河北省保定市2015届高考数学二模试卷含答案(理科)
- 格式:doc
- 大小:530.00 KB
- 文档页数:21
2015届高考模拟试卷数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1. 若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i -B .i 2-C .iD .i 22.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32π B .π+ 3 C.32π+ 3 D.52π+ 33.在极坐标系中,过点(2,)6π且垂直于极轴的直线的极坐标方程是( )A.ρθ=B.ρθ=C.sin ρθ=D.cos ρθ=4.图(1)是某高三学生进入高中三年来 的数学考试成绩茎叶图,第1次到第 14次的考试成绩依次记为A 1,A 2,…, A 14.图(2)是统计茎叶图中成绩在一定 范围内考试次数的一个算法流程图. 那么算法流程图输出的结果是( )A .7B .8C .9D .105.已知“命题p :∃x ∈R ,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( ) A .[0,1) B .(-∞,1) C .[1,+∞) D .(-∞,1]6.若函数f (x )=(k -1)·a x -a -x (a >0且a ≠1) 在R 上既是奇函数,又是减函数, 则g (x )=log a (x +k )的图象是( )7.等比数列{}n a 的首项为1,公比为q ,前n 项和记为S,由原数列各项的倒数组成一个新数列1{}n a ,则1{}na 的前n 项之和'S 是( )A.1SB.1n q SC.n q SD. 1n S q -8. 若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x yz +=的最小值是( )A .9. 若二项式*(2)()n x n N -∈的展开式中所有项的系数的绝对值之和是a ,所有项的二项式系数之和是b ,则b aa b+的最小值是( ) A.2 B.136 C.73 D.15610.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有( )个A.78B. 102C.114D.120第Ⅱ卷(非选择题共100分)请用0 5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
河北省保定市2015届高三(上)11月摸底数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设A={x|y=},B={x|y=ln(1+x)},则A∩B=()A.{x|x>﹣1} B.{x|x≤1} C.{x|﹣1<x≤1} D.∅考点:交集及其运算.专题:集合.分析:求出A与B中x的范围,确定出A与B,找出A与B的交集即可.解答:解:由A中y=,得到1﹣x≥0,即x≤1,∴A={x|x≤1},由B中y=ln(x+1),得到1+x>0,即x>﹣1,∴B={x|x>﹣1},则A∩B={x|﹣1<x≤1}.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.函数y=2sin(2x﹣)+1的最大值为()A.﹣1 B.1C.2D.3考点:三角函数的最值.专题:函数的性质及应用.分析:直接利用正弦函数的值域,求解函数的最大值即可.解答:解:函数y=sinx∈[﹣1,1],∴函数y=2sin(2x﹣)∈[﹣2,2].∴函数y=2sin(2x﹣)+1∈[﹣1,3].函数y=2sin(2x﹣)+1的最大值为3.故选:D.点评:本题考查三角函数的最值的求法,基本知识的考查.3.已知p:0≤x≤1,q:<1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断.解答:解:当x=0时,不等式<1不成立,即充分性不成立,当x=﹣1时,满足<1但0≤x≤1不成立,即必要性不成立,故p是q的既不充分也不必要条件,故选:D点评:本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键,比较基础.4.若正实数x,y满足x+y=2,则的最小值为()A.1 B.2C.3D.4考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:∵正实数x,y满足x+y=2,∴=1,当且仅当x=y=1时取等号.故选:A.点评:本题考查了基本不等式的性质,属于基础题.5.已知△ABC中,||=2,||=3,且△ABC的面积为,则∠BAC=()A.150°B.120°C.60°或120°D.30°或150°考点:三角形的面积公式.专题:解三角形.分析:根据S△ABC=||•||•sin∠BAC,代入求出sin∠BAC=,从而求出答案.解答:解:∵S△ABC=||•||•sin∠BAC,∴=×2×3×sin∠BAC,∴sin∠BAC=,∴∠BAC为30°,或150°,故选:D.点评:本题考查了三角形的面积根式,是一道基础题.6.已知2sinθ+3cosθ=0,则tan2θ=()A.B.C.D.考点:二倍角的正切.专题:三角函数的求值.分析:依题意,可求得tanθ=﹣,利用二倍角的正切即可求得答案.解答:解:∵2sinθ+3cosθ=0,∴tanθ=﹣,∴tan2θ===,故选:B.点评:本题考查二倍角的正切,求得tanθ=﹣是基础,属于基础题.7.若M(x,y)为由不等式组确定的平面区域D上的动点,点A的坐标为(,1),则z=•的最大值为()A.3 B.4C.3D.4考点:简单线性规划;平面向量数量积的运算.专题:数形结合.分析:由目标函数作出可行域,求得B点坐标,化z=•=,再化为直线方程的斜截式得答案.解答:解:如图所示:z=•=,即y=,首先做出直线l0:y=,将l0平行移动,当经过B点时在y轴上的截距最大,从而z最大.∵B(,2),故z的最大值为4.故选:B.点评:本题考查了线性规划,考查了数形结合的解题思想方法,是中档题.8.定义在R上的偶函数f(x)满足:对∀x1,x2∈[0,+∞),且x1≠x2,都有(x1﹣x2)[f(x1)﹣f (x2)]>0,则()A.f(3)<f(﹣2)<f(1)B.f(1)<f(﹣2)<f(3)C.f(﹣2)<f(1)<f(3)D.f(3)<f(1)<f(﹣2)考点:奇偶性与单调性的综合.专题:计算题.分析:由已知可知函数f(x)在[0,+∞)上单调递增,结合已知函数f(x)是定义在R上的偶函数即可判断解答:解:∵对∀x1,x2∈[0,+∞),且x1≠x2,都有(x1﹣x2)[f(x1)﹣f(x2)]>0,∴函数f(x)在[0,+∞)上单调递增∵f(x)是定义在R上的偶函数∴f(﹣2)=f(2)∴f(1)<f(2)<f(3)即f(1)<f(﹣2)<f(3)故选B点评:本题主要考查了函数的奇偶性及单调性的综合应用,解题的关键是灵活利用函数的性质9.在△ABC 中,若•=•=•,且||=||=||=2,则△ABC的周长为()A.B.2C.3D.6考点:平面向量数量积的运算;向量的模.专题:平面向量及应用.分析:在△ABC 中,由•=•=•,且||=||=||=2三角形是等边三角形,只要求出△ABC的一边长度即可.解答:解:因为在△ABC 中,•=•=•,且||=||=||=2,所以△ABC是等边三角形;由在△ABC 中,若•=•=•,且||=||=||=2,所以∠AOB=120°,由余弦定理得AB2=OA2+OB2﹣2OA×OBcos120°=4+4+4=12,所以AB=2,所以三角形的周长为6;故选D.点评:本题考查了向量的数量积定义的运用,关键是由已知向量关系判断三角形的形状以及利用余弦定理求三角形的边长.10.若变量x,y满足|x|﹣ln=0,则y关于x的函数图象大致是()..考点:对数函数的图像与性质.专题:函数的性质及应用.分析:由条件可得y=,显然定义域为R,且过点(0,1),当x>0时,y=,是减函数,从而得出结论.解答:解:若变量x,y满足|x|﹣ln=0,则得y=,显然定义域为R,且过点(0,1),故排除C、D.再由当x>0时,y=,是减函数,故排除A,故选B.点评:本题主要考查指数式与对数式的互化,指数函数的图象和性质的综合应用,以及函数的定义域、值域、单调性、函数图象过定点问题,属于基础题.11.设点P是函数y=﹣(x+1)图象上异于原点的动点,且该图象在点P处的切线的倾斜角为θ,则θ的取值范围是()A.θ∈(,π]B.θ∈(,]C.θ∈(,]D.θ∈(,]考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;三角函数的图像与性质.分析:求出导数,再利用基本不等式求其范围,从而得出切线的倾斜角为θ的正切值的取值范围,而0≤θ<π,从而可求θ的取值范围.解答:解:∵函数y=﹣(x+1)的导数y′=﹣((x+1))=﹣=﹣(+)≤﹣2=﹣,(当且仅当取等号),∴y′∈(﹣],∴tanθ,又0≤θ<π,∴<θ.故选C.点评:本题考查导数的几何意义,关键在于通过导数解决问题,难点在于对切线倾斜角的理解与应用,属于中档题.12.已知S n是等差数列{a n}(n∈N*)的前n项和,且S6>S7>S5,给出下列五个命题:①d>0;②S11>0;③S12<0;④数列{S n}中的最大项为S11;⑤|a6|>|a7|.其中正确命题的个数是()A.5 B.4C.2D.1考点:等差数列的前n项和;等差数列的性质.专题:等差数列与等比数列.分析:由已知得a6=S6﹣S5>0,a7=S7﹣S6<0,a6+a7=S7﹣S5>0,由此能求出结果.解答:解:∵S6>S7>S8,∴a6=S6﹣S5>0,a7=S7﹣S6<0,a6+a7=S7﹣S5>0,①∵d=a7﹣a6<0,故①错误;②∵S11==11a6>0,故②正确;③∵S12=6(a1+a12)=6(a6+a7)>0,故③错误;④∵a6=S6﹣S5>0,a7=S7﹣S6<0,∴数列{S n}中的最大项为S6,故④错误;⑤∵a6+a7=S7﹣S5>0,∴|a6|>|a7|,故⑤正确.故选:C.点评:本题考查等差数列的性质的合理运用,是基础题,解题时要认真审题.二、填空题:本大题共4小题,每小题5分.13.若(a﹣2i)i=b+i(a,b∈R),则=2.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由复数的运算和复数相等可得a和b的方程组,解方程组可得答案.解答:解:∵(a﹣2i)i=b+i,∴2+ai=b+i,∴,∴=2故答案为:2点评:本题考查复数的代数形式的乘除运算,涉及复数相等,属基础题.14.在△ABC中,a,b,c分别是内角A,B,C的对边,若A=,b=1,△ABC的面积为,则a的值为.考点:三角形的面积公式.专题:解三角形.分析:根据三角形的面积公式,求出c的值,再由余弦定理求出a的值即可.解答:解:由S△ABC=bcsinA,得:•1•c•sin=,解得:c=2,∴a2=b2+c2﹣2bccosA=1+4﹣2×1×2×=3,∴a=,故答案为:.点评:本题考查了解三角形问题,考查了三角形面积根式,余弦定理,是一道基础题.15.设S n是等比数列{a n}的前n项和,若a5+2a10=0,则的值是.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:设出等比数列的公比,由已知求得,代入的展开式后得答案.解答:解:设等比数列{a n}的公比为q(q≠0),由a5+2a10=0,得,∵a1≠0,∴.则===.故答案为:.点评:本题考查了等比数列的通项公式和前n项和公式,是基础的计算题.16.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为8.考点:正弦函数的图象.专题:函数的性质及应用.分析:设t=1﹣x,则x=1﹣t,原函数可化为g(t)=2sinπt﹣,由于g(x)是奇函数,观察函数y=2sinπt与y=的图象可知,在[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,从而x1+x2+…+x7+x8的值.解答:解:设t=1﹣x,则x=1﹣t,原函数可化为:g(t)=2sin(π﹣πt)﹣=2sinπt﹣,其中,t∈[﹣3,3],因g(﹣t)=﹣g(t),故g(t)是奇函数,观察函数y=2sinπt(红色部分)与曲线y=(蓝色部分)的图象可知,在t∈[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,即t1+t2+…+t7+t8=0,从而x1+x2+…+x7+x8=8,故答案为:8.点评:本题主要考查正弦函数的图象特征,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)已知公差为2的等差数列{a n}的前n项和为S n(n∈N*),且S3+S5=58.(1)求数列{a n}的通项公式;(2)若{b n}为等比数列,且b1b10=a2,记T n=log3b1+log3b2+log3b3+…+log3b10,求T10的值.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(1)直接利用等差数列的前n项和公式通过已知条件求出首项,即可求解通项公式.(2)求出a2,得到b1b10的值,利用对数的性质化简所求表达式,利用等比数列的性质求T10的和即可.解答:解:(1)设公差为d,由S3+S5=58,得3a1+3d+5a1+10d=8a1+13d=58…(2分)∵d=2,∴a1=4,∴a n=2n+2.n∈N*…(2)由(1)知a2=6,所以b1b10=3.…(7分)∴T10=log3b1+log3b2+log3b3+…+log3b10=log3(b1•b10)+log3(b2•b9)+…+log3(b5•b6)=5log3(b1•b10)=5log33=5.…(10分)点评:本题考查数列求和,等差数列以及等比数列的性质的应用,考查计算能力.18.(12分)在△ABC中,a,b,c分别是内角A,B,C的对边,且(2a﹣c)cosB﹣bcosC=0.(1)求∠B;(2)设函数f(x)=﹣2cos(2x+B),将f(x)的图象向左平移后得到函数g(x)的图象,求函数g(x)的单调递增区间.考点:正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,整理后再利用诱导公式、两角和的正弦公式变形,求出cosB的值,即可确定出∠B的大小;(2)根据三角函数图象平移法则、诱导公式求出g(x),再由正弦函数的单调递增区间、整体思想,求出函数g(x)的单调递增区间.解答:解:(1)由(2a﹣c)cosB﹣bcosC=0及正弦定理得,(2sinA﹣sinC)cosB﹣sinBcosC=0,即2sinAcosB﹣sin(B+C)=0,因为A+B+C=π,所以sin(B+C)=sinA,因为sinA≠0,所以cosB=,由B是三角形内角得,B=,(2)由(1)得,B=,则f(x)=﹣2cos(2x+B)=﹣2cos(2x+),所以g(x)=﹣2cos[2(x+)+],=﹣2cos(2x+)=2sin2x,由得,,故函数g(x)的单调递增区间是:.