12B.32C .1D. 3解析:选B 在△ABC 中,由正弦定理可得sin A =a sin B b =12,则A =30°,所以C =90°,则△ABC 的面积S =12ab sin C =12×1×3×1=32.2.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ) A.32B. 3 C .2 3D .2解析:选B 由题意S △ABC =12·AB ·AC ·sin A =32,则AC =1,由余弦定理可得BC =4+1-2×2×1×cos 60°= 3.3.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3.故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15344.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析:由cos A =-14,得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,解得a =8. 答案:8[清易错]应用三角形面积公式S =12ab sin C =12ac sin B =12bc sin A 时,注意公式中的角应为两边的夹角.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,c =23,A =30°,则△ABC 的面积为________.解析:∵a =2,c =23,A =30°, ∴由正弦定理得sin C =c ·sin A a =32,∴C =60°或120°, ∴B =90°或30°,则S △ABC =12ac sin B =23或 3.答案:23或 31.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 3.方向角相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③); (2)北偏西α,即由指北方向逆时针旋转α到达目标方向; (3)南偏西等其他方向角类似.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角(如图④,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. [小题速通]1.(2018·潍坊调研)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC =( )A .10 3 n mile B.1063 n mileC .5 2 n mileD .5 6 n mile解析:选D 如图,在△ABC 中,C =180°-60°-75°=45°,又A =60°,由正弦定理,得AB sin C =BC sin A ,即10sin 45°=BC sin 60°,解得BC =5 6. 2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO ·tan 45°=30(m), ON =AO ·tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=103(m). 答案:10 33.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.则此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32[清易错]易混淆方位角与方向角概念:方位角是指北方向线按顺时针转到目标方向线之间的水平夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.一、选择题1.已知△ABC 中,sin A ∶sin B ∶sin C =1∶1∶3,则此三角形的最大内角为( ) A .60° B .90° C .120°D .135°解析:选C ∵sin A ∶sin B ∶sin C =1∶1∶3, ∴a ∶b ∶c =1∶1∶3,设a =m ,则b =m ,c =3m . ∴cos C =a 2+b 2-c 22ab =m 2+m 2-3m 22m 2=-12, ∴C =120°.2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若c =2a ,b =4,cos B =14.则c 的值为( )A .4B .2C .5D .6解析:选A ∵c =2a ,b =4,cos B =14,∴由余弦定理得b 2=a 2+c 2-2ac cos B , 即16=14c 2+c 2-14c 2=c 2,解得c =4.4.已知△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38解析:选B 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.5.(2018·湖南四校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(a 2+b 2-c 2)tan C =ab ,则角C 的大小为( )A.π6或5π6B.π3或2π3C.π6D.2π3解析:选A 由题意知,a 2+b 2-c 22ab =12tan C ⇒cos C =cos C 2sin C ,sin C =12,又C ∈(0,π),∴C =π6或5π6.6.已知A ,B 两地间的距离为10 km ,B ,C 两地间的距离为20 km ,现测得∠ABC =120°,则A ,C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D 如图所示,由余弦定理可得,AC 2=100+400-2×10×20×cos 120°=700,∴AC =107(km).7.(2018·贵州质检)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332D .3 3解析:选C ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.8.一艘海轮从A 处出发,以每小时40 n mile 的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2 n mileB .10 3 n mileC .20 3 n mileD .20 2 n mile解析:选A 画出示意图如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.故B ,C 两点间的距离是10 2 n mile. 二、填空题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos C =-14,3sin A=2sin B ,则c =________.解析:因为3sin A =2sin B ,所以由正弦定理可得3a =2b ,则b =3,由余弦定理可得c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝⎛⎭⎫-14=16,则c =4. 答案:410.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若角A ,B ,C 成等差数列,且边a ,b ,c 成等比数列,则△ABC 的形状为________.解析:∵在△ABC 中,角A ,B ,C 成等差数列, ∴2B =A +C ,由三角形内角和定理,可得B =π3,又∵边a ,b ,c 成等比数列,∴b 2=ac , 由余弦定理可得b 2=a 2+c 2-2ac cos B , ∴ac =a 2+c 2-ac ,即a 2+c 2-2ac =0, 故(a -c )2=0,可得a =c , 所以△ABC 的形状为等边三角形. 答案:等边三角形11.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围为________.解析:由AC =b =2,要使三角形有两解,就是要使以C 为圆心,以2为半径的圆与AB 有两个交点,当A =90°时,圆与AB 相切,只有一解;当A =45°时,交于B 点,也就是只有一解,所以要使三角形有两解,需满足45°<A <90°,即22<sin A <1,由正弦定理可得a =x =b sin Asin B=22sin A ,所以2<x <2 2. 答案:(2,22)12.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的海拔高度为________m .(取2=1.4,3=1.7)解析:如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,∴∠ACB =30°,AB =50×420=21 000(m).又在△ABC 中,BC sin A =ABsin ∠ACB ,∴BC =21 00012×sin 15°=10 500(6-2).∵CD ⊥AD ,∴CD =BC ·sin ∠DBC =10 500(6-2)×22=10 500(3-1)=7 350. 故山顶的海拔高度h =10 000-7 350=2 650(m). 答案:2 650 三、解答题13.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b =3,AB ―→AC ―→=-6,S △ABC =3,求A 和a .解:因为AB ―→·AC ―→=-6, 所以bc cos A =-6, 又S △ABC =3, 所以bc sin A =6,因此tan A =-1,又0<A <π, 所以A =3π4. 又b =3,所以c =2 2.由余弦定理a 2=b 2+c 2-2bc cos A , 得a 2=9+8-2×3×22×⎝⎛⎭⎫-22=29, 所以a =29.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2b cos C =a cos C +c cos A . (1)求角C 的大小;(2)若b =2,c =7,求a 及△ABC 的面积. 解:(1)∵2b cos C =a cos C +c cos A ,∴由正弦定理可得2sin B cos C =sin A cos C +cos A sin C ,即2sin B cos C =sin(A +C )=sin B.又sin B ≠0,∴cos C =12,C =π3.(2)∵b =2,c =7,C =π3,∴由余弦定理可得7=a 2+4-2×a ×2×12,即a 2-2a -3=0, 解得a =3或-1(舍去),∴△ABC 的面积S =12ab sin C =12×3×2×32=332.高考研究课(一)正、余弦定理的3个基础点——边角、形状和面积 [全国卷5年命题分析][典例] ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝⎛⎭⎫2A +π4的值. [解] (1)在△ABC 中,因为a >b , 故由sin B =35,可得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513. 故sin ⎝⎛⎭⎫2A +π4=sin 2A cos π4+cos 2A sin π4=22×⎝⎛⎭⎫1213-513=7226. [方法技巧]应用正、余弦定理的解题策略(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.[即时演练]1.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:选A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .2.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析:法一:由2b cos B =a cos C +c cos A 及正弦定理,得 2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B >0, 因此cos B =12.