点评:本题主要考查正弦定理,诱导公式、两角和的正弦公式,以及正弦函数的单调性的应用,属于中档题.19.(12分)设函数f(x)=e x(ax2+x+1),且a>0,求函数f(x)的单调区间及其极大值.考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题;导数的概念及应用.分析:求导数,分类讨论,利用导数的正负,即可求函数f(x)的单调区间及其极大值.解答:解:∵f(x)=e x(ax2+x+1),∴f′(x)=ae x(x+)(x+2)(3分)当a=时,f′(x)≥0,f(x)在R上单增,此时无极大值;当0<a<时,f′(x)>0,则x>﹣2或x<﹣,f′(x)<0,则﹣<x<﹣2∴f(x)在(﹣∞,﹣)和(2,+∞)上单调递增,在(﹣,﹣2)上单调递减.…(8分)此时极大值为f(﹣)=(9分)当a>时,f′(x)>0,则x<﹣2或x>﹣,f′(x)<0,则﹣2<x<﹣∴f(x)在(﹣∞,﹣2)和(﹣,+∞)上单调递增,在(﹣2,﹣)上单调递减.…(11分)此时极大值为f(﹣2)=e﹣2(4a﹣1)(12分)点评:本题考查利用导数研究函数的单调性,考查利用导数研究函数的极值,属于中档题.20.(12分)已知等比数列{a n}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项,n∈N*.(1)求数列{a n}的通项公式;(2)若b n=a n+log2a n,S n为数列{b n}的前n项和,求使S n﹣2n+1﹣8≤0成立的n的取值集合.考点:数列的求和;等比数列的通项公式.专题:综合题.分析:(1)利用等比数列{a n}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项,建立方程,求出q,a1,即可求数列{a n}的通项公式;(2)利用分组求和,再解不等式,即可得出结论.解答:解:(1)∵a3+2是a2和a4的等差中项,∴2(a3+2)=a2+a4∵2a1+a3=3a2,∴q=2(q=1舍去),a1=2∴a n=a1q n﹣1=2n….(6分)(2)b n=a n+log2a n=2n+n.…(7分)所以S n=(2+4+…+2n)+(1+2+…+n)=+=2n+1﹣2+n+….(10分)因为S n﹣2n+1﹣8≤0,所以n2+n﹣20≤0解得﹣5≤n≤4,故所求的n的取值集合为{1,2,3,4}….(12分)点评:本题考查等比数列求通项公式和等差、等比中项的概念,等差数列和等比数列之间的相互转化,考查运算能力,属中档题.21.(12分)已知a,b,c分别为△ABC的内角A,B,C的对边,且C=2A,cosA=.(1)求c:a的值;(2)求证:a,b,c成等差数列;(3)若△ABC周长为30,∠C的平分线交AB于D,求△CBD的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)由C=2A,得到sinC=sin2A,求出sinC与sinA之比,利用正弦定理求出c与a之比即可;(2)由cosC=cos2A,把cosA的值代入求出cosC的值,进而求出sinC的值,由cosA的值求出sinA 的值,利用两角和与差的正弦函数公式化简sin(A+C),把各自的值代入求出sin(A+C)的值,即为sinB的值,进而得到sinA+sinC=2sinB,利用正弦定理化简即可得证;(3)由2b=a+c,且a+b+c=30,得到b=10,由c:a=3:2,得到a=8,c=12,过D作DE⊥AC,交AC于点E,由∠BCA=2∠A,且∠BCA的平分线交AB于点D,得到AD=CD,求出AE的长,在三角形ADE中求出AD的长,利用角平分线定理求出BD的长,利用三角形面积公式求出三角形BCD面积即可.解答:解:(1)∵C=2A,∴sinC=sin2A,∴==2cosA=,则由正弦定理得:c:a=sinC:sinA=3:2;(2)∵cosC=cos2A=2cos2A﹣1=2×﹣1=,∴sinC==,∵cosA=,∴sinA==,∴sinB=sin(A+C)=sinAcosC+cosAsinC=,∴sinA+sinC==2sinB,利用正弦定理化简得:2b=a+c,则a,b,c成等差数列;(3)由2b=a+c,且a+b+c=30,得到b=10,由c:a=3:2,得到a=8,c=12,过D作DE⊥AC,交AC于点E,∵∠BCA=2∠A,且∠BCA的平分线交AB于点D,∴∠A=∠ACD,即AD=CD,∴AE=b=5,∵cosA=,AD=,由角平分线定理得:===,∴BD=AD=,则S△CBD=××8×=.点评:此题考查了余弦定理,等差数列的性质,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.22.(12分)定义在D上的函数f(x),如果满足:∀x∈D,∃常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数的上界.(1)试判断函数f(x)=x3+在[,3]上是否是有界函数?(2)若某质点的运动方程为S(t)=+a(t+1)2,要使对t∈[0,+∞)上的每一时刻的瞬时速度S′(t)是以M=1为上界的有界函数,求实数a的值.考点:利用导数求闭区间上函数的最值;导数的运算.专题:导数的综合应用.分析:(1)利用导数研究函数f(x)的单调性极值与最值即可得出.(2)由|S′(t)|≤1,可得﹣1≤≤1.分离参数可得,再利用导数分别研究左右两边的函数即可得出.解答:解:(1)令f′(x)===0,x∈[,3],解得x=1,当x∈[,1]时,f′(x)<0;当x∈(1,3]时,f′(x)>0.∴f(x)在[,3]上的最小值为f(1)=4,又f()=,f(3)=28.∴当x∈[,3]时,f(1)≤f(x)≤f(3),即4≤f(x)≤28.∴存在常数M=28等使得∀x∈[,3],都有|f(x)|<0≤M成立.故函数函数f(x)=x3+在[,3]上是有界函数.(2)∵S′(t)=.由|S′(t)|≤1,得,∴﹣1≤≤1.∴,①令g(t)=,显然g(t)在[0,+∞)上单调递减,且当t→+∞时,g(x)→0.∴a≤0.②令=m∈(0,1],h(m)=m3﹣m,h′(m)=3m2﹣1=0,解得,当m∈时,函数h(m)单调递增,h(m)≤h(1)=0,则当m=1即t=0时,h(m)max=h(1)=0,∴a≥0综上可得a=0.点评:本题考查了利用导数研究函数f(x)的单调性极值与最值、“有界函数”,考查了推理能力与计算能力,属于难题.。
河北省保定市重点高中2015届高三数学12月联考试题 理1.复数z=312ii-+〔i 为虚数单位〕,如此复数z 为〔 〕 A .17i - B .1755i - C .1755i -+ D .1755i +2.2{|log 2}A x x =<,1{|33}3x B x =<<,如此A B 为〔 〕A .〔0,12〕 B .〔0,2〕C .〔-1,12〕 D .〔-12〕3.假设等比数列{}n a 的前n 项和为n S ,且314S =,12a =,如此4a =〔 〕 A .16 B .16或-16 C .-54D .16或-544. 命题x x R x p lg 2,:>-∈∃,命题0,:2>∈∀x R x q ,如此( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题 C.命题)(q p ⌝∧是真命题 D.命题)(q p ⌝∨是假命题 5.某几何体的三视图如下列图,且该几何体的体积是3,如此正视图中的x 的值是A .2B. 92C. 32D. 36.阅读程序框图,假设输入4,6m n ==,如此输出,a i 分别是〔 〕 A .12,3a i ==B .12,4a i ==C .8,3a i ==D .8,4a i ==输入,m n1i =a m i =⨯1i i =+完毕输出,a i a 被n 整除是 否开始7.假设将函数x x x f cos 41sin 43)(-=的图象向右平移(0)m m π<<个单位长度,得到的图象关于原点对称,如此m =〔 ) A .65π B .6π C .32π D .3π8.在△ABC 中,AD 为BC 边上的高,给出如下结论: ①()0AD AB AC -=;②||2||AB AC AD +≥; ③||sin ||ADAC AB B AD =。
以上结论正确的个数为〔 〕 A .0B .1C .2D .39.数列}{n a 中满足151=a ,21=-+na a nn ,如此n a n 的最小值为〔 〕A. 7B. 1152-C.9D.42710.假设函数12()1sin 21x x f x x +=+++在区间[,](0)k k k ->上的值域为[,]m n ,如此m n +=〔 〕 A .0B .1C .2D .411.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,如此如下结论错误的答案是〔 〕A.11DC D P ⊥B.平面11D A P ⊥平面1A APC.1APD ∠的最大值为90D.1AP PD +的最小值为22+12.圆221:(2)16O x y -+=和圆2222:(02)O x y r r +=<<,动圆M 与圆1O 和圆2O 都相切,动圆圆心M 的轨迹为两个椭圆,设这两个椭圆的离心率分别为1e 和2e 〔12e e >〕,如此122e e +的最小值为〔 〕A .3224+ B .32C .2D .38二、填空题:〔本大题共4小题,每一小题5分,共20分〕13.记直线310x y --=的倾斜角为α,曲线ln y x =在(2,ln 2)处切线的倾斜角为β,如此〔第11题图〕αβ+=。
2015年全国Ⅱ卷 理科数学参考答案(1)考点:集合的表示法和交集的定义. 解析:由已知得{|21}B x x =-<<, 故{1,0}AB =-,故选A.(2)考点:复数的实部与虚部,以及相等的有关知识. 解析:由已知得24(4)a a i +-4i =-,所以240,44a a =-=-,解得0a =,故选B.(3)考点:统计中条形图的意义及正负相关. 解析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,选D. (4)考点:等比数列通项公式及前n 项和. 解析:设等比数列公比为q ,则2411121a a q a q ++=,由因为13a =, 所以4260q q +-=,解得22q =,所以357a a a ++2135()a a a q =++42=,故选B. (5)考点:分段函数解析式及求值. 解析:由已知得2(2)1log 43f -=+=, 又2log 121>,所以22log 121log 62(log 12)22f -==6,=故2(2)(log 12)9f f -+=,选C.(6)考点:三视图及三棱柱和柱体的体积.解析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,设正方体棱长为a ,则11133111326A AB D V a a -=⨯⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为15,选D.1(7)考点:圆的一般方程及弦长公式.解析:由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC △为直角三角形,其外接圆圆心为1-2(,),半径为5,所以外接圆方程为22(1)(2)25x y -++=, 令0x=,得2y =±, 所以||MN =故选C. (8)考点:程序框图.解析:程序在执行过程中,,a b 的值依次为14,4;10,4;6,4;2,4a b a b a b a b ========,此时2a b ==程序结束,输出a 的值为2,故选B . (9)考点:球与多面体的组合体中求三棱锥体积的最大值.BOAC解析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时O ABC C AOB V V --=21132R R =⨯⨯ 31366R ==,故6R =,则球O 的表面积为24144S R ππ==,故选C .(10)考点:用排除法和特值检验法选择分段函数的图像.解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,PA PB +tan x +;当点P 在CD 边上运动时, 即3,442x x πππ≤≤≠时,PA PB +=; 当2x π=,PA PB +=;当点P 在AD边上运动时,即34x ππ≤≤时, PA PB +tan x =,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B . (11)考点:解直角三角形及用待定系数法求双曲线的标准方程.解析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,||||AB BM =,ABM ∠120=,过点M 作MN x ⊥轴,垂轴为N ,在Rt BMN △中,||,BN a=||MN ,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b c a ==-,即222c a =,所以e =故选D.(12)考点:构造辅助函数,用导数工具判断函数单调性,用函数图像解不等式. 解析:记函数()()f x g x x=, 则2'()()'()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <, 所以()g x 在(0,)+∞单调递减; 又因为函数()()f x x R ∈是奇函数, 故函数()g x 是偶函数, 所以()g x 在(,0)-∞单调递减, 且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >; 当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .(13)考点:向量平行的判定.解析:因为向量a b λ+与2a b +平行,所以a b λ+(2)k a b =+,则,12.k k λ=⎧⎨=⎩所以12λ=.(14)考点:用数形结合的思想方法解线性规划问题. 解析:画出可行域,如图所示,将目标函数变形为y x z =-+,当z 取到最大值时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z x y =+的最大值为32.(15)考点:运用二项式定理求解某参数的值. 解析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为3354,4,,6,ax ax x x x ,其系数之和为4416132a a ++++=,解得3a =.(16)考点:数列前n 项和及一般数列化归为等差数列的方法.解析:由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +-=-, 故数列1{}nS 是以-1为首项,-1为公差的等差数列,则11(1)n n n S =---=-,所以1n S n=-. (17)考点:运用正弦定理和余弦定理求解有关的三角形问题,考查考生的计算能力和推理能力. 解析:(I)1sin 2ABD S AB AD BAD =⋅∠△ 1sin 2ADC S AC AD CAD =⋅∠△, 因为2ABD ADC S S =△△,BAD CAD ∠=∠, 所以2AB AC =.由正弦定理可得sin 1sin 2B AC C AB ∠==∠(II)因为:ABD ADC S S △△:BD D C =,所以BD .在ABD △和ADC △中,由余弦定理知 2AB =22AD BD +2cos AD BD AD B -⋅∠,222AC AD DC =+2cos AD DC ADC -⋅∠,故222AB AC +22232AD BD DC =++6=.由(I)知2AB AC =,所以1AC =.(18)考点:运用茎叶图求解统计问题及用数学符号表示复杂事件,在求这个复杂事件的概率,考查考生的数据处理能力.解析:(I)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(II)记1A C 表示事件:“A 地区用户的满意度等级为满意或非常满意”;2A C 表示事件:“A 地区用户的满意度等级为非常满意”;1B C 表示事件:“B 地区用户的满意度等级为不满意”;2B C 表示事件:“B 地区用户的满意度等级为满意”;则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,C =1B C 1AC 2B C 2A C ,()P C =P (1B C 1AC 2B C 2A C ) P =(1B C 1A C )+P (2B C 2A C )P =(1B C )P (1A C )+P (2B C )P (2A C )由所给数据得1A C ,2A C ,1B C ,2B C 发生的频率分别为1620,420,1020,820, 故P (1A C )=1620,P (2A C )=420, P (1B C )=1020,P (2B C )=820()P C =1620⨯420⨯1020⨯8200.48= (19)考点:用直线与平面的有关知识作出空间图形及建立空间坐标系计算线面角,考查考生的空间想象能力,解析:(I)交线围成的正方形EHGF 如图:(II)作EM AB ⊥,垂足为M , 则14AM A E ==,18EM AA ==, 因为EHGF 为正方形, 所以EH EF =10BC ==, 于是MH=6=,所以10AH =.以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0),(10,10,0),A H (10,4,8),(0,4,8),E F(10,0,0),FE =(0,6,8).HE =-设(,,)n x y z =时平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩即100,680,x y z =⎧⎨-+=⎩ 不妨设4y =,得(0,4,3)n =, 又(10,4,8)AF =-,故|cos ,|n AF <>||||||nAF n AF ⋅==所以AF 与平面EHGF . (20)考点:运用直线与圆锥曲线的知识进行代数证明及探究某一结论是否成立,考查考生的数形结合、化归、计算与推理能力.解析:(I)设直线:(,0)l y kx b k b =+≠≠,1,122(),(,)A x y B x y ,(,)M M M x y ,将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故122,29M x x kb x k +-==+299M M by kx b k =+=+ 于是直线OM 的斜率9M OM M y k x k==-, 即9OM k k ⋅=-,所以直线OM 的斜率与l 的斜率的乘积为定值. (II)四边形OAPB 能为平行四边形,因为直线l 过电(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0,3k k >≠.由(I)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,由22299y x kx y m ⎧=-⎪⎨⎪+=⎩,得2222981P k m x k =+,即P x =将点(,)3mm 的坐标代入l 的方程得(3)3m k b -=,因此2(3)3(9)M k k m x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,及2P M x x =.2(3)23(9)k k mk -=⨯+,解得14k =24k =. 因为0,i k >3,i k ≠1,2i =,所以当l的斜率为44, 四边形OAPB 为平行四边形.(21)考点:应用导数工具证明函数的单调性及不等式恒成立求参,考查考生回归与代数推理能力. 解析:(I)因为2()mx f x e x mx =+-, 所以'()2mx f x me x m =+-,2''()20mx f x m e =+≥在R 上恒成立,所以'()2mxf x me x m =+-在R 上单调递增,而'(0)0f =,所以0x >时,'()0f x >;0x <时,'()0f x <;所以()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(II)由(I)知min ()f x (0)1f ==,当0m =时,2()1f x x =+,此时()f x 在[1,1]-上的最大值是2, 所以此时12|()()|f x f x -1e ≤-成立.当0m ≠时,(1)1mf e m --=++,(1)1m f e m =+-,令()(1)(1)g m f f =--2m me e m -=--,所以'()20m mg m e e -=+-≥,所以()(1)(1)g m f f =--2m m e e m -=--在R 上单调递增,而(0)0g =,所以0m >时,()0g m >, 即(1)(1)f f >-,0m <时,()0g m <, 即(1)(1)f f <-,当0m >时,12|()()|f x f x -(1)1f ≤-1m e m e =-≤-,所以01m <<;当0m <时,12|()()|f x f x -(1)1f ≤-- m e m -=+=()1m e m e ---≤-,所以10m -<<.所以,综上所述m 的取值范围是(1,1)-. (22)考点:圆的几何性质及四边形面积求解.解析:(I)由于△ABC 是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为⊙o 分别与,AB AC 相切于点,E F , 所以AE AF =,故AD EF ⊥,从而//EF BC . (II)由(I)知,AE AF =,AD EF ⊥, 故AD 是EF 的垂直平分线, 又EF 为⊙o 的弦,所以O 在AD 上, 连接,OE OM ,则OE AE ⊥. 由AG 等于⊙o 的半径得2AO O E =, 所以30OAE ∠=,因此△ABC 和△AEF 都是等边三角形.因为AE =所以4AO =,2OE =. 因为2,OM OE ==12DM MN ==所以1OD =,于是5,AD AB ==. 所以四边形EBCF 的面积为212⨯212-⨯=(23)考点:极坐标与参数方程. 解析:(I)曲线2C 的直角坐标方程为2220x y y +-=;曲线3C 的直角坐标方程为220x y +-=.联立2222200x y y x y ⎧+-=⎪⎨+-=⎪⎩,解得00x y =⎧⎨=⎩,或32x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以2C 与3C 交点的直角坐标为(0,0)和3)2. (II)曲线1C 的极坐标方程为θα=(,0)R ρρ∈≠,其中0απ≤<.因此A 的极坐标为(2sin ,)αα,B的极坐标为,)αα.所以|||2sin |AB αα=-4|sin()|3πα=-当56πα=时,||AB 取得最大值, 最大值为4.(24)考点:不等式的证明.解析:(I)因为2a b =++2c d =++,由题设a b c d +=+,ab cd >得2>2,> (II)(i)若||||a b c d -<-,则2()a b -<2()c d -,即2()4a b ab +-2()4c d cd <+-,因为a b c d +=+,所以ab cd >, 由(I)>. (ii)>,则2>2,即a b ++c d >++, 因为a b c d +=+,所以ab cd >,于是2()a b -2()4a b ab =+-<2()4c d cd +-2()c d =-因此||||a b c d -<-. 综上>是||||a b c d -<-的充要条件.。
河北省保定市重点高中2015届高三12月联考数学(理)试题1.已知复数z=312ii-+(i 为虚数单位),则复数z 为( ) A .17i - B .1755i - C .1755i -+ D .1755i +2.已知2{|log 2}A x x =<,1{|33xB x =<<,则A I B 为( )A .(0,12) B .(0C .(-1,12) D .(-1)3.若等比数列{}n a 的前n 项和为n S ,且314S =,12a =,则4a =( ) A .16 B .16或-16 C .-54D .16或-544. 已知命题x x R x p lg 2,:>-∈∃,命题0,:2>∈∀x R x q ,则( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题 C.命题)(q p ⌝∧是真命题 D.命题)(q p ⌝∨是假命题 5.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是 A .2B. 92C. 32D. 36.阅读程序框图,若输入4,6m n ==,则输出,a i 分别是( ) A .12,3a i == B .12,4a i == C .8,3a i == D .8,4a i == 7.若将函数x x x f cos 41sin 43)(-=的图象向右平移(0)m m π<<个单位长度,得到的图象关于原点对称,则m =( ) A .65π B .6π C .32π D .3π(第6题图)8.在△ABC 中,AD 为BC 边上的高,给出下列结论: ①()0AD AB AC -=;②||2||AB AC AD +≥; ③||sin ||ADAC AB B AD =。
以上结论正确的个数为( )A .0B .1C .2D .39. 已知数列}{n a 中满足151=a ,21=-+n a a nn ,则na n 的最小值为( ) A. 7 B. 1152- C.9 D. 42710.若函数12()1sin 21x xf x x +=+++在区间[,](0)k k k ->上的值域为[,]m n ,则m n +=( ) A .0B .1C .2D .411.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A.11DC D P ⊥B.平面11D A P ⊥平面1A APC.1APD ∠的最大值为90D.1AP PD +12.已知圆221:(2)16O x y -+=和圆2222:(02)O x y r r +=<<,动圆M 与圆1O 和圆2O 都相切,动圆圆心M 的轨迹为两个椭圆,设这两个椭圆的离心率分别为1e 和2e (12e e >),则122e e +的最小值为( )AB .32CD .38二、填空题:(本大题共4小题,每小题5分,共20分)13.记直线310x y --=的倾斜角为α,曲线ln y x =在(2,ln 2)处切线的倾斜角为β,则αβ+=。
2015年河北省“五个一名校联盟”高考二模试卷数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上.1.设集合M ={x |x 2+2x ﹣15<0},N ={x |x 2+6x ﹣7≥0},则M ∩N =( ) A .(﹣5,1] B .[1,3) C .[﹣7,3) D .(﹣5,3)2.已知i 是虚数单位,m 和n 都是实数,且m (1+i )=5+ni ,则=( )A .iB .﹣iC .1D .﹣13.设若f (x )=,f (f (1))=8,则a 的值是( )A .﹣1B .2C .1D .﹣24.设为两个非零向量,则“•=|•|”是“与共线”的( )A .充分而不必要条件B .必要而不充要条件C .充要条件D .既不充分也不必要条5.如图中,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,P 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于( ) A .11 B .10 C .8D .76.已知θ为锐角,且sin(θ﹣)=,则tan2θ=( )A .B .C .﹣D .7.||=1,||=,•=0,点C 在∠AOB 内,且∠AOC =30°,设=m+n(m 、n ∈R ),则等于( )A .B .3C .D .8.等差数列{a n }的前n 项和为S n ,且S 2=10,S 4=36,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的一个方向向量的坐标可以是( )A .(﹣1,﹣1)B .C .D .9.函数y =log a (x +3)﹣1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则的最小值为( )A.2B .4C .D .10.在区间[1,5]和[2,4]分别取一个数,记为a ,b ,则方程表示焦点在x 轴上且离心率小于的椭圆的概率为( )A.B.C.D.11.多面体的三视图如图所示,则该多面体的表面积为(单位:cm)()A.28+4B.30+4C.30+4D.28+412.若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范围为()A.B.C.[,+∞)D.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题卡上.13.(x2﹣x+2)5的展开式中x3的系数为.14.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为.15.设点P(x,y)满足条件,点Q(a,b)(a≤0,b≥0)满足•≤1恒成立,其中O是坐标原点,则Q点的轨迹所围成图形的面积是.16.在△ABC中,tan=2sinC,若AB=1,则AC+BC的最大值为.