又0<B <π,所以B =π3.法二:由2b cos B =a cos C +c cos A 及余弦定理,得 2b ·a 2+c 2-b 22ac =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,整理得,a 2+c 2-b 2=ac , 所以2ac cos B =ac >0,cos B =12.又0<B <π,所以B =π3.答案:π33.(2018·成都二诊)如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE =1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin ∠BCE 的值; (2)求CD 的长.解:(1)在△BEC 中,由正弦定理,知BE sin ∠BCE =CEsin B .∵B =2π3,BE =1,CE =7,∴sin ∠BCE =BE ·sin B CE =327=2114.(2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos ∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714.∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos ∠DEA =55714=27.在△CED 中,CD 2=CE 2=+DE 2-2CE ·DE ·cos ∠CED =7+28-2×7×27×⎝⎛⎭⎫-12=49.∴CD =7.+b )sin(A -B )=(a -b )·sin(A +B )”,试判断三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2,即a 2cos A sin B =b 2sin A cos B. 法一:用“边化角”解题由正弦定理得a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π, ∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 法二:用“角化边”解题 由正弦定理、余弦定理得:a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac , ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰三角形或直角三角形. [方法技巧]判断三角形形状的2种方法(1)“边化角”利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.(2)“角化边”利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.[提醒] 在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.[即时演练]1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B 依据题设条件的特点,由正弦定理, 得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A , 从而sin(B +C )=sin A =sin 2A ,解得sin A =1, ∴A =π2,∴△ABC 是直角三角形.2.在△ABC 中,“2a sin A =(2b +c )sin B +(2c +b )sin C ,且sin B +sin C =1”,试判断△ABC 的形状.解:由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc ,由余弦定理得,cos A =-12,sin A =32,则sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,所以sin B sin C =14,解得sin B =sin C =12.因为0<B <π2,0<C <π2,故B =C =π6,所以△ABC 是等腰钝角三角形.[典例] (2017·a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .[解] (1)由题设及A +B +C =π得sin B =8sin 2B2,即sin B =4(1-cos B ), 故17cos 2B -32cos B +15=0, 解得cos B =1517或cos B =1(舍去).(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172. 由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2. [方法技巧]三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [即时演练]1.(2018·太原一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =60°,b =1,S △ABC =3,则c 等于( )A .1B .2C .3D .4解析:选D ∵S △ABC =12bc sin A ,∴3=12×1×c ×32,∴c =4.2.(2018·陕西四校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =13. (1)求cos 2B +C2+cos 2A 的值;(2)若a =3,求△ABC 面积的最大值. 解:(1)cos 2B +C2+cos 2A =1+cos (B +C )2+2cos 2A -1=12-cos A 2+2cos 2A -1 =12-12×13+2×⎝⎛⎭⎫132-1 =-49.(2)由余弦定理可得(3)2=b 2+c 2-2bc cos A =b 2+c 2-23bc ≥2bc -23bc =43bc ,所以bc ≤94,当且仅当b =c =32时,bc 有最大值94.又cos A =13,A ∈(0,π),所以sin A =1-cos 2A =1-⎝⎛⎭⎫132=223,于是△ABC 面积的最大值为12×94×223=324.1.(2016·全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010 C .-1010D .-31010解析:选C 法一:设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =23a .由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+29a 2-2×a ×23a ×22=59a 2,∴b =53a .∴cos A =b 2+c 2-a 22bc =59a 2+29a 2-a 22×53a ×23a=-1010.法二:如图,AD 为△ABC 中BC 边上的高.设BC =a ,由题意知AD =13BC =13a ,B =π4,易知BD =AD =13a ,DC =23a .在Rt △ABD 中,由勾股定理得, AB =⎝⎛⎭⎫13a 2+⎝⎛⎭⎫13a 2=23a .同理,在Rt △ACD 中,AC = ⎝⎛⎭⎫13a 2+⎝⎛⎭⎫23a 2=53a . ∴cos A =59a 2+29a 2-a 22×53a ×23a=-1010.2.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin Cc =6sin 60°3=22, 因为0°<B <180°,所以B =45°或135°. 因为b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°.答案:75°3.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 解析:因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C ) =sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.答案:21134.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A. 由正弦定理得12sin C sin B =sin A 3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9, 得b +c =33.故△ABC 的周长为3+33.5.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A=0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3, 即c 2+2c -24=0. 解得c =4(负值舍去). (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为 12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2×sin 2π3=23,所以△ABD 的面积为 3.6.(2016·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解:(1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C .因为sin C ≠0,可得cos C =12,所以C =π3.(2)由已知得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.7.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin Bsin C; (2)若∠BAC =60°,求B . 解:(1)由正弦定理,得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为C =180°-(∠BAC +B ),∠BAC =60°, 所以sin C =sin(∠BAC +B )=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33, 所以B =30°.8.(2013·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B.(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B . ① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C . ② 由①②和C ∈(0,π)得sin B =cos B. 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为24×42-2=2+1.一、选择题1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,b =3,A =30°,若B 为锐角,则A ∶B ∶C =( )A .1∶1∶3B .1∶2∶3C .1∶3∶2D .1∶4∶1解析:选B 因为a =1,b =3,A =30°,B 为锐角,所以由正弦定理可得sin B =b sin Aa =32,则B =60°,所以C =90°,则A ∶B ∶C =1∶2∶3. 2.如果将直角三角形三边增加相同的长度,则新三角形一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .根据增加的长度确定三角形的形状解析:选A 设原来直角三角形的三边长是a ,b ,c 且a 2=b 2+c 2,在原来的三角形三条边长的基础上都加上相同的长度,设为d ,原来的斜边仍然是最长的边,故cos A =(b +d )2+(c +d )2-(a +d )22(b +d )(c +d )=2bd +2cd +d 2-2ad2(b +d )(c +d )>0,所以新三角形中最大的角是一个锐角,故选A.3.(2018·太原模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc ,且b =3a ,则下列关系一定不成立的是( )A .a =cB .b =cC .2a =cD .a 2+b 2=c 2解析:选B 由余弦定理,得cos A =b 2+c 2-a 22bc =3bc 2bc =32,则A =30°.又b =3a ,由正弦定理得sin B =3sin A =3sin 30°=32,所以B =60°或120°.当B =60°时,△ABC 为直角三角形,且2a =c ,可知C 、D 成立;当B =120°时,C =30°,所以A =C ,即a =c ,可知A 成立,故选B.4.在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( )A.1010 B.31010C.55D.255解析:选B 如图所示,设CD =a ,则易知AC =5a ,AD =2a ,在△ACD 中,CD 2=AD 2+AC 2-2AD ×AC ×cos ∠DAC ,∴a 2=(2a )2+(5a )2-2×2a ×5a ×cos ∠DAC ,∴cos ∠DAC =31010. 5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab , 则由面积公式与余弦定理,得ab sin C =2ab cos C +2ab , 即sin C -2cos C =2,所以(sin C -2cos C )2=4, 即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB ―→·BC ―→>0,a =32,则b +c 的取值范围是( ) A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,32C.⎝⎛⎭⎫12,32D.⎝⎛⎦⎤12,32解析:选B 在△ABC 中,b 2+c 2-a 2=bc , 由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,∵A 是△ABC 的内角,∴A =60°. ∵a =32, ∴由正弦定理得a sin A =b sin B =c sin C =c sin (120°-B )=1, ∴b +c =sin B +sin(120°-B )=32sin B +32cos B=3sin(B +30°).∵AB ―→·BC ―→=|AB ―→|·|BC ―→|·cos(π-B )>0, ∴cos B <0,B 为钝角,∴90°<B <120°,120°<B +30°<150°,故sin(B +30°)∈⎝⎛⎭⎫12,32, ∴b +c =3sin(B +30°)∈⎝⎛⎭⎫32,32. 二、填空题7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c cos B =2a +b ,若△ABC 的面积S =32c ,则ab 的最小值为________. 解析:将2c cos B =2a +b 中的边化为角可得2sin C cos B =2sin A +sin B =2sin C cos B +2sin B cos C +sin B .则2sin B cos C +sin B =0,因为sin B ≠0,所以cos C =-12,则C =120°,所以S =12ab sin 120°=32c ,则c =12ab .由余弦定理可得⎝⎛⎭⎫12ab 2=a 2+b 2-2ab cos C ≥3ab ,则ab ≥12,当且仅当a =b =23时取等号,所以ab 的最小值为12.答案:128.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.解析:在△ABC 中,AB =AC =4,BC =2, 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC=42+22-422×4×2=14, 则sin ∠ABC =sin ∠CBD =154, 所以S △BDC =12BD ·BC sin ∠CBD =12×2×2×154=152.因为BD =BC =2,所以∠CDB =12∠ABC ,则cos ∠CDB = cos ∠ABC +12=104.答案:1521049.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.解析:因为a =2,且(2+b )(sin A -sin B )=(c -b )sin C , 所以(a +b )(sin A -sin B )=(c -b )sin C . 由正弦定理得b 2+c 2-bc =4,又因为b 2+c 2≥2bc ,所以bc ≤4,当且仅当b =c =2时取等号,此时三角形为等边三角形,所以S =12bc sin 60°≤12×4×32=3,故△ABC 的面积的最大值为 3. 答案: 3 三、解答题10.(2017·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值. 解:(1)由a sin A =4b sin B ,及a sin A =bsin B,得a =2b . 由ac =5(a 2-b 2-c 2)及余弦定理, 得cos A =b 2+c 2-a 22bc =-55ac ac =-55.(2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos2B sin A=45×⎝⎛⎭⎫-55-35×255=-255. 11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a sin B =3b cos A . (1)求角A 的大小;(2)若a =7,b =2,求△ABC 的面积.解:(1)因为a sin B =3b cos A ,由正弦定理得sin A sin B =3sin B cos A . 又sin B ≠0,从而tan A = 3. 由于0<A <π,所以A =π3.(2)法一:由余弦定理a 2=b 2+c 2-2bc cos A ,及a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0. 因为c >0,所以c =3.故△ABC 的面积S =12bc sin A =332.法二:由正弦定理,得7sinπ3=2sin B ,从而sin B =217,又由a >b ,知A >B ,所以cos B =277. 故sin C =sin(A +B )=sin ⎝⎛⎭⎫B +π3=sin B cos π3+cos B sin π3=32114. 所以△ABC 的面积S =12ab sin C =332.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin B ·(a cos B +b cos A )=3c cos B.(1)求B ;(2)若b =23,△ABC 的面积为23,求△ABC 的周长. 解:(1)由正弦定理得,sin B (sin A cos B +sin B cos A )=3sin C cos B , ∴sin B sin(A +B )=3sin C cos B , ∴sin B sin C =3sin C cos B.∵sin C ≠0,∴sin B =3cos B ,即tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵S △ABC =12ac sin B =34ac =23,∴ac =8.根据余弦定理得,b 2=a 2+c 2-2ac cos B , ∴12=a 2+c 2-8,即a 2+c 2=20, ∴a +c =(a +c )2=a 2+2ac +c 2=6, ∴△ABC 的周长为6+2 3.1.在平面五边形ABCDE 中,已知∠A =120°,∠B =90°,∠C =120°,∠E =90°,AB =3,AE =3,当五边形ABCDE 的面积S ∈⎣⎡⎭⎫63,3334时,则BC 的取值范围为________. 解析:因为AB =3,AE =3,且∠A =120°,由余弦定理可得BE =AB 2+AE 2-2AB ·AE ·cos A =33,且∠ABE =∠AEB =30°. 又∠B =90°,∠E =90°,所以∠DEB =∠EBC =60°. 又∠C =120°,所以四边形BCDE 是等腰梯形. 易得三角形ABE 的面积为934,所以四边形BCDE 的面积的取值范围是⎣⎡⎭⎫1534,63. 在等腰梯形BCDE 中,令BC =x ,则CD =33-x ,且梯形的高为3x2, 故梯形BCDE 的面积为12·(33+33-x )·3x 2,即15≤(63-x )x <24, 解得3≤x <23或43<x ≤5 3. 答案:[3,23)∪(43,53]2.如图,有一直径为8 m 的半圆形空地,现计划种植果树,但需要有辅助光照.半圆周上的C 处恰有一可旋转光源满足果树生长的需要,该光源照射范围是∠ECF =π6,点E ,F 在直径AB 上,且∠ABC =π6.(1)若CE =13,求AE 的长;(2)设∠ACE =α,求该空地种植果树的最大面积. 解:(1)由已知得△ABC 为直角三角形, 因为AB =8,∠ABC =π6,所以∠BAC =π3,AC =4.在△ACE 中,由余弦定理得,CE 2=AC 2+AE 2-2AC ·AE cos A ,且CE =13, 所以13=16+AE 2-4AE , 解得AE =1或AE =3.(2)因为∠ACB =π2,∠ECF =π6,所以∠ACE =α∈⎣⎡⎦⎤0,π3, 所以∠AFC =π-∠BAC -∠ACF =π-π3-⎝⎛⎭⎫α+π6=π2-α, 在△ACF 中,由正弦定理得CF sin ∠BAC =AC sin ∠AFC =AC sin ⎝⎛⎭⎫π2-α=AC cos α,所以CF =23cos α,在△ACE 中,由正弦定理得CE sin ∠BAC =AC sin ∠AEC =ACsin ⎝⎛⎭⎫π3+α,所以CE =23sin ⎝⎛⎭⎫π3+α,所以S △ECF =12CE ·CF sin ∠ECF =3sin ⎝⎛⎭⎫π3+αcos α=122sin ⎝⎛⎭⎫2α+π3+3.因为α∈⎣⎡⎦⎤0,π3,所以π3≤2α+π3≤π, 所以0≤sin ⎝⎛⎭⎫2α+π3≤1, 所以当sin ⎝⎛⎭⎫2α+π3=0,即α=π3时,S △ECF 取得最大值为4 3. 即该空地种植果树的最大面积为4 3 m 2. 高考研究课(二)正、余弦定理的3个应用点——高度、距离和角度 [全国卷5年命题分析]考点 考查频度 考查角度 高度问题 5年1考 测量山高问题距离问题 未考查 角度问题未考查测量高度问题[典例] 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.[解析] 由题意,在△ABC 中,∠BAC =30°, ∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =300 2 m. 在Rt △BCD 中, CD =BC ·tan 30°=3002×33=100 6(m). [答案] 100 6 [方法技巧]利用正、余弦定理求解高度问题应注意的3个方面(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题. [即时演练]1.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m解析:选D 设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,根据余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =40或x =-20(舍去).故电视塔的高度为40 m.2.如图,为测得河岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是________m.解析:在△BCD 中,CD =10,∠BDC =45°, ∠BCD =15°+90°=105°,∠DBC =30°, 由正弦定理得,BC sin 45°=CDsin 30°, 所以BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=ABBC ,AB =BC tan 60°=106(m). 