三、解答题:解答应写出文字说明,证明过程和演算步骤.17.已知数列{a n}的各项均为正数,前n项和为S n,且(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求T n.18.(12分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)19.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b.(Ⅰ)求证:平面PBD⊥平面PAC;(Ⅱ)设AC与BD交于点O,M为OC中点,若二面角O﹣PM﹣D的正切值为,求a:b的值.20.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△A O B面积的最大值.21.已知函数f(x)=ax2﹣e x(a∈R)(Ⅰ)当a=1时,判断函数f(x)的单调区间并给予证明;(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2),证明:﹣<f(x1)<﹣1.请考生在第22、23、24题中任选一道作答,如果多做,则按所做的第1题计分.作答时请写清题号.选修4-1几何证明选讲22.选修4﹣1几何证明选讲已知△ABC中AB=AC,D为△ABC外接圆劣弧,上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F.(I)求证.∠CDF=∠EDF(II)求证:AB•AC•DF=AD•FC•FB.选修4-4:极坐标与参数方程选讲23.已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是(t为参数).(1)将曲线C的极坐标方程转化为直角坐标方程;(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.选修4-5:不等式选讲24.选修4﹣5《不等式选讲》.已知a+b=1,对∀a,b∈(0,+∞),使+≥|2x﹣1|﹣|x+1|恒成立,求x的取值范围.2015年河北省“五个一名校联盟”高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上.1.设集合M={x|x2+2x﹣15<0},N={x|x2+6x﹣7≥0},则M∩N=()A.(﹣5,1]B.[1,3)C.[﹣7,3)D.(﹣5,3)【考点】交集及其运算.【专题】集合.【分析】分别求出M与N中不等式的解集,确定出M与N,找出两集合的交集即可.【解答】解:由M中不等式变形得:(x﹣3)(x+5)<0,解得:﹣5<x<3,即M=(﹣5,3),由N中不等式变形得:(x﹣1)(x+7)≥0,解得:x≤﹣7或x≥1,即N=(﹣∞,﹣7]∪[1,+∞),则M∩N=[1,3),故选:B.【点评】此题考查了交集及其运算,熟练掌握运算法则是解本题的关键.2.已知i是虚数单位,m和n都是实数,且m(1+i)=5+ni,则=()A.i B.﹣i C.1 D.﹣1【考点】复数代数形式的乘除运算.【专题】计算题.【分析】利用复数相等的条件求出m和n的值,代入后直接利用复数的除法运算进行化简.【解答】解:由m(1+i)=5+ni,得,所以m=n=5.则=.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.3.设若f(x)=,f(f(1))=8,则a的值是()A.﹣1 B.2 C.1 D.﹣2【考点】分段函数的应用;函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数,以及方程求解即可.【解答】解:f(x)=,f(f(1))=8,f(1)=lg1=0,f(f(1))=f(0)=0=t3=a3=8,解得a=2.故选:B.【点评】本题考查分段函数的应用,函数的零点以及定积分的运算,考查计算能力.4.设为两个非零向量,则“•=|•|”是“与共线”的()A.充分而不必要条件 B.必要而不充要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据充分条件和必要条件的定义,利用向量共线的等价条件,即可得到结论.【解答】解:若•=|•|,则||•||cos<,>=|||||cos<,>|,即cos<,>=|cos<,>|,则cos<,>≥0,则与共线不成立,即充分性不成立.若与共线,当<,>=π,cos<,>=﹣1,此时•=|•|不成立,即必要性不成立,故“•=|•|”是“与共线”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的应用,利用向量共线的等价条件是解决本题的关键.5.如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分.当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.7【考点】选择结构.【专题】创新题型.【分析】利用给出的程序框图,确定该题最后得分的计算方法,关键要读懂该框图给出的循环结构以及循环结构内嵌套的条件结构,弄清三个分数中差距小的两个分数的平均分作为该题的最后得分.【解答】解:根据提供的该算法的程序框图,该题的最后得分是三个分数中差距小的两个分数的平均分.根据x1=6,x2=9,不满足|x1﹣x2|≤2,故进入循环体,输入x3,判断x3与x1,x2哪个数差距小,差距小的那两个数的平均数作为该题的最后得分.因此由8.5=,解出x3=8.故选C.【点评】本题考查学生对算法基本逻辑结构中的循环结构和条结构的认识,考查学生对赋值语句的理解和认识,考查学生对程序框图表示算法的理解和认识能力,考查学生的算法思想和简单的计算问题.6.已知θ为锐角,且sin(θ﹣)=,则tan2θ=()A.B.C.﹣D.【考点】两角和与差的正弦函数;二倍角的正切.【专题】三角函数的求值.【分析】由条件利用同角三角函数的基本关系求得cos(θ﹣),可得tan(θ﹣),解方程求得tanθ,可得tan2θ=的值.【解答】解:∵θ为锐角,且sin(θ﹣)=,∴cos(θ﹣)=,∴tan(θ﹣)==,∴tanθ=,∴tan2θ==﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系,两角差的正切公式、二倍角公式的应用,属于中档题.7.||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于()A.B.3 C.D.【考点】向量的共线定理;向量的模.【专题】计算题;压轴题.【分析】将向量沿与方向利用平行四边形原则进行分解,构造出三角形,由题目已知,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,避免出错.【解答】解:法一:如图所示:=+,设=x,则=.=∴==3.法二:如图所示,建立直角坐标系.则=(1,0),=(0,),∴=m+n=(m,n),∴tan30°==,∴=3.故选B【点评】对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.8.等差数列{a n}的前n项和为S n,且S2=10,S4=36,则过点P(n,a n)和Q(n+2,a n+2)(n∈N*)的直线的一个方向向量的坐标可以是()A.(﹣1,﹣1) B.C.D.【考点】直线的斜率.【专题】计算题;直线与圆.【分析】由题意求出等差数列的通项公式,得到P,Q的坐标,写出向量的坐标,找到与向量共线的坐标即可.【解答】解:等差数列{a n}中,设首项为a1,公差为d,由S2=10,S4=36,得,解得a1=3,d=4.∴a n=a1+(n﹣1)d=3+4(n﹣1)=4n﹣1.则P(n,4n﹣1),Q(n+2,4n+7).∴过点P和Q的直线的一个方向向量的坐标可以是(2,8)=﹣4().即为.故选B.【点评】本题考查了直线的斜率,考查了等差数列的通项公式,训练了向量的坐标表示,是中档题.9.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+2=0上,其中m>0,n>0,则的最小值为()A.2B.4 C.D.【考点】对数函数的图象与性质.【专题】计算题;函数的性质及应用;不等式的解法及应用.【分析】由题意可得点A(﹣2,﹣1);故﹣2m﹣n+2=0;从而得=+=++2+;利用基本不等式求解.【解答】解:由题意,点A(﹣2,﹣1);故﹣2m﹣n+2=0;故2m+n=2;=+=++2+≥4+=;当且仅当m=n=时,等号成立;故选D.【点评】本题考查了函数的性质应用及基本不等式的应用,属于基础题.10.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】表示焦点在x轴上且离心率小于的椭圆时,(a,b)点对应的平面图形的面积大小和区间[1,5]和[2,4]分别各取一个数(a,b)点对应的平面图形的面积大小,并将他们一齐代入几何概型计算公式进行求解.【解答】解:∵表示焦点在x轴上且离心率小于,∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x轴上且离心率小于的椭圆的概率为P==1﹣=,故选B.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.11.多面体的三视图如图所示,则该多面体的表面积为(单位:cm)()A.28+4B.30+4C.30+4 D.28+4【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.其中平面PAB⊥平面ABC,PB⊥AB,PB=AB=4,D为AB的中点,CD⊥AB,CD=4.即可得出.【解答】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.其中平面PAB⊥平面ABC,PB⊥AB,PB=AB=4,D为AB的中点,CD⊥AB,CD=4.∴该多面体的表面积S=+++=28+4.故选:A.【点评】本题考查了三棱锥的三视图的表面积、勾股定理、三角形的面积计算公式,考查了推理能力与计算能力,属于基础题.12.若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范围为()A.B.C.[,+∞)D.【考点】利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为两函数图象有交点求得a的范围.【解答】解:由y=ax2(a>0),得y′=2ax,由y=e x,得y′=e x,∵曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则设公切线与曲线C1切于点(),与曲线C2切于点(),则,将代入,可得2x2=x1+2,∴a=,记,则,当x∈(0,2)时,f′(x)<0.∴当x=2时,.∴a的范围是[).故选:C.【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,是中档题.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题卡上.13.(x2﹣x+2)5的展开式中x3的系数为﹣200.【考点】二项式系数的性质.【专题】二项式定理.【分析】先求得二项式展开式的通项公式,再令x的幂指数等于3,求得r、r′的值,即可求得x3项的系数.【解答】解:式子(x2﹣x+2)5 =[(x2﹣x)+2]5的展开式的通项公式为T r+1=•(x2﹣x)5﹣r•2r,对于(x2﹣x)5﹣r,它的通项公式为T r′+1=(﹣1)r′••x10﹣2r﹣r′,其中,0≤r′≤5﹣r,0≤r≤5,r、r′都是自然数.令10﹣2r﹣r′=3,可得,或,故x3项的系数为•22•(﹣)+•23•(﹣)=﹣200,故答案为:﹣200.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设出双曲线的一个焦点和一条渐近线,运用点到直线的距离公式,即可得到c=2b,再由a,b,c的关系和离心率公式,即可计算得到.【解答】解:设双曲线的一个焦点为(c,0),一条渐近线为y=x,则===b=×2c,即有c=2b,即有c=2,即有3c2=4a2,即有e==.故答案为:.【点评】本题考查双曲线的方程和性质,考查离心率的求法,考查运算能力,属于基础题.15.设点P(x,y)满足条件,点Q(a,b)(a≤0,b≥0)满足•≤1恒成立,其中O是坐标原点,则Q点的轨迹所围成图形的面积是.【考点】简单线性规划;平面向量数量积的运算.【分析】由已知中在平面直角坐标系中,点P(x,y),则满足•≤1的点Q的坐标满足,画出满足条件的图形,即可得到点Q的轨迹围成的图形的面积.【解答】解:∵•≤1,∴ax+by≤1,∵作出点P(x,y)满足条件的区域如图,且点Q(a,b)满足•≤1恒成立,只须点P(x,y)在可行域内的角点处:A(﹣1,0),B(0,2),ax+by≤1成立即可,∴,即,它表示一个长为1宽为的矩形,其面积为:.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,考查了数形结合的解题思想方法,是中档题.16.在△ABC中,tan=2sinC,若AB=1,则AC+BC的最大值为.【考点】正弦定理;同角三角函数基本关系的运用.【专题】解三角形.【分析】由已知式子化简变形讨论可得C=,再由正弦定理可得AC+BC=sin(﹣A)+sinA=cosA+sinA,由三角函数的最值可得.【解答】解:∵在△ABC中,tan=2sinC,∴tan(﹣)=2sinC,∴=2sinC,∴=4sin cos,即cos(4sin2﹣1)=0,解得cos=0或4sin2﹣1=0,∴C=π(舍去),或C=(舍去),或C=,又∵AB=1,∴==,∴AC=sinB,BC=sinA,又B=﹣A,∴AC+BC=sin(﹣A)+sinA=cosA+sinA,∴AC+BC的最大值为=故答案为:【点评】本题考查解三角形,涉及正弦定理和同角三角函数的基本关系,以及三角函数的化简求最值,属中档题.三、解答题:解答应写出文字说明,证明过程和演算步骤.17.已知数列{a n}的各项均为正数,前n项和为S n,且(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设,求T n .【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】(Ⅰ)由,知,,所以(a n +a n﹣1)(a n ﹣a n ﹣1﹣1)=0,由此能求出a n =n .(Ⅱ)由,知,由此能求出T n .【解答】解:(Ⅰ)∵,∴,①,②由①﹣②得:,(2分)(a n +a n ﹣1)(a n ﹣a n ﹣1﹣1)=0,∵a n >0,∴,又∵,∴a 1=1,∴,(5分)当n=1时,a 1=1,符合题意. 故a n =n .(6分) (Ⅱ)∵,∴,(10分)故.(12分)【点评】本题考查数列的通项公式和前n 项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.18.(12分)(2015•雅安模拟)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(I)由题意,可由直方图中各个小矩形的面积和为1求出x值.(II)再求出小矩形的面积即上学所需时间不少于1小时组人数在样本中的频率,再乘以样本容量即可得到此组的人数即可.(Ⅲ)求出随机变量X可取得值,利用古典概型概率公式求出随机变量取各值时的概率,列出分布列,利用随机变量的期望公式求出期望.【解答】解:(Ⅰ)由直方图可得:20×x+0.025×20+0.0065×20+0.003×2×20=1.所以x=0.0125.(Ⅱ)新生上学所需时间不少于1小时的频率为:0.003×2×20=0.12,因为600×0.12=72,所以600名新生中有72名学生可以申请住宿.(Ⅲ)X的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为,,,,,.0 1 2 3 4.(或)所以X的数学期望为1.【点评】本题考查频率分布直方图,考查离散型随机变量及其分布列、离散型随机变量的期望等,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,考查了识图的能力.19.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b.(Ⅰ)求证:平面PBD⊥平面PAC;(Ⅱ)设AC与BD交于点O,M为OC中点,若二面角O﹣PM﹣D的正切值为,求a:b的值.【考点】平面与平面垂直的判定;与二面角有关的立体几何综合题.【专题】综合题;空间向量及应用.【分析】(I)根据线面垂直的判定,证明BD⊥平面PAC,利用面面垂直的判定,证明平面PBD⊥平面PAC.(II)过O作OH⊥PM交PM于H,连HD,则∠OHD为A﹣PM﹣D的平面角,利用二面角O﹣PM﹣D的正切值为,即可求a:b的值.【解答】解:(I)证明:因为PA⊥平面ABCD,所以PA⊥BD,又ABCD为菱形,所以AC⊥BD,因为PA∩AC=A,所以BD⊥平面PAC,因为BD⊂平面PBD,所以平面PBD⊥平面PAC.(II)解:过O作OH⊥PM交PM于H,连HD,因为DO⊥平面PAC,由三垂线定理可得DH⊥PM,所以∠OHD为A﹣PM﹣D的平面角又,且从而∴所以9a2=16b2,即.【点评】本题考查线面垂直、面面垂直的判定,考查面面角,解题的关键是掌握线面垂直、面面垂直的判定,作出面面角.20.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)联立得y2+8y﹣8b=0.由此利用根的判别式、弦长公式,结合已知条件能求出圆的方程.(Ⅱ)由直线l与y轴负半轴相交,得﹣1<b<0,由点O到直线l的距离d=,得S△AOB=|AB|d=4.由此利用导数性质能求出△AOB的面积的最大值.【解答】解:(Ⅰ)联立得:y2+8y﹣8b=0.依题意应有△=64+32b>0,解得b>﹣2.设A(x1,y1),B(x2,y2),设圆心Q(x0,y0),则应有x0=,y0==﹣4.因为以AB为直径的圆与x轴相切,得到圆半径为r=|y0|=4,又|AB|==.所以|AB|=2r,即=8,解得b=﹣.所以x0==2b+8=,所以圆心为(,﹣4).故所求圆的方程为(x﹣)2+(y+4)2=16..(Ⅱ)因为直线l与y轴负半轴相交,∴b<0,又l与抛物线交于两点,由(Ⅰ)知b>﹣2,∴﹣2<b<0,直线l:y=﹣x+b整理得x+2y﹣2b=0,点O到直线l的距离d==,所以∴S△AOB=|AB|d=﹣4b=4.令g(b)=b3+2b2,﹣2<b<0,g′(b)=3b2+4b=3b(b+),∴g(b)在(﹣2,﹣)增函数,在(﹣,0)是减函数,∴g(b)的最大值为g(﹣)=.∴当b=﹣时,△AOB的面积取得最大值.【点评】本题主要考查圆的方程的求法,考查三角形面积的最大值的求法,考查直线与抛物线、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.21.已知函数f(x)=ax2﹣e x(a∈R)(Ⅰ)当a=1时,判断函数f(x)的单调区间并给予证明;(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2),证明:﹣<f(x1)<﹣1.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(Ⅰ)a=1时,f(x)=x2﹣e x,f′(x)=2x﹣e x,f″(x)=2﹣e x,利用导数研究其单调性可得当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,即可得出.(II)f(x)有两个极值点x1,x2(x1<x2),可得f′(x)=2ax﹣e x=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣e x=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e >0,可得0<x1<1<ln2a,进而得出.【解答】(Ⅰ)解:a=1时,f(x)=x2﹣e x,f′(x)=2x﹣e x,f″(x)=2﹣e x,令f″(x)>0,解得x<ln2,此时函数f′(x)单调递增;令f″(x)<0,解得x>ln2,此时函数f′(x)单调递减.∴当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,∴函数f(x)在R上单调递减.(Ⅱ)证明:f(x)有两个极值点x1,x2(x1<x2),∴f′(x)=2ax﹣e x=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣e x=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e>0,∴0<x1<1<ln2a,由f′(x1)==0,可得,f(x1)===(0<x1<1).∴可知:x1是f(x)的极小值点,∴f(x1)<f(0)=﹣1.f(x1)>=﹣2ax1>.【点评】本题考查了利用导数(两次求导)研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.请考生在第22、23、24题中任选一道作答,如果多做,则按所做的第1题计分.作答时请写清题号.选修4-1几何证明选讲22.选修4﹣1几何证明选讲已知△ABC中AB=AC,D为△ABC外接圆劣弧,上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F.(I)求证.∠CDF=∠EDF(II)求证:AB•AC•DF=AD•FC•FB.【考点】与圆有关的比例线段;圆周角定理.【专题】综合题.【分析】(I)根据A,B,C,D 四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.(II)证明△BAD∽△FAB,可得AB2=AD•AF,因为AB=AC,所以AB•AC=AD•AF,再根据割线定理即可得到结论.【解答】证明:(I)∵A,B,C,D 四点共圆,∴∠ABC=∠CDF又AB=AC∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,7分对顶角∠EDF=∠ADB,故∠EDF=∠CDF;(II)由(I)得∠ADB=∠ABF∵∠BAD=∠FAB∴△BAD∽△FAB∴∴AB2=AD•AF∵AB=AC∴AB•AC=AD•AF∴AB•AC•DF=AD•AF•DF根据割线定理DF•AF=FC•FB∴AB•AC•DF=AD•FC•FB【点评】本题以圆为载体,考查圆的内接四边形的性质,考查等腰三角形的性质,考查三角形的相似,属于基础题.选修4-4:极坐标与参数方程选讲23.已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是(t为参数).(1)将曲线C的极坐标方程转化为直角坐标方程;(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.【考点】直线和圆的方程的应用;点的极坐标和直角坐标的互化;参数方程化成普通方程.【专题】转化思想.【分析】(1)极坐标直接化为直角坐标,可求结果.(2)直线的参数方程化为直角坐标方程,求出M,转化为两点的距离来求最值.【解答】解:(1)曲C的极坐标方程可化为:ρ2=2ρsinθ,又x2+y2=ρ2,x=ρcosθ,y=ρsinθ.所以,曲C的直角坐标方程为:x2+y2﹣2y=0.(2)将直线L的参数方程化为直角坐标方程得:.令y=0得x=2即M点的坐标为(2,0)又曲线C为圆,圆C的圆心坐标为(0,1)半径,∴.【点评】本题考查极坐标和直角坐标的互化,直线的参数方程化为直角坐标方程,转化的数学思想的应用,是中档题.选修4-5:不等式选讲24.选修4﹣5《不等式选讲》.已知a+b=1,对∀a,b∈(0,+∞),使+≥|2x﹣1|﹣|x+1|恒成立,求x的取值范围.【考点】绝对值三角不等式;基本不等式.【专题】分类讨论;不等式的解法及应用.【分析】利用基本不等式求得+的最小值等于9,由题意可得|2x﹣1|﹣|x+1|≤9,分x≤﹣1时,﹣1<x<时,x≥时三种情况分别求出不等式的解集,再取并集,即得结果.【解答】解:∵a+b=1,且a>0,b>0,∴+=(a+b)(+)=5++≥5+2=9,故+的最小值等于9.要使+≥|2x﹣1|﹣|x+1|恒成立,所以,|2x﹣1|﹣|x+1|≤9.当x≤﹣1时,2﹣x≤9,∴﹣7≤x≤﹣1.当﹣1<x<时,﹣3x≤9,∴﹣1<x<.当x≥时,x﹣2≤9,∴≤x≤11.综上,﹣7≤x≤11.【点评】本题考查基本不等式的应用,绝对值不等式的解法,体现了分类讨论的数学思想,关键是去掉绝对值,化为与之等价的不等式组来解,属于基础题.。
石家庄市2015届高三复习教学质量检测(二)高三数学(理科)(时间120分钟,满分150分)第I 卷 (选择题,60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数iiz 42+=(i 为虚数单位)对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如果0a b <<,那么下列不等式成立的是A .11a b-<- B .2ab b < C .2ab a -<- D .b a < 3.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生性别与支持活动有关系”的犯错误的概率不超过 A .0.1% B .1% C .99% D .99.9% 附:4.已知实数,x y 满足条件11y x xy x ≥⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值为A .3B .2C .32D .05.运行如图所示的程序框图,如果输出的(2,2]t ∈-,则输入x 的范围是A .[-B .(-C .[D .( 6.已知等差数列{}n a 中,100720144,2014a S ==,则2015S =A .2015-B .2015C .4030-D .40307.一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为 A .120 B .36 C .24 D .728.若圆222)1()5(r y x =-+-上有且仅有两点到直线0234=++y x 的距离等于1,则r 的取值范围为A .[4,6]B .(4,6)C .[5,7]D .(5,7)10.某几何体的三视图如右图所示,则该几何体的表面积为 B .4+ C .2+ D .4+11.已知函数()f x 的定义域为2(43,32)a a --,且(23)y f x =-是偶函数. 又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足条件的k 的个数为A .3B .2C .4D .112.已知定义在R 上的函数()f x 满足:21)()()1(2+-=+x f x f x f ,数列{}n a 满足 *2),()(N n n f n f a n ∈-=,若其前n 项和为1635-,则n 的值为 A .16 B .17 C .18 D .19第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线2241x y -=的渐近线方程为_____. 14.已知212(1)4k dx ≤+≤⎰,则实数k 的取值范围是_____.16.三棱锥中有四条棱长为4,两条棱长为a ,则a 的取值范围为_____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边长,且222cos ()a bc A b c -=+.(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1,2B C b +==,试求ABC ∆的面积. 18.(本小题满分12分)我国城市空气污染指数范围及相应的空气质量类别见下表:我们把某天的空气污染指数在0-100时称作A 类天,101--200时称作B 类天,大于200时称作C类天.右图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶) (Ⅰ)从这18天中任取3天,求至少含2个A 类天的概率;(Ⅱ)从这18天中任取3天,记X 是达到A 类或B 类天的天数,求X 的分布列及数学期望. 19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1A A AB =,90ABC ∠=︒,侧面11A ABB ⊥底面ABC . (I )求证:1AB ⊥平面1A BC ;(II )若5AC =,3BC =,160A AB ∠=︒,求二面角11B AC C --的余弦值.20.(本小题满分12分)已知椭圆22122:1(0)4x y C b b b+=>,抛物线22:4()C x y b =-.过点(01)F b +,作x 轴的平行线,与抛物线2C 在第一象限的交点为G ,且该抛物线在点G 处的切线经过坐标原点O . (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线:l y kx =与椭圆1C 相交于两点C 、D 两点,其中点C 在第一象限,点A 为椭圆1C 的右顶点,求四边形ACFD 面积的最大值及此时l 的方程. 21.(本小题满分12分) 已知21()ln ,2f x x x mx x m R =--∈. (Ⅰ)当2m =-时,求函数()f x 的所有零点; (Ⅱ)若()f x 有两个极值点12,x x ,且12x x <,求证:212x x e >(e 为自然对数的底数). 