答案:10 6测量距离问题[典例]侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________m. [解析] ∵∠ABC =180°-75°-45°=60°, ∴由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. [答案] 20 6 [方法技巧]求距离问题的2个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. [即时演练]1.如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,则AB 的长为________m. 解析:在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000. ∴AB =200 7 (m).即A ,B 两点间的距离为200 7 m. 答案:200 72.隔河看两目标A 与B ,但不能到达,在岸边选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°, ∠CAD =∠ADC =30°,所以AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°,由正弦定理知BC =3sin 75°sin 60°=6+22. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,所以AB = 5 , 所以A ,B 两目标之间的距离为 5 km.角度问题[典例] (2018·南昌模拟)如图所示,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C 处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B 处营救,则sin θ的值为( )A.217 B.22C.32D.5714[解析] 如图,连接BC ,在△ABC 中,AC =10,AB =20,∠BAC=120°,由余弦定理,得BC 2=AC 2+AB 2-2AB ·AC ·cos 120°=700,∴BC =107, 再由正弦定理,得BC sin ∠BAC =ABsin θ,∴sin θ=217. [答案] A [方法技巧]解决测量角度问题的3个注意点(1)明确方向角的含义.(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. [即时演练]1.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.。
2024年高考数学总复习第四章《三角函数、解三角形》复习试卷及答案解析一、选择题1.sin215°-cos215°等于()A.-12B.12C.-32D.32答案C解析sin215°-cos215°=-(cos215°-sin215°)=-cos30°=-32.故选C.2.若sinα=45,则-22cosα等于()A.225B.-225C.425D.-425答案A解析-22 cosα=sinαcos π4+cosαsinπ4-22cosα=45×22=225.3.已知sinα=-45α是第四象限角,则sin()A.52 10B.325C.7210D.425答案C解析由同角三角函数基本关系可得cosα=1-sin2α==35,结合两角差的正弦公式可得sin π4cosα-cosπ4sinα=7210.故选C. 4.函数f(x)=sin x的最大值为()A.3B.2C.23D.4答案A解析函数f(x)=sin x=12sin x +32cos x +sin x =32sin x +32cos xx +12cos=3sin ≤3.故f (x )的最大值为3.故选A.5.已知函数f (x )=2cos(ωx +φ)->0,|φ|y =1相邻两个交点的距离为4π3,若f (x )>0对x -π8,φ的取值范围是()A.-π12,0-π8,-π24C.-π12,D.0,π12答案B解析由已知得函数f (x )的最小正周期为4π3,则ω=32,当x -π8,时,32x +φ-3π16+φ,3π8+因为f (x )>0,即+>12,φ≥-π3+2k π,≤π3+2k π(k ∈Z ),解得-7π48+2k π≤φ≤-π24+2k π(k ∈Z ),又|φ|<π8,所以-π8<φ≤-π24,故选B.6.(2019·山师大附中模拟)设函数f (x )=sin(2x +φ)(0<φ<π)在x =π6时取得最大值,则函数g (x )=cos(2x +φ)的图象()AB C .关于直线x =π6对称D .关于直线x =π3对称答案A解析因为当x =π6时,f (x )=sin(2x +φ)(0<φ<π)取得最大值,所以φ=π6,即g (x )=x+π6,k ∈Z ,对称轴x =k π2-π12,k ∈Z ,故选A.7.(2019·沈阳东北育才学校模拟)如图平面直角坐标系中,角α-π2<β边分别交单位圆于A ,B 两点,若B 点的纵坐标为-513,且满足S △AOB =34,则sinα2·α2-sin +12的值为()A .-513 B.1213C .-1213D.513答案B解析由图易知∠xOA =α,∠xOB =-β.由题可知,sin β=-513.由S △AOB =34知∠AOB =π3,即α-β=π3,即α=π3+β.则sinα2-sin +12=3sin α2cos α2-sin 2α2+12=32sin α-12(1-cos α)+12=32sin α+12cos α=β=cos β=1-sin 2β=1213.故选B.8.(2019·重庆铜梁一中月考)已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈-π12,2π3的图象如图,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)的值为()A.3B.2C .1D .0答案C解析由图象得3T 4=2π3--π12∴T =π,ω=2πT=2,由2sin π6×2+φ=2sin π3+φ=2,得π3+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),由x 1+x 2=π6×2=π3,得f (x 1+x 2)=f π3=2sin 2×π3+π6+2k π1,故选C.9.(2019·重庆巴蜀中学期中)已知f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2f ′(x 1)=f ′(x 2)=0,|x 1-x 2|的最小值为π2,f (x )=f π3-x 将f (x )的图象向左平移π6个单位长度得g (x ),则g (x )的单调递减区间是()A.k π,k π+π2(k ∈Z )B.k π+π6,k π+2π3(k ∈Z )C.k π+π3,k π+5π6(k ∈Z )D.k π+π12,k π+7π12(k ∈Z )答案A解析∵f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2,由f ′(x 1)=f ′(x 2)=0可得x 1,x 2是函数的极值点,∵|x 1-x 2|的最小值为π2,∴12T =πω=π2,∴ω=2,∴f (x )=sin(2x +θ),又f (x )=f π3-x ∴f (x )的图象的对称轴为x =π6,∴2×π6+θ=k π+π2,k ∈Z ,又θ∈0,π2∴θ=π6,∴f (x )=x 将f (x )的图象向左平移π6个单位长度得g (x )=sin 2+π6=cos 2x 的图象,令2k π≤2x ≤2k π+π,k ∈Z ,∴k π≤x ≤k π+π2,k ∈Z ,则g (x )=cos 2x 的单调递减区间是k π,k π+π2(k ∈Z ),故选A.10.(2019·成都七中诊断)已知函数f (x )=sin(ωx +φ)(其中ω>0)的最小正周期为π,函数g (x )=+3f (x ),若对∀x ∈R ,都有g (x )≤|,则φ的最小正值为()A.π3B.2π3C.4π3D.5π3答案B解析由函数f (x )的最小正周期为π,可求得ω=2,∴f (x )=sin(2x +φ),g (x )=+3f (x )=sin 2φ+3sin(2x +φ)=cos(2x +φ)+3sin(2x +φ)=x +φ∴g (x )=x +φ又g (x )≤|,∴x =π3是g (x )的一条对称轴,代入2x +φ+π6中,有2×π3+φ+π6=π2+k π(k ∈Z ),解得φ=-π3+k π(k ∈Z ),当k =1时,φ=2π3,故选B.11.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于()A .27B .4C .23D .33答案C 解析∵a cos B +b cos Ac=2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C ,∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6=2,=4=4,=2,c 2=a 2+b 2-2ab cos C =4+16-8=12,∴c =23,故选C.12.(2019·河北衡水中学调研)若函数f (x )=(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是(),112∪14,23,16∪13,23C.14,23 D.13,23答案B解析易知函数y =sin x 的单调区间为k π+π2,k π+3π2,k ∈Z .由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z .因为函数f(x )=ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆k π+π3ω,k π+4π3ω,k ∈Z ,所以π,2π,k ∈Z ,解得k +13ω≤k 2+23,k ∈Z .由k +13≤k 2+23,k ∈Z ,得k ≤23,k ∈Z .当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω,16∪13,23.故选B.二、填空题13.(2019·陕西四校联考)已知sin α=2cos α,则cos 2α=________.答案-35解析由已知得tan α=2,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=1-44+1=-35.14.(2019·山师大附中模拟)已知=14,则x ________.答案78解析根据三角函数诱导公式,得=14,x x 2cos 1=78.15.(2019·武汉示范高中联考)函数y =sin x +cos x +2sin x cos x 的最大值为________.答案2+1解析令t =sin x +cos x ,则t =sin x +cos x=2sin t ∈[-2,2],则t 2=1+2sinx cos x ,所以sin x cos x =t 2-12,所以y =t 2+t -1-54,对称轴为t =-12,因为t ∈[-2,2],所以当t =2时取得最大值,为2+1.16.(2019·银川一中月考)已知函数f (x )=cos x sin x (x ∈R ),则下列四个命题中正确的是________.(写出所有正确命题的序号)①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.答案③④解析f (x 1)=-f (x 2),即12sin 2x 1=-12sin 2x 2,由f (x )图象(图略)可知,①错误;由周期公式可得T =2π2=π,②错误;由f (x )的图象可知,③正确;=12sin 3π2=-12④正确.故填③④.三、解答题17.(2019·抚州七校联考)已知函数f (x )=cos(ωx +φ>0,|φ的距离为π2,且f (x )的图象与y =sin x 的图象有一个横坐标为π4的交点.(1)求f (x )的解析式;(2)当x ∈0,7π8时,求f (x )的最小值,并求使f (x )取得最小值的x 的值.解(1)由题可知,T =π=2πω,ω=2,又×π4+sin π4,|φ|<π2,得φ=-π4.所以f (x )=x (2)因为x ∈0,7π8,所以2x -π4∈-π4,3π2,当2x -π4=π,即x =5π8时,f (x )取得最小值.f (x )min = 1.18.(2019·福建闽侯五校期中联考)已知向量a =(3sin x ,cos x ),b =(cos x ,-cos x ),f (x )=a ·b .(1)求f (x )的最小正周期和单调递增区间;(2)若x a ·b =-54,求cos 2x 的值.解(1)f (x )=a ·b =3sin x cos x -cos 2x=32sin 2x -cos 2x +12=x -12,∴f (x )的最小正周期是π.令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴k π-π6≤x ≤k π+π3(k ∈Z ),∴f (x )的单调递增区间为k π-π6,k π+π3(k ∈Z ).(2)∵a ·b =x -12=-54,∴x =-34.∵x∴2x -π6∈,∴x =-74,∴cos 2x =x +π6=x cos π6-x sinπ6=-74×32-×12=3-218.。
决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。
第二讲 三角变换与解三角形1. 两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2. 二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α. 3. 三角恒等变换的基本思路(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧. “化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”.(2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β)等. 4. 正弦定理a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .5. 余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab.6. 面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7. 三角形中的常用结论(1)三角形内角和定理:A +B +C =π. (2)A >B >C ⇔a >b >c ⇔sin A >sin B >sin C . (3)a =b cos C +c cos B .1. (2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43B.34C .-34D .-43答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.故选C.2. (2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B 的大小为( ) A.π6 B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,由正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.3. (2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. (2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于 ( )A .4 3B .2 3 C. 3D.32答案 B解析 利用正弦定理解三角形. 在△ABC 中,AC sin B =BCsin A ,∴AC =BC ·sin Bsin A =32×2232=2 3.5. (2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A=5sin B ,则角C =________.答案 2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a ,则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.题型一 三角恒等变换例1 (1)若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )A.22B.33C. 2D. 3 (2)已知α,β ∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=1213,则cos ⎝⎛⎭⎪⎫α+π4=________.审题破题 (1)利用同角三角函数关系式先求sin α或cos α,再求tan α;(2)注意角之间的关系⎝ ⎛⎭⎪⎫α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4. 答案 (1)D (2)-5665解析 (1)∵α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.(2)因为α,β∈⎝⎛⎭⎪⎫3π4,π,所以α+β=⎝ ⎛⎭⎪⎫3π2,2π,所以cos(α+β)>0.易得cos(α+β)=45.又π2<β-π4<3π4,所以cos ⎝⎛⎭⎪⎫β-π4<0, 易得cos ⎝⎛⎭⎪⎫β-π4=-513. 故cos ⎝⎛⎭⎪⎫α+π4=cos[(α+β)-(β-π4)] =cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝⎛⎭⎪⎫β-π4 =45×⎝ ⎛⎭⎪⎫-513+⎝ ⎛⎭⎪⎫-35×1213=-5665.反思归纳 (1)公式应用技巧:①直接应用公式,包括公式的正用、逆用和变形用;②常用切化弦、异名化同名、异角化同角等.(2)化简常用技巧:①注意特殊角的三角函数与特殊值的互化;②注意利用角与角之间的隐含关系,如2α=(α+β)+(α-β),θ=(θ-φ)+φ等;③注意利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等.变式训练1 (1)若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2等于( )A.33B .-33C.539D .-69答案 C解析 ∵cos ⎝ ⎛⎭⎪⎫π4+α=13,0<α<π2,∴sin ⎝ ⎛⎭⎪⎫π4+α=223. 又∵cos ⎝ ⎛⎭⎪⎫π4-β2=33,-π2<β<0,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63,∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2 =13×33+223×63=539. (2)已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.答案 -142解析 cos 2αsin ⎝⎛⎭⎪⎫α-π4=cos 2α-sin 2α22sin α-cos α=cos α+sin αcos α-sin α22sin α-cos α=-2(cos α+sin α).∵sin α=12+cos α,∴cos α-sin α=-12,两边平方得1-2sin αcos α=14,∴2sin αcos α=34.∵α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α+sin α=cos α+sin α2=1+34=72,∴cos 2αsin ⎝⎛⎭⎪⎫α-π4=-142. 题型二 解三角形例2 △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .审题破题 (1)利用正弦定理,化去角B 的三角函数,再化简求值;(2)由条件结构特征,联想到余弦定理,求cos B 的值,进而求出角B . 解 (1)由正弦定理,得a sin B =b sin A , 又a sin A sin B +b cos 2A =2a ,所以b sin 2A +b cos 2A =2a ,即b =2a .所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,又0°<B <180°,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12.又cos B >0,故cos B =22,又0°<B <180°,所以B =45°. 反思归纳 关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.变式训练2 (2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解 (1)由余弦定理得:cos B =a 2+c 2-b 22ac =a 2+c 2-42ac =79,即a 2+c 2-4=149ac .∴(a +c )2-2ac -4=149ac ,∴ac =9.由⎩⎪⎨⎪⎧a +c =6,ac =9得a =c =3.(2)在△ABC 中,cos B =79,∴sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫792=429.由正弦定理得:a sin A =bsin B,∴sin A =a sin B b =3×4292=223.又A =C ,∴0<A <π2,∴cos A =1-sin 2A =13,∴sin (A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.题型三 解三角形的实际应用例3 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =14,BC =10,AC =16,∠C =∠D .(1)求AB 的长度;(2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用较低,请说明理由.审题破题 首先借助余弦定理列式,通过等量关系求出角C 的大小,进而求AB 的长度;然后借助正弦定理比较三角形的面积大小,并作出判断. 解 (1)在△ABC 中,由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos C=162+102-2×16×10cos C .①在△ABD 中,由余弦定理及∠C =∠D 整理得,AB 2=AD 2+BD 2-2AD ·BD cos D=142+142-2×142cos C .② 由①②得:142+142-2×142cos C =162+102-2×16×10cos C ,整理可得cos C =12,又∠C 为三角形的内角,所以∠C =60°. 又∠C =∠D ,AD =BD ,所以△ABD 是等边三角形, 即AB 的长度是14.(2)小李的设计符合要求.理由如下:S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,∠C =∠D ,所以S △ABD >S △ABC .又已知建造费用与用地面积成正比,故选择△ABC 建造环境标志费用较低. 即小李的设计使建造费用较低.反思归纳 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.变式训练3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537 min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过 3 min ,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m/min)范围内.