请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.几何证明选讲(本小题满分10分) 如图:已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B C 、,APC ∠的平分线分别交AB AC 、于点D E 、,.点G 是线段ED 的中点,AG 的延长线与CP 相交于点F .(Ⅰ)证明:AF ED ⊥; (Ⅱ)当F 恰为PC 的中点时,求PCPB的值. 23.坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为24(4x t y t⎧=⎨=⎩其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos()42πρθ+=. (Ⅰ)把曲线1C 的方程化为普通方程,2C 的方程化为直角坐标方程;(Ⅱ)若曲线1C ,2C 相交于B A ,两点,AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于F E ,两点,求PE PF ⋅.24.不等式选讲(本小题满分10分) 已知1()33f x x x a a=++-.(Ⅰ)若1a =,求8)(≥x f 的解集;(Ⅱ)对任意()+∞∈,0a ,任意R x ∈,()m x f ≥恒成立,求实数m 的最大值.80907873635267934738386730121290683243210B 1C 1C2014-2015学年度高三数学质检二答案(理科)一、 选择题1-5 DABAD 6-10 CCBCB 11-12 AB 二、填空13. 20x y ±= 14. [1,3] 15 -1016. ()2262,0+注意:此题如果写成(也可以 三、解答题(解答题如果和标准答案不一样,可依据本标准酌情给分) 17.解:(Ⅰ)∵222cos ()a bc A b c -=+,又根据余弦定理A bc c b a cos 2222-+=,∴22222cos 2cos 2b c bc A bc A b bc c +--=++,…………………………2分 化简得4cos 2bc A bc -=,可得1cos 2A =-, ……………………………………………………………………4分 ∵0A π<<,∴23A π=.……………………………………………………………………5分(Ⅱ)∵1sin sin =+C B , ∴1)3sin(sin =-+B B π,∴1sin 3cos cos 3sin sin =-+B B B ππ, ∴1sin 3cos cos 3sin =+B B ππ,∴1)3sin(=+πB , ……………………………………………………………………8分又∵B 为三角形内角, 故6B C π==,所以2==c b , ……………………………………………………………………………10分 所以3sin 21==∆A bc S ABC . …………………………………………………………12分 18. 解:(Ⅰ) 从这18天中任取3天,取法种数有 318816C =,3天中至少有2个A 类天的取法种数213315346C C C += , ..... ....2分所以这3天至少有2个A 类天的概率为23408; .............................. ..4分 (Ⅱ)X 的一切可能的取值是3,2,1,0. ……………… 5分当X=3时,1027)3(31838===C C X P …………………… 6分当X=2时,10235)2(31811028===C C C X P …………………… 7分 当X=1时,341510245)1(31821018====C C C X P ……………… 8分 当X=0时,34510215)0(318310====C C X P …………… 9分数学期望为34102136102457021==++ . ……………12分 19.解:(Ⅰ)证明:在侧面A 1ABB 1中,因为A 1A=AB ,所以四边形A 1ABB 1为菱形,所以对角线AB 1⊥A 1B ,…………………………………2分 因为侧面A 1ABB 1⊥底面ABC ,∠ABC=900,所以CB ⊥侧面A 1ABB 1, 因为AB 1⊂平面A 1ABB 1内,所以CB ⊥AB 1,…………………………4分 又因为A 1B ∩BC=B ,所以AB 1⊥平面A 1BC . …………………………………6分(Ⅱ)在Rt △ABC 中, AC=5, BC=3, 所以AB=4,又菱形A 1ABB 1中,因为∠A 1AB=600,所以△A 1AB 为正三角形,如图,以菱形A 1ABB 1的对角线交点O 为坐标原点OA 1方向为x 轴,OA 方向为y 轴,过O 且与BC 平行的方向为z 轴建立如图空间直角坐标系,则1(2,0,0)A ,(2,0,0)B -,(2,0,3)C -,1(0,B -,1(0,C -,所以1(2,0)C C =-,113)C A =-,设(,,)n x y z =为平面11ACC的法向量,则11100n C C n C A ⎧=⎪⎨=⎪⎩,所以20230x x z ⎧-+=⎪⎨+-=⎪⎩,令3x =,得(3,3,4)n =为平面11ACC 的一个法向量,…………………………………9分又1(0,OB =-为平面1A BC 的一个法向量,111cos ,2723n OB n OB n OB <>===,……………………………11分所以二面角B —A 1C —C 1的余弦值为.…………………………………12分 法2:在平面BC A 1中过点O 作OH ⊥C A 1于H ,连接AH ,则C A 1⊥平面AOH ,所以∠AHO 即为二面角B —A 1C —A 的平面角,……………………………………………………8分在△BC A 1中5611=⋅=C A BC O A OH , 又Rt △AOH 中32=AO ,所以521422=+=OH AO AH , 所以1421cos =∠AHO ,………………………………………………………………11分 因为二面角B —A 1C —C 1与二面角B —A 1C —A 互补,所以二面角B —A 1C —C 1的余弦值为二面角B —A 1C —A 的余弦值的相反数,则二面角B —A 1C —C 1的余弦值为1421-.………………………………12分 20.解:(Ⅰ)由24()x y b =-得214y x b =+,当1y b =+得2x =±, ∴ G 点的坐标为(2,1)b +,则1'2y x =,2'|1x y ==,过点G 的切线方程为(1)2y b x -+=-即1y x b =+-,………………………2分 令0y =得10x b =-=,∴ 1b =。
2015年河北省保定市高考数学一模试卷(理科)一、选择题(共12小题,每小题3分,满分36分)1. 已知集合A ={1, 2, 3, 4},B ={x|x =√n, n ∈A},则A ∩B 的子集个数是( ) A 2 B 3 C 4 D 162. 已知p:α是第一象限角,q:α<π2,则p 是q 的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 3. 已知i 是虚数单位,则(1−i 1+i)2=( )A 1B iC −iD −1 4. sin15∘−cos15∘=( ) A √22B 12C −√22 D −125. 在边长为4的正方形ABCD 内任取一点M ,则∠AMB >90∘的概率为( ) A π8B 1−π8C π4D 1−π46. 一简单组合体的三视图如图,则该组合体的表面积为( )A 38B 38−2πC 38+2πD 12−π7. 已知函数f(x +2)是R 上的偶函数,当x >2时,f(x)=x 2+1,则当x <2时,f(x)=( )A x 2+1B x 2−8x +5C x 2+4x +5D x 2−8x +178. 设向量a →,b →满足|a →|=|b →|=|a →+b →|=1,则|a →−tb →|(t ∈R)的最小值为( ) A 2 B 12 C 1 D √329. 执行如图的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A s >45 B s >710 C s >35 D s >1210. 已知x ,y 满足{kx −y +2≥0(k <0)x +y −2≥0y ≥0 ,则使目标函数z =y −x 取得最小值−4的最优解为( )A (2, −2)B (−4, 0)C (4, 0)D (7, 3)11. 司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析( ) A 甲合适 B 乙合适 C 油价先高后低甲合适 D 油价先低后高甲合适12. 设等差数列{a n }满足a 1=1,a n >0(n ∈N ∗),其前n 项和为S n ,若数列{√S n }也为等差数列,则S n+10a n2的最大值是( )A 310B 212C 180D 121二、填空题(共4小题,每小题3分,满分12分) 13. 双曲线2x 2−y 2=1的离心率为________.14. 已知公比为q 的等比数列{a n },满足a 1+a 2+a 3=−8,a 4+a 5+a 6=4,则a 11−q=________.15. 若直线y =kx 与曲线y =x 2+x 所围成的封闭图形的面积为112,则k =________.16. 由5个元素的构成的集合M ={4, 3, −1, 0, 1},记M 的所有非空子集为M 1,M 2,…,M n ,每一个M i (i =1, 2,…,31)中所有元素的积为m i (若集合中只有一个元素时,规定其积等于该元素本身),则m 1+m 2+...+m 33=________.三、解答题(共8小题,满分0分) 17. 已知函数f(x)=sinxcos(x −π6)+12cos2x(1)求函数f(x)的最大值;(2)已知△ABC 的面积为√3,且角A ,B ,C 的对边分别为a ,b ,c ,若f(A)=12,b +c =5,求a 的值.18. 小明参加某项资格测试,现有10道题,其中6道客观题,4道主观题,小明需从10道题中任取3道题作答(1)求小明至少取到1道主观题的概率(2)若取的3道题中有2道客观题,1道主观题,设小明答对每道客观题的概率都是35,答对每道主观题的概率都是45,且各题答对与否相互独立,设X 表示小明答对题的个数,求x 的分布列和数学期望.19. 如图,已知矩形ABCD 中,AB =2,AD =1,M 为DC 的中点,将△ADM 沿AM 折起,使得平面ADM ⊥平面ABCM ,连结BM(1)求证:AD ⊥BM ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,三棱锥M −ADE 的体积为√212; (3)求二面角A −DM −C 的正弦值. 20. 已知椭圆x 2a2+y 2b 2=1,(a >b >0)的短轴长为2,离心率为√22,过右焦点F 的直线l 交椭圆与P ,Q 两点(1)求椭圆的方程(2)在线段OF 上是否存在点M(m, 0),使得(MP →+MQ →)⋅(MP →−MQ →)=0?若存在,求出m 的取值范围,若不存在,说明理由.21. 已知函数f(x)=e x −ax +a ,其中a ∈R ,e 为自然对数的底数. (1)讨论函数f(x)的单调性,并写出对应的单调区间;(2)设b ∈R ,若函数f(x)≥b 对任意x ∈R 都成立,求ab 的最大值.22. 如图所示,已知⊙O 1与⊙O 2相交于A 、B 两点,过点A 作⊙O 1的切线交⊙O 2于点C ,过点B 作两圆的割线,分别交⊙O 1、⊙O 2于点D 、E ,DE 与AC 相交于点P .(1)求证:AD // EC ;(2)若AD 是⊙O 2的切线,且PA =6,PC =2,BD =9,求AD 的长.23. 已知直线l 在直角坐标系xOy 中的参数方程为{x =4+tcosαy =2+tsinα (t 为参数,α为倾斜角),曲线C 的极坐标方程为ρ=4cosθ(其中坐标原点O 为极点,x 轴非负半轴为极轴,取相同单位长度)(1)写出曲线C 的直角坐标方程(2)若曲线C 与直线l 相交于不同的两点M 、N ,设P(4, 2),求|PM|+|PN|的取值范围. 24. 设函数f(x)=|x −a|+1,a ∈R(1)当a =4时,解不等式f(x)<1+|2x +1|;(2)若f(x)≤2的解集为[0, 2],1m +1n =a(m >0, n >0),求证:m +2n ≥3+2√2.2015年河北省保定市高考数学一模试卷(理科)答案1. C2. D3. D4. C5. A6. A7. D8. D9. B 10. C 11. B 12. D 13. √3 14. −16315. 1+√434或1−√43416. −117. 函数f(x)=sinxcos(x −π6)+12cos2x =sinx(√32cosx +12sinx)+12(2cos 2x −1)√32sinxcosx +12cos 2x =12(√32sinxcosx +12cos2x)+14=12sin(2x +π6)+14,故函数的最大值为12+14=34.由题意可得f(A)=12=12sin(2A +π6)+14,∴ sin(2A +π6)=12. 再根据2A +π6∈(π6, 13π6),可得2A +π6=5π6,A =π3.根据△ABC 的面积为12bc ⋅sinA =√3,∴ bc =4,又∵ b +c =5,∴ b =4、c =1,或b =1、c =4.利用余弦定理可得a 2=b 2+c 2−2bc ⋅cosA =13∴ a =√13. 18. 设事件A =“小明所取的3道题至少有1道主观题” 则有A ¯=“小明所取的3道题都是客观题”因为P(A ¯)=C 63C 103=16P(A)=1−P(A ¯)=56.X 的所有可能的取值为0,1,2,3. P(X =0)=(25)2⋅15=4125.P(X =1)=C 21⋅(35)1⋅(25)1+(25)2⋅45=28125. P(X =2)=(35)2⋅15+C 21⋅(35)1⋅(25)1⋅45=57125,P(X =3)=(35)2⋅45=36125 ∴ X 的分布列为∴ E(X)=0×4125+1×28125+2×57125+3×36125=2.19. 证明:∵ 矩形ABCD 中,AB =2,AD =1,M 为DC 的中点,∴ AM =BM =√2, ∴ AM 2+BM 2=AB 2,∴ AM ⊥BM .再由平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,∴ BM ⊥平面ADM , 结合AD ⊂平面ADM ,可得AD ⊥BM .分别取AM ,AB 的中点O 和N ,则ON // BM , 在(1)中证明BM ⊥平面ADM ,∴ ON⊥⊥平面ADM ,ON ⊥AM ,ON ⊥OD , ∵ AD =DM ,∴ DO ⊥AM , 建立空间直角坐标系如图: 则D(0, 0, √22),A(√22, 0, 0),B(−√22, √2, 0), ∴ DB →=(−√22, √2, −√22), ∵ E 是线段DB 上的一个动点, ∴ DE →=λDB →=(−√22λ, √2λ, −√22λ), 则E(−√22λ, √2λ, √22−√22λ), ∴ AE →=(−√22λ−√22, √2λ, √22−√22λ), 显然n →=(0, 1, 0)是平面ADM 的一个法向量. 点E 到平面ADM 的距离d =AE →⋅n →|n →|=√2λ,则V M−ADE =13S ADM ⋅d =13×12×1×1×√2λ=√212, 解得λ=12,则E 为BD 的中点. D(0, 0, √22),M(−√22, 0, 0),C(−√2, √22, 0),则DM →=(−√22, 0, −√22),MC →=(−√22, √22, 0), 设m →=(x, y, z)是平面CDM 的法向量, 则{DM →⋅m →=−√22x −√22z =0MC →⋅m →=−√22x +√22y =0,令x =1,则y =1,z =−1,即m →=(1, 1, −1), 易知n →=(0, 1, 0)是平面ADM 的法向量, 则cos <m →,n →>=m →⋅n→|m →||n →|=1√3=√33. 则sin <m →,n →>=√1−(√33)2=√1−39=√69=√63.20. 由椭圆短轴长为2得b =1,又e =√a 2−1a=√22,∴ a =√2,所求椭圆方程为x 22+y 2=1⋯假设在线段OF 上存在点M(m, 0)(0≤m ≤1),使得(MP →+MQ →)⋅(MP →−MQ →)=0成立, 可得|MP →|2−|MQ →|2=0即|MP →|=|MQ →|①当l ⊥x 轴时,显然线段OF 上的点都满足条件,此时0≤m ≤1②当l 与x 轴重合时,显然只有原点满足条件,此时m =0③当l 的斜率存在且不为零时,设直线l 的方程为y =k(x −1)(k ≠0).由{x 2+2y 2=2y =k(x −1)可得(1+2k 2)x 2−4k 2x +2k 2−2=0,根据根与系数的关系得x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−21+2k 2⋯设MP →=(x 1−m,y 1),MQ →=(x 2−m,y 2)其中x 2−x 1≠0∵ (MP →+MQ →)⋅(MP →−MQ →)=0∴ (x 1+x 2−2m)(x 2−x 1)+(y 1+y 2)(y 2−y 1)=0⇒(x 1+x 2−2m)+k(y 1+y 2)=0⇒2k 2−(2+4k 2)m =0⇒m =k 21+2k 2=12+1k 2(k ≠0).∴ 0<m <12.∴ 综上所述:①当l ⊥x 轴时,存在0≤m ≤1适合题意 ②当l 与x 轴重合时,存在m =0适合题意③当l 的斜率存在且不为零时存在0<m <12适合题意21. 由函数f(x)=e x −ax +a ,可知f′(x)=e x −a , ①当a ≤0时,f′(x)>0,函数f(x)在R 上单调递增; ②当a >0时,令f′(x)=e x −a =0,得x =lna ,故当x ∈(−∞, lna)时,f′(x)<0,此时f(x)单调递减; 当x ∈(lna, +∞)时,f′(x)>0,此时f(x)单调递增.综上所述,当a ≤0时,函数f(x)在单调递增区间为(−∞, +∞);当a >0时,函数f(x)的单调递减区间为(−∞, lna),单调递增区间为(lna, +∞);由(1)知,当a <0时,函数f(x)在R 上单调递增且当x →−∞时,f(x)→−∞,∴ f(x)≥b 不可能恒成立;当a =0时,此时ab =0;当a >0时,由函数f(x)≥b 对任意x ∈R 都成立,可得b ≤f min (x), ∵ f min (x)=2a −alna ,∴ b ≤2a −alna ,∴ ab ≤2a 2−a 2lna ,设g(a)=2a 2−a 2lna (a >0),则g′(a)=4a −(2alna +a)=3a −2alna , 由于a >0,令g′(a)=0,得lna =32,故a =e 32, 当a ∈(0,e 32)时,g′(a)>0,g(a)单调递增; 当a ∈(e 32,+∞)时,g′(a)<0,g(a)单调递减. 所以g max (a)=e 32,即当a =e 32,b =12e 32时,ab 的最大值为e 32.22. (1)证明:连接AB ,∵ AC 是⊙O 1的切线, ∴ ∠BAC =∠D , 又∵ ∠BAC =∠E , ∴ ∠D =∠E , ∴ AD // EC .(2) 解:∵ PA 是⊙O 1的切线,PD 是⊙O 1的割线, ∴ PA 2=PB ⋅PD , ∴ 62=PB ⋅(PB +9), ∴ PB =3,在⊙O 2中由相交弦定理,得PA ⋅PC =BP ⋅PE ,∴ PE =4,∵ AD 是⊙O 2的切线,DE 是⊙O 2的割线, ∴ AD 2=DB ⋅DE =9×16, ∴ AD =12.23. 由曲线C 的极坐标方程为ρ=4cosθ,化为ρ2=4ρcosθ, ∴ x 2+y 2=4x 即为直角坐标方程.把直线l 的参数方程{x =4+tcosαy =2+tsinα 代入x 2+y 2=4x ,可得t 2+4(sinα+cosα)t +4=0,由△=16(sinα+cosα)2−16>0,sinαcosα>0,又α∈[0, π),∴ α∈(0,π2), ∴ t 1+t 2=−4(sinα+cosα),t 1t 2=4. ∴ t 1<0,t 2<0.∴ |PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4(sinα+cosα)=4√2sin(α+π4), 由α∈(0,π2),可得(α+π4)∈(π4,3π4),∴√22<sin(α+π4)≤1,∴ |PM|+|PN|的取值范围是(4,4√2].24. 当a =4时,不等式f(x)<1+|2x +1|即为|x −4|<|2x +1||①当x ≥4时,原不等式化为x −4<2x +1,得x >−5,故x ≥4; ②当−12≤x <4时,原不等式化为4−x <2x +1,得x >1,故1<x <4;③当x <−12时,原不等式化为4−x <−2x −1,得x <−5,故x <−5.综合①、②、③知,原不等式的解集为(−∞, −5)∪(1, +∞); 证明:由f(x)≤2得|x −a|≤1,从而−1+a ≤x ≤1+a , ∵ f(x)≤1的解集为{x|0≤x ≤2},∴ {−1+a =01+a =2得a =1,∴ 1m +1n =a =1.又m >0,n >0,∴ m +2n =(m +2n)(1m+1n =)=3+(2n m+mn)≥3+2√2,当且仅当m =1+√2,n =1+√22时,取等号,故m +2n ≥3+2√2,得证。
2015年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B= (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}2.若a 为实数且(2+ai )(a -2i )=-4i ,则a =(A )-1 (B )0 (C )1 (D )23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是(A )逐年比较,2008年减少二氧化硫排放量的效果最显著 (B )2007年我国治理二氧化硫排放显现(C )2006年以来我国二氧化硫年排放量呈减少趋势 (D )2006年以来我国二氧化硫年排放量与年份正相关 4.等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 = (A )21 (B )42 (C )63 (D )845.设函数f (x )=⎩⎨⎧≥++-1,2,1),2(log 112x x x x <,则f (-2)+ f (log 212) =(A )3 (B )6 (C )9 (D )126.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则 截去部分体积与剩余部分体积的与剩余部分体积的比值为(A )81 (B )71 (C )61(D )517.过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN=(A )26 (B )8 (C )46 (D )10 8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》 中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18, 则输出的a= (A )0 (B )2 (C )4 (D )149.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体 积的最大值为36,则球O 的表面积为(A )36π (B )64π (C )144π (D )256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与 DA 运动,∠BOP=x 。
2015高考理科模拟试卷及答案解析目录2015高考理科数学模拟试卷 (2)2015高考理科数学模拟试卷答案解析 (5)2015高考理综模拟试卷 (12)2015高考理综模拟试卷答案解析 (24)2015高考理综化学模拟试卷答案解析 (24)2015高考理综生物模拟试卷答案解析 (25)2015高考理综物理模拟试卷答案解析 (26)2015高考语文模拟试卷 (27)2015高考语文模拟试卷答案解析 (34)2015高考英语模拟试卷 (36)2015高考英语模拟试卷答案解析 (44)2015高考理科数学模拟试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3}A =,{1,3,9}B =,x A ∈,且x B ∉,则x =A .1B .2C .3D .92.在复平面内,复数11i+-对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3.若01a <<,log (1)log a a x x -<,则A .01x <<B .12x <C .102x <<D .112x <<4.函数2cos2sin y x x =+,R ∈x 的值域是A .[0,1]B .1[,1]2C .[1,2]-D .[0,2]5.在5(12)(1)x x -+的展开式中,3x 的系数是A .20B .20-C .10D .10- 6.某几何体的三视图如图所示,其中三角形的三边长与圆的直径均为2则该几何体的体积为A πB C .32π3 D .4π3+ 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , m =(3b -c ,cos C ),n =(a ,cos A ),m ∥n ,则cos A 的值等于( )A.36 B.34 C.33 D.328.设不等式组4,010x y y x x +≤⎧⎪-≥⎨⎪-≥⎩表示的平面区域为D .若圆C :222(1)(1)(0)x y r r +++=>不经过区域D 上的点,则r 的取值范围是A .B .正视图 侧视图俯视图 (第6题)C.(25,)+∞ D.(25,)+∞9.若,a b 表示直线,α表示平面,且b α⊂,则“//a b ”是“//a α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.已知, 圆222π=+y x 内的曲线sin ,[,]y x x ππ=-∈-与x 轴围成的阴影部分区域记为Ω(如图),随机往圆内投掷一个点A ,则点A 落在区域Ω的概率为 A .33πB .34π . 32πC D .31π11.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交M ,N 两点(如图),点N 恰好平分线段PF 2,则双曲线的离心率是AB .2 CD12.已知方程sin xk x=在(0,)+∞有两个不同的解,αβ(αβ<),则下面结论正确的是: A .1tan()41πααα++=- B .1tan()41πβββ++=- C . 1tan()41πααα-+=+ D .1tan()41πβββ-+=+ 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.设数列{}n a 满足11a =,13n n a a +=,则5a = . 14.若某程序框图如图所示,则运行结果为 .15.甲、乙、丙等五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为 .16.已知点(3,0)A -和圆O :229x y +=,AB 是圆O 的直径,M 和N 是AB 的三等分点,P (异于,A B )是圆O 上的动点,PD AB ⊥于D ,(0)PE ED λλ=>,直线PA 与BE 交于C ,则当λ= 时,(第14题)||||CM CN +为定值.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,满足sin sin sin sin a c A Bb A C+-=-. (Ⅰ)求角C ; (Ⅱ)求a bc+的取值范围. 18.(本题满分12分)一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量X 为取出3球中白球的个数,已知5(3)21P X ==. (Ⅰ)求袋中白球的个数;(Ⅱ)求随机变量X 的分布列及其数学期望. 19.(本题满分12分)如图,在四棱锥P-ABCD 中,AB 丄平面PAD,PD=AD, E 为PB 的中点,向量12DF AB =,点H 在AD 上,且0PH AD ⋅= (I)EF//平面PAD.(II)若(1)求直线AF 与平面PAB 所成角的正弦值.(2)求平面PAD 与平面PBC 所成锐二面角的平面角的余弦值. 20.(本题满分12分)如图,已知抛物线21:2C x py =的焦点在抛物线221:12C y x =+上,点P 是抛物线1C 上的动点.(Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的距离为d ,求d 的最小值. 21.(本题满分12分)已知R a ∈,函数()ln (1)f x x a x =--. (Ⅰ)若11a e =-,求函数|()|y f x =的极值点;(第20题)(Ⅱ)若不等式22(12)()ax a ea xf x e e+-≤-+恒成立,求a 的取值范围.(e 为自然对数的底数)请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时请写清题号.22.(本题满分10分)选修4-1:几何证明选讲如图,,,A B C 是圆O 上三个点,AD 是BAC ∠的平分线,交圆O 于D ,过B 做直线BE 交AD 延长线于E ,使BD 平分EBC ∠.(1)求证:BE 是圆O 的切线;(2)若6AE =,4AB =,3BD =,求DE 的长.