典例 (12分)已知向量a =(cos ωx ,sin ωx ),b =(cos ωx ,3cos ωx ),其中0<ω<2.函数f (x )=a ·b -12,其图象的一条对称轴为x =π6.(1)求函数f (x )的表达式及单调递增区间;(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,S 为其面积,若f ⎝ ⎛⎭⎪⎫A 2=1,b =1,S△ABC=3,求a 的值.规范解答解 (1)f (x )=a ·b -12=cos 2ωx +3sin ωx cos ωx -12=1+cos 2ωx 2+32sin 2ωx -12=sin ⎝⎛⎭⎪⎫2ωx +π6.[3分] 当x =π6时,sin ⎝ ⎛⎭⎪⎫ωπ3+π6=±1, 即ωπ3+π6=k π+π2,k ∈Z .∵0<ω<2,∴ω=1.[5分]∴f (x )=sin ⎝⎛⎭⎪⎫2x +π6.令-π2+2kπ≤2x+π6≤π2+2kπ,k∈Z,∴kπ-π3≤x≤kπ+π6,k∈Z,∴函数f(x)的单调递增区间为[kπ-π3,kπ+π6],k∈Z.[7分](2)f⎝⎛⎭⎪⎫A2=sin⎝⎛⎭⎪⎫A+π6=1,在△ABC中,0<A<π,π6<A+π6<76π,∴A+π6=π2,A=π3.由S△ABC=12bc sin A=3,b=1,得c=4.[9分]由余弦定理得a2=42+12-2×4×1×cosπ3=13,故a=13.[12分]评分细则(1)f(x)没有化成sin⎝⎛⎭⎪⎫2ωx+π6的得1分;(2)k∈Z没写的扣1分;(3)得出A=π3的给1分.阅卷老师提醒(1)三角形和三角函数的结合是高考命题的热点,灵活考查分析、解决问题的能力.(2)此类问题的一般解法是先将三角函数化成y=A sin(ωx+φ)的形式,利用三角函数求值确定三角形的一个角,然后和正、余弦定理相结合解题.(3)解题中要充分注意在三角形中这个条件,重视角的范围.1.已知cosπ-2αsinα-π4=-22,则sin α+cos α等于( )A.-72B.72C.12D.-12答案 D解析cosπ-2αsinα-π4=-cos 2αsinα-π4=sin2α-π2sinα-π4=2cos(α-π4)=2cos α+2sin α=-22,∴sin α+cos α=-12,故选D.2. (2012·江西)已知f (x )=sin 2⎝ ⎛⎭⎪⎫x +π4,若a =f (lg 5),b =f ⎝ ⎛⎭⎪⎫lg 15,则( ) A .a +b =0 B .a -b =0 C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解.由题意知f (x )=sin 2⎝⎛⎭⎪⎫x +π4=1-cos ⎝ ⎛⎭⎪⎫2x +π22=1+sin 2x 2,令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝ ⎛⎭⎪⎫lg 15=g ⎝ ⎛⎭⎪⎫lg 15+12,则a +b =g (lg 5)+g ⎝ ⎛⎭⎪⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 3. (2013·天津)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于 ( )A.1010B.105C.31010D.55答案 C解析 在△ABC 中,由余弦定理得AC 2=BA 2+BC 2-2BA ·BC cos ∠ABC =(2)2+32-2×2×3cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC 得sin ∠BAC =BC ·sin ∠ABCAC =3×sin π45=3×225=31010.4. 设α、β均为锐角,且cos(α+β)=sin(α-β),则tan α的值为( ) A .2B. 3C .1D.33答案 C解析 由已知得cos αcos β-sin αsin β=sin αcos β-cos αsin β,即cosα(cos β+sin β)=sin α(sin β+cos β),∵β为锐角,∴cos β+sin β≠0,因此有cos α=sin α, 从而tan α=1.5. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B的值为( )A.π6B.π3C.π6或5π6D.π3或2π3答案 D解析 由(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 22ac =32·cos B sin B ,即cos B =32·cos B sin B ,∴sin B =32.又∵0<B <π,∴角B 为π3或2π3.故选D. 6. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足c sin A =a cos C .当3sin A -cos ⎝⎛⎭⎪⎫B +π4取最大值时,A 的大小为( )A.π3 B.π4C.π6D.2π3答案 A解析 由正弦定理得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0,从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4,所以B =3π4-A .于是3sin A -cos ⎝⎛⎭⎪⎫B +π4=3sin A -cos(π-A )=3sin A +cos A =2sin ⎝⎛⎭⎪⎫A +π6.∵0<A <3π4,∴π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎪⎫A +π6取最大值2.故选A.专题限时规范训练一、选择题1. 已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( )A .-235B.235 C .-45D.45 答案 C解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝ ⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝⎛⎭⎪⎫α+π6=-45. 2. (2013·四川改编)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是( )A. 3 B .2 3 C.32D.12答案 A解析 ∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈⎝⎛⎭⎪⎫π2,π,∴sin α≠0,2cos α+1=0即cos α=-12,sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231--32= 3.3. 已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( )A .75°B .60°C .45°D .30°答案 B解析 由题意知,12×4×3×sin C =33,∴sin C =32.又0°<C <90°,∴C =60°.4. 在△ABC 中,若0<tan A ·tan B <1,那么△ABC 一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不确定答案 B解析 由0<tan A ·tan B <1,可知tan A >0,tan B >0,即A ,B 为锐角,tan(A +B )=tan A +tan B1-tan A tan B>0,即tan(π-C )=-tan C >0,所以tan C <0,所以C 为钝角,所以△ABC 为钝角三角形,选B.5. 已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4等于( )A .-255B .-3510C .-31010D .255答案 A解析 由tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin αsin α+cos α22sin α+cos α=22sin α=-255.6. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知C =2A ,cos A =34,b =5,则△ABC 的面积为( )A.1574B.1572C.574D.572答案 A解析 cos A =34,cos C =2cos 2A -1=18,sin C =378,tan C =37,如图,设AD =3x ,AB =4x ,CD =5-3x ,BD =7x .在Rt △DBC 中,tan C =BD CD =7x5-3x =37,解之得:BD =7x =327,S △ABC =12BD ·AC =1574.7. 函数f (x )=sin 2x -4sin 3x cos x (x ∈R )的最小正周期为( )A.π8B.π4C.π2D .π答案 C解析 f (x )=sin 2x -2sin 2x sin 2x =sin 2x (1-2sin 2x )=sin 2x cos 2x =12sin 4x ,所以函数的周期为T =2πω=2π4=π2,选C.8. 在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题9. 在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3且sin 2A +sin(A-C )=sin B ,则△ABC 的面积为________. 答案3解析 ∵sin 2A =sin B -sin(A -C ), ∴2sin A cos A =sin(A +C )-sin(A -C ), ∴2sin A cos A =2cos A sin C . ∵△ABC 是锐角三角形,∴cos A ≠0,∴sin A =sin C ,即A =C =B =π3,∴S △ABC =12×2×2×32= 3.10.设π3<α<3π4,sin ⎝⎛⎭⎪⎫α-π4=35,则sin α-cos 2α+1tan α的值为________. 答案14+5250解析 方法一 由π3<α<3π4,得π12<α-π4<π2,又sin ⎝⎛⎭⎪⎫α-π4=35, 所以cos ⎝⎛⎭⎪⎫α-π4=45. 所以cos α=cos[(α-π4)+π4]=cos ⎝ ⎛⎭⎪⎫α-π4cos π4-sin ⎝ ⎛⎭⎪⎫α-π4sin π4=210,所以sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.方法二 由sin ⎝⎛⎭⎪⎫α-π4=35,得sin α-cos α=325, 两边平方,得1-2sin αcos α=1825,即2sin αcos α=725>0.由于π3<α<3π4,故π3<α<π2.因为(sin α+cos α)2=1+2sin αcos α=3225,故sin α+cos α=425,解得sin α=7210,cos α=210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.11.(2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案 2π3解析 应用余弦定理求角.由(a +b -c )(a +b +c )=ab ,得a 2+b 2-c 2=-ab ,则cos C =a 2+b 2-c 22ab =-12.又因为角C 为△ABC 的内角,所以C =2π3.12.给出下列四个命题:①f (x )=sin ⎝⎛⎭⎪⎫2x -π4的对称轴为x =k π2+3π8,k ∈Z ; ②函数f (x )=sin x +3cos x 的最大值为2; ③函数f (x )=sin x cos x -1的周期为2π; ④函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π4在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数.其中正确命题的个数是________. 答案 2解析 ①由2x -π4=k π+π2,k ∈Z ,得x =k π2+3π8(k ∈Z ),即f (x )=sin ⎝⎛⎭⎪⎫2x -π4的对称轴为x =k π2+3π8,k ∈Z ,正确; ②由f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3知,函数的最大值为2,正确;③f (x )=sin x cos x -1=12sin 2x -1,函数的周期为π,故③错误;④函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π4的图象是由f (x )=sin x 的图象向左平移π4个单位得到的,故④错误. 三、解答题13.(2013·安徽)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性.解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎪⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2=2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎢⎡⎦⎥⎤0,π8上单调递增,在区间⎣⎢⎡⎦⎥⎤π8,π2上单调递减. 14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=4ab cos C ,且c 2=3ab .(1)求角C 的大小;(2)设函数f (x )=sin(ωx -C )-cos ωx (ω>0),且直线y =3与函数y =f (x )图象相邻两交点间的距离为π,求f (A )的取值范围. 解 (1)由余弦定理知a 2+b 2-c 2=2ab cos C , ∵a 2+b 2=4ab cos C ,c 2=3ab , ∴4ab cos C -3ab =2ab cos C ,cos C =32. 又∵0<C <π,∴C =π6.(2)f (x )=sin ⎝⎛⎭⎪⎫ωx -π6-cos ωx =32sin ωx -32cos ωx =3sin(ωx -π3).由已知2πω=π⇒ω=2,则f (A )=3sin(2A -π3),∵C =π6,∴0<A <5π6,-π3<2A -π3<4π3.∴根据正弦函数图象知-32<sin ⎝⎛⎭⎪⎫2A -π3≤1, ∴-32<f (A )≤ 3。
2025届高考数学复习:历年高考真题专项(正弦定理、余弦定理及解三角形)阶梯练习[基础强化]一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3 ,则A =( )A .π6B .56 πC .π4D .π4 或34 π2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6 B .π4 C .π3 D .π24.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .25.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23 ,则b =( )A.14 B .6 C .14 D .66.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.钝角三角形ABC 的面积是12 ,AB =1,BC =2 ,则AC =( ) A .5 B .5 C .2 D .18.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522 m9.[2024ꞏ全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94 ac ,则sin A +sin C =( )A .32 B .2 C .7 D .3 二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13 ,则cos (π+B )=________.12.[2023ꞏ全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ꞏcos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形14.[2023ꞏ全国甲卷(理)]已知四棱锥P -ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .6215.[2022ꞏ全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB 取得最小值时,BD =________.16.在△ABC中,内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且6S =(a+b)2-c2,则tan C=________.参考答案 [基础强化]一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3 ,则A =( )A .π6B .56 πC .π4D .π4 或34 π 答案:C答案解析:由正弦定理得asin A =b sin B ,∴sin A =a sin B b =2×33 =22 ,又a <b ,∴A 为锐角,∴A =π4 .2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C答案解析:由正弦定理bsin B =c sin C ,∴sin B =b sin C c =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6 B .π4 C .π3 D .π2 答案:C答案解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3=12 ,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2 答案:C答案解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32 =3 .5.在△ABC中,a,b,c分别是内角A,B,C的对边.若b sin A=3c sin B,a=3,cosB=23,则b=()A.14 B.6 C.14D.6答案:D答案解析:∵b sin A=3c sin B,由正弦定理得ab=3bc,∴a=3c,又a=3,∴c=1,由余弦定理得b2=a2+c2-2acꞏcos B=9+1-2×3×23=6,∴b=6.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案:B答案解析:∵b cos C+c cos B=a sin A,∴sin B cos C+sin C cos B=sin2A,∴sin A=1,又A为△ABC的内角,∴A=90°,∴△ABC为直角三角形.7.钝角三角形ABC的面积是12,AB=1,BC=2,则AC=()A.5 B.5C.2 D.1 答案:B答案解析:∵S△ABC=12 AB×BC×sin B=22sin B=12,∴sin B=22,若B=45°,由余弦定理得AC2=AB2+BC2-2ABꞏBCꞏcos 45°=1+2-2×2×22=1,则AC=1,则AB2+AC2=BC2,△ABC为直角三角形,不合题意;当B=135°时,由余弦定理得AC2=AB2+BC2-2ABꞏBC cos 135°=1+2+2×2×2=5,∴AC=5.8.如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为() A.502m B.503mC.252m D.2522m答案:A答案解析:由正弦定理得AC sin B =ABsin C ,∴AB =AC ꞏsin Csin B =50×2sin (180°-45°-105°)=502 .9.[2024ꞏ全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94 ac ,则sin A +sin C =( )A .32 B .2 C .72 D .32 答案:C答案解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94 sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13 .由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134 ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C +2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72 (舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23 π答案解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac=-12 ,又B 为△ABC 的内角,∴B =23 π. 11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13 ,则cos (π+B )=________.答案:①90° ②-13答案解析:①∵c =a ꞏcos B ,∴c =a ꞏa 2+c 2-b 22ac ,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023ꞏ全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC于D,则AD=________.答案:2答案解析:方法一 由余弦定理得cos 60°=AC2+4-62×2AC,整理得AC2-2AC-2=0,得AC=1+3.又S△ABC=S△ABD+S△ACD,所以12×2AC sin 60°=12×2AD sin 30°+12 AC×ADsin 30°,所以AD=23ACAC+2=23×(1+3)3+3=2.方法二 由角平分线定理得BDAB=CDAC,又BD+CD=6,所以BD=26AC+2,CD=6AC AC+2.由角平分线长公式得AD2=AB×AC-BD×CD=2AC-12AC(AC+2)2,又由方法一知AC=1+3,所以AD2=2+23-12×(1+3)(3+3)2=2+23-(23-2)=4,所以AD=2.[能力提升]13.(多选)在△ABC中,角A,B,C的对边分别为a,b,c,a=8,b<4,c=7,且满足(2a-b)cos C=cꞏcos B,则下列结论正确的是()A.C=60°B.△ABC的面积为63C.b=2D.△ABC为锐角三角形答案:AB答案解析:∵(2a-b)cos C=c cos B,∴(2sin A-sin B)cos C=sin C cos B,∴2sin A cos C =sin B cos C+cos B sin C,即2sin A cos C=sin (B+C),∴2sin A cos C=sin A.∵在△ABC中,sin A≠0,∴cos C=12,∴C=60°,A正确.由余弦定理,得c2=a2+b2-2ab cos C,得49=64+b2-2×8b cos 60°,即b2-8b+15=0,解得b=3或b=5,又b<4,∴b=3,C错误.∴△ABC的面积S=12 ab sin C=12×8×3×32=63,B正确.又cos A=b2+c2-a22bc=9+49-642×3×7<0,∴A为钝角,△ABC为钝角三角形,D错误.14.[2023ꞏ全国甲卷(理)]已知四棱锥P-ABCD的底面是边长为4的正方形,PC=PD=3,∠PCA=45°,则△PBC面积为() A.22B.32C.42D.62答案:C答案解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ꞏAC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ꞏBC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ꞏBC sin ∠PCB =42 ,故选C.15.[2022ꞏ全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB 取得最小值时,BD =________.答案:3 -1答案解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC =(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125答案解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125 .。
解三角形专题练习1、在b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小;(II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
2、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.3、在ABC ∆中,cos 5A =,cos 10B =. (Ⅰ)求角C ;(Ⅱ)设AB =,求ABC ∆的面积.4、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足(I )求A 的大小;(II )求)sin(6π+B 的值.5、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
6、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小; (II )△ABC 最短边的长.7、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且c o s c o s B C ba c=-+2. (I )求角B 的大小;(II )若b a c =+=134,,求△ABC 的面积.8、(2009全国卷Ⅱ文)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,23cos )cos(=+-B C A ,ac b =2,求B.9、(2009天津卷文)在ABC ∆中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。
解三角形专题练习1、在b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小;(II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
2、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值;(II )若2=⋅,且22=b ,求c a 和b 的值.3、在ABC ∆中,cos 5A =,cos 10B =. (Ⅰ)求角C ;(Ⅱ)设AB =,求ABC ∆的面积.4、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足(I )求A 的大小;(II )求)sin(6π+B 的值.5、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
6、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小; (II )△ABC 最短边的长.7、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且c o s c o s B C ba c=-+2. (I )求角B 的大小;(II )若b a c =+=134,,求△ABC 的面积.8、(2009全国卷Ⅱ文)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,23cos )cos(=+-B C A ,ac b =2,求B.9、(2009天津卷文)在ABC ∆中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。
(Ⅱ)求)42sin(π-A 的值。
1、 (1)解:m ∥n ⇒ 2sinB(2cos2B2-1)=-3cos2B 2、 ⇒2sinBcosB =-3cos2B ⇒ tan2B =- 3 ……4分 3、 ∵0<2B <π,∴2B =2π3,∴锐角B =π3……2分4、 (2)由tan2B =- 3 ⇒ B =π3或5π65、 ①当B =π3时,已知b =2,由余弦定理,得:6、 4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立) ……3分7、 ∵△ABC 的面积S △ABC =12 acsinB =34ac ≤ 3 8、 ∴△ABC 的面积最大值为 3……1分9、 ②当B =5π6时,已知b =2,由余弦定理,得:10、 4=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) 11、 ∴ac ≤4(2-3) ……1分12、 ∵△ABC 的面积S △ABC =12 acsinB =14ac ≤2- 3 13、 ∴△ABC 的面积最大值为2- 3 ……1分2、解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B …………6分 (II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63、(Ⅰ)解:由cos A =,cos B =,得02A B π⎛⎫∈ ⎪⎝⎭、,,所以sin sin A B == …… 3分因为cos cos[()]cos()cos cos sin sin C A B A B A B A B π=-+=-+=-+=…6分且0C π<< 故.4C π=………… 7分(Ⅱ)解:根据正弦定理得sin sin sin sin AB AC AB B AC C B C ⋅=⇒== ………….. 10分所以ABC ∆的面积为16sin .25AB AC A ⋅⋅= 4、解:(1)由m//n 得0cos 1sin 22=--A A ……2分即01cos cos 22=-+A A1cos 21cos -==∴A A 或 ………………4分1cos ,-=∆A ABC A 的内角是 舍去 3π=∴A ………………6分(2)a c b 3=+ 由正弦定理,23sin 3sin sin ==+A C B (8)分π32=+C B23)32sin(sin =-+∴B B π ………………10分23)6sin(23sin 23cos 23=+=+∴πB B B 即5、解:由π=++=++C B A B A C 且0)cos(32sin有23sin 0cos ,0cos 3cos sin 2===-C C C C C 或所以 ……6分由3,23sin ,,13,4π==<==C C a c c a 则所以只能有, ……8分由余弦定理31,034cos 22222===+-⋅-+=b b b b C ab b a c 或解得有 当.3sin 21,133sin 21,3=⋅===⋅==C ab S b C ab S b 时当时6、解:(I )tanC =tan[π-(A +B )]=-tan (A +B )11tan tan 231111tan tan 123A B A B ++=-=-=---⨯∵0C π<<, ∴34C π=……………………5分(II )∵0<tanB<tanA ,∴A 、B 均为锐角, 则B<A ,又C 为钝角, ∴最短边为b,最长边长为c ……………………7分由1tan 3B =,解得sin B =……………………9分由sin sin b cB C =,∴1sin sin 2c Bb C⋅==………………12分7、解:(I )解法一:由正弦定理a A b B cC R s i n s i n s i n ===2得a R Ab R B cR C ===222s i n s i n s i n ,,将上式代入已知c o s c o s c o s c o s s i n s i n s i n B C b a c B C BA C =-+=-+22得即20s i n c o s s i n c o s c o s s i n A B C B C B ++=即20s i n c o s s i n ()A B B C ++=∵A B C B C A A B A ++=+=+=π,∴,∴sin()sin sin cos sin 20∵s i n c o s A B ≠,∴,012=- ∵B 为三角形的内角,∴B =23π.解法二:由余弦定理得c o s c o s B a c b a c C a b ca b =+-=+-22222222, 将上式代入c o s c o s B C b a c a c b a c a b a b c ba c =-++-+-=-+2222222222得×整理得a c b a c 222+-=-∴c o s B a c b a c a c a c =+-=-=-2222212∵B 为三角形内角,∴B =23π(II )将b a c B =+==13423,,π代入余弦定理b a c a c B 2222=+-c o s 得b ac a c a c B 2222=+--()c o s ,∴131621123=--=a c a c (),∴ ∴S a c B A B C△==12343s i n . 8、解析:本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角理得到sinB=23(负值舍掉),从而求出B=3π。
函数值的制约,并利用正弦定解:由 cos (A -C )+cosB=及B=π-(A+C )得cos (A -C )-cos (A+C )=32,32cosAcosC+sinAsinC -(cosAcosC -sinAsinC )=32,sinAsinC=34.又由2b =ac 及正弦定理得2sin sin sin ,B A C = 故23sin 4B =,3sin 2B =或 3sin B =(舍去),于是 B=3π 或 B=23π.又由 2b ac =知a b ≤或c b ≤所以 B=3π。
9、【解析】(1)解:在ABC ∆ 中,根据正弦定理,A BCC AB sin sin =,于是522sin sin ===BC A BCCAB(2)解:在ABC ∆ 中,根据余弦定理,得AC AB BC AC AB A •-+=2cos 222 于是A A 2cos 1sin -==55,从而53sin cos 2cos ,54cos sin 22sin 22=-===A A A A A A1024sin2cos 4cos2sin )42sin(=-=-πππA A A《匆匆阅读答案》参考试题一:匆匆朱自清燕子去了,有再来的时候;杨柳枯了,有再青的时候;桃花谢了,有再开的时候。
但是,聪明的,你告诉我,我们的日子为什么一去不复返呢?是有人偷了他们罢:那是谁?又藏在何处呢?是他们自己逃走了罢:现在又到了哪里呢?我不知道他们给了我多少日子;但我的手确乎是渐渐空虚了。
在默默里算着,八千多日子已经从我手中溜去;像针尖上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。
我不禁头涔涔而泪潸潸了。
去的尽管去了,来的尽管来着;去来的中间,又怎样地匆匆呢?早上我起来的时候,小屋里射进两三方斜斜的太阳。
①太阳他有脚啊,轻轻悄悄地挪移了;我也茫茫然跟着旋转。
于是洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。
我觉察他去的匆匆了,伸出手遮挽时,他又从遮挽着的手边过去,天黑时,我躺在床上,他便伶伶俐俐地从我身上跨过,从我脚边飞去了。
等我睁开眼和太阳再见,这算又溜走了一日。
我掩着面叹息。
但是新来的日子的影儿又开始在叹息里闪过了。
在逃去如飞的日子里,在千门万户的世界里的我能做些什么呢?只有徘徊罢了,只有匆匆罢了;在八千多日的匆匆里,除徘徊外,又剩些什么呢?②过去的日子如轻烟,被微风吹散了,如薄雾,被初阳蒸融了;我留着些什么痕迹呢?我何曾留着像游丝样的痕迹呢?我赤裸裸来到这世界,转眼间也将赤裸裸的回去罢?但不能平的,为什么偏要白白走这一遭啊?你聪明的,告诉我,我们的日子为什么一去不复返呢?4。