一、(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为12x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C的方程为2sin 10ρθ--=. 设圆C 与直线l 交于点A ,B,且(0,P .(1)求AB 中点M 的极坐标; (2)求|PA |+|PB |的值.24.(本小题满分10分)选修4-5:不等式选讲已知函数()12f x m x x =----,R ∈m ,且(1)0f x +≥的解集为[]1,0. (1)求m 的值;(2)若R ,,,,,∈z y x c b a ,且222222,x y z a b c m ++=++= 求证: 1ax by cz ++≤.2015高考理科数学模拟试卷答案解析一、选择题(本大题共10小题,每题5分,共50分)1.B ;2.B ;3.C ;4.A ;5.D ;6.A ;7.C ;8.C 9.D ;10.B ;11.A .12.A 第9题提示:动直线n 的轨迹是以点P 为顶点、以平行于m 的直线为轴的两个圆锥面,而点Q 的轨迹就是这两个圆锥面与平面α的交线.第12题提示:数列20132,,3,2,1 共有20132项,它们的乘积为!22013.经过20122次变换,产生了有20122项的一个新数列,它们的乘积也为!22013.对新数列进行同样的变换,直至最后只剩下一个数,它也是!22013,变换终止.在变换过程中产生的所有的项,可分为2013组,每组的项数依次为01201120122,2,,2,2 ,乘积均为!22013,故答案为20132013)!2(.二、填空题(本大题共4小题,每题5分,共20分)13.81; 14.5; 15.36; 16.81. 第17题提示:设),(00y x P ,则)11,(00y x E λ+,)3(3:00++=x x y y PA …① )3(311:00--+=x x y y BE λ…② 由①②得)9()9)(1(220202--+=x x y y λ, 将20209xy -=代入,得119922=++λy x .由1199=+-λ,得到81=λ. 三、解答题 17.解:(Ⅰ)C A B A b c a sin sin sin sin --=+ca b a --=,化简得222c ab b a =-+, …4分所以212cos 222=-+=ab c b a C ,3π=C .…7分(Ⅱ)C B A c b a sin sin sin +=+)]32sin([sin 32A A -+=π)6sin(2π+=A .…11分因为)32,0(π∈A ,)65,6(6πππ∈+A ,所以]1,21()6sin(∈+πA . 故,cba +的取值范围是]2,1(.…14分18. 解:(Ⅰ)设袋中有白球n 个,则215)3(393===C C X P n ,…4分即215789)2)(1(=⨯⨯--n n n ,解得6=n . …7分 (Ⅱ)随机变量X 的分布列如下:…11分221532815214318410)(=⨯+⨯+⨯+⨯=X E .…14分19.【答案】(Ⅰ) 取PA 的中点Q,连结EQ 、DQ,则E 是PB 的中点,∴1//,2EQ AB AB 且EQ=12DF AB =又1//,2DF AB AB ∴且DF=∴DF EQ DF EQ =且,//,∴四边形EQDF 为平行四边形, ∴//EF QD ,,EF PAD PAD ⊄⊂又平面且DQ 平面,//EF PAD 平面(Ⅱ)⑴解法一:证明: 0PH AD ∙=,∴PH AD ⊥ ∴PH⊥AD,又 AB⊥平面PAD,PH ⊂平面PAD,∴AB⊥PH,又PH ⋂AD=H,∴PH⊥平面ABCD; ---------------------------------连结AE ,PD AD Q PA =为的中点DQ PA ∴⊥又AB PAD ⊥平面且DQ PAD ⊂平面AB DQ ∴⊥AB PA A = DQ PAB ∴⊥平面由(Ⅰ)知 //EF DQ EF PAB ∴⊥平面AE AF PAB ∴为在平面上的射影 FAE AF PAB ∴∠为直线与平面所成的角2PD AD == PH =Rt PHD ∆在中 1HD ===H ∴为AD 中点, 又PH AD ⊥ 2PA PD AD ∴=== EF DQ PH ∴===AB PAD ⊥平面 AB AD ∴⊥ //DF AB DF AD ∴⊥在Rt ADF ∆中 AF ===又EF PAB ⊥平面 EF AE ∴⊥Rt AEF ∴∆在中 sin EF FAE AF ∠===155AF PAB ∴直线与平面所成的角的正弦值为515 (2)延长DA,CB 交于点M,连接PM,则PM 为平面PAD 与平面PBC 所成二面角的交线. 因为CD AB CD AB 21,//=,所以点A,B 分别为DM,CM 的中点,所以DM=4, 在PHM RT ∆中:222MH PH PM+=,32=∴PM 222DM PM PD =+∴ PD PM ⊥∴,又因为PMD CD 平面⊥,所以PM CP ⊥CPD ∠即为所求的二面角的平面角.所以在PCD RT ∆中:55522cos ===∠PC PD CPD 解法二:(向量法)(1)由(Ⅰ)可得 PH ABCD ⊥平面 又AB PAD ⊥平面在平面ABCD内过点//H HG AB 作HG PAD ∴⊥平面,以H为原点,以..HA HG HP x y z 的方向分别为轴、轴、轴正方向建立空间直角坐标系 H xyz - 2PD AD ==PH =Rt PHD ∆在中1HD ===H AD ∴为中点()100A ∴,, (,P O O ()12,0B ,1,12E ⎛ ⎝ ()110F -,, ()210AF ∴=-,, 设平面PAB 的一个法向量为(),,n x y z= (1,0,PA =, (1,2,PB =00n PA n PA n PB n PB ⎧⎧⊥⋅=⎪⎪⎨⎨⊥⋅=⎪⎪⎩⎩由得020x x y ⎧=⎪∴⎨+-=⎪⎩ 得y=0 令z =得x=3 (n ∴=设直线AF 与平面PAB 所成的角为θ 则(sin cos ,AF n AF n AF nθ====AF PAB ∴直线与平面分 ) (2) 显然向量为平面PAD 的一个法向量,且)0,2,0(= 设平面PBC 的一个法向量为),,(1111z y x n =,(1,2,PB =,)0,2,2(-=,由,01=∙n PB 得到032111=-+z y x由,01=∙n 得到02211=+-y x ,令11=x ,则3,111==z y所以)3,1,1(1=n ,111cos,AB nAB nAB n===所以平面PAD与平面PBC(14分 )20.解:(Ⅰ)1C的焦点为)2,0(pF,…2分所以12+=p,2=p.…4分故1C的方程为yx42=,其准线方程为1-=y.…6分(Ⅱ)设),2(2t tP,)121,(211+xxM,)121,(222+xxN,则PM的方程:)()121(1121xxxxy-=+-,所以12122112+-=xtxt,即02242121=-+-ttxx.同理,PN:121222+-=xxxy,02242222=-+-ttxx.…8分MN的方程:)()121(121)121(121222121xxxxxxxy--+-+=+-,即))((21)121(12121xxxxxy-+=+-.由⎪⎩⎪⎨⎧=-+-=-+-22422422222121ttxxttxx,得txx421=+,21211221ttxx-=-.…10分所以直线MN的方程为222ttxy-+=.…12分于是222222241)1(241|24|ttttttd++=+-+-=.令)1(412≥+=sts,则366216921=+≥++=ssd(当3=s时取等号).所以,d的最小值为3.…15分21.解:(Ⅰ)若11-=ea,则11ln)(---=exxxf,111)('--=exxf.(第20题)当)1,0(-∈e x 时,0)('>x f ,)(x f 单调递增; 当),1(+∞-∈e x 时,0)('<x f ,)(x f 单调递减. …2分又因为0)1(=f ,0)(=e f ,所以当)1,0(∈x 时,0)(<x f ;当)1,1(-∈e x 时,0)(>x f ; 当),1(e e x -∈时,0)(>x f ;当),(+∞∈e x 时,0)(<x f . …4分 故|)(|x f y =的极小值点为1和e ,极大值点为1-e .…6分(Ⅱ)不等式exea a e ax x f )21()(22-++-≤,整理为0)21(ln 22≤++-+a e xa eax x .…(*) 设a e xa eax x x g ++-+=)21(ln )(22, 则eae ax x x g 2121)('2+-+=(0>x ) xe e ex a ax 222)21(2++-=xe e ax e x 2)2)((--=. …8分①当0≤a 时,02<-e ax ,又0>x ,所以,当),0(e x ∈时,0)('>x g ,)(x g 递增; 当),(+∞∈e x 时,0)('<x g ,)(x g 递减. 从而0)()(max ==e g x g . 故,0)(≤x g 恒成立. …11分②当0>a 时,x e e ax e x x g 2)2)(()('--=)12)((2exe ae x --=. 令2212e a ex e a =-,解得a e x =1,则当1x x >时,2212e a ex e a >-;再令1)(2=-e ae x ,解得e a e x +=22,则当2x x >时,1)(2>-e ae x . 取),max(210x x x =,则当0x x >时,1)('>x g .所以,当),(0+∞∈x x 时,00)()(x x x g x g ->-,即)()(00x g x x x g +->. 这与“0)(≤x g 恒成立”矛盾. 综上所述,0≤a .…14分22. (1)证明:连接BO 并延长交圆O 于G ,连接GCDBC DAC ∠=∠,又AD 平分BAC ∠,BD 平分EBC ∠,EBC BAC ∴∠=∠.又BGC BAC ∠=∠,EBC BGC ∴∠=∠,90GBC BGC ∠+∠=,∴90GBC EBC ∠+∠=,∴OB BE ⊥. ……………5分∴BE 是圆O 的切线.(2)由(1)可知△BDE ∽△ABE ,BE BDAE AB=,BE AB BD AE ⋅=⋅∴, 6=AE ,4AB =,3BD =,92BE ∴=. ……8分由切割线定理得:2BE DE AE =⋅278DE ∴=. ……………10分 23.由2sin 10ρθ--=,得2210x y +--=,即(224x y +=. …………3分将直线l 的参数方程代入圆C 的直角坐标方程,得212t ⎛⎫ ⎪⎝⎭+22⎛ ⎝=4,即2680t t -+=, 40∆=>,故可设t 1,t 2是上述方程的两实根,所以121268t t t t +=⎧⎨=⎩, …………6分12t 2,t 4.==解得(1)1232t t +=,∴32M ⎛ ⎝⎭,∴点M的极坐标为6π⎫⎪⎭. ………………8分 (2)又直线l 过点,故由上式及参数t 的几何意义得PA PB +=12t t +=126t t +=. .........10分 24.(1)(1)0f x +≥,1x x m ∴+-≤.当m <1时,11≥-+x x ,∴不等式m x x ≤-+1的解集为φ,不符题意. 当1≥m 时,①当0<x 时,得21m x -≥,0<21x m≤-∴. ②当10≤≤x 时,得m x x ≤-+1,即m ≤1恒成立.③当1>x 时,得21+≤m x ,21<1+≤∴m x .综上m x x ≤-+1的解集为⎭⎬⎫⎩⎨⎧+≤≤-2121m x m x.由题意得⎪⎪⎩⎪⎪⎨⎧=+=-121021m m,1=∴m . ……………………………5分(2)222x a ax +≥,222y b by +≥,222z c cz +≥,()2222222a b c x y z ax by cz ∴+++++≥++,由(1)知2222221,x y z a b c ++=++=()22ax by cz ∴++≤, 1.ax by cz ∴++≤ …………………………10分2015高考理综模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共300分。
河北省保定市2015届高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分,每小题只有一个正确选项)1.(5分)设集合A={x||x|≤2},B={y|y=2x,x∈R},则A∩B=()A.(0,2]B.[﹣2,2)C.[0,2)D.[2,+∞)2.(5分)已知复数z=,则下列判断正确的是()A.z的实部为1 B.|z|=C.z的虚部为﹣i D.z的共轭复数为1+i3.(5分)已知向量=(1,k),=(﹣4,2),+与垂直,那么k的值为()A.﹣2 B.1C.﹣3或1 D.2或34.(5分)已知变量x与y线性相关,数据如表:则y与x的线性回归方程=x+必过点()x0 12 3y1 26 7A.(1,3)B.(2,6)C.(3,7)D.(1.5,4)5.(5分)执行如图所示的程序框图,则输出的S的值为()A.7B.8C.9D.106.(5分)设S n是等差数列{a n}的前n项和,已知S7=49,则a2,a6的等差中项是()A.B.7C.±7 D.7.(5分)某几何体的三视图如图所示,且该几何体的体积是2,则正视图中的x=()A.2B.3C.D.8.(5分)若变量x,y满足约束条件,则点(3,4)到点(x,y)的最小距离为()A.3B.C.D.9.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线都与圆(x﹣c)2+y2=ac(c=相切,则双曲线的离心率为()A.B.C.2D.10.(5分)已知△ABC中,角A,B,C所对的边分别为a,b,c,且b+c=8,1+=,则△ABC面积的最大值为()A.4B.4C.D.11.(5分)已知函数f(x)=x2sinx+xcosx,则其导函数f′(x)的图象大致是()A.B.C.D.12.(5分)已知函数f(x)=ax3+bx2+cx+d(a≠0),设f′(x)是函数f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.任何一个三次函数都有“拐点”,且其“拐点”恰好就是该函数的对称中心,设函数f(x)=x3﹣x2+3x﹣,则f()+f()+…+f()+f()=()A.2016 B.2015 C.2014 D.1007.5二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知命题P为:“∃x∈R,|x|≤0”,则¬P为:.14.(5分)二项式(2x2﹣)n的展开式中第3项与第4项的二项式系数相等,则展开式的第3项的系数为.15.(5分)已知圆C:(x﹣3)2+(y﹣5)2=5,过圆心C作直线l交圆于A、B两点,交y轴于点P,且2=,则直线l的方程为.16.(5分)三棱锥的四个面中,设Rt△的个数为n,若当n取最大值时,该三棱锥的最大棱长为(n+1)2﹣2n,则该三棱锥外接球的表面积为.三、解答题(共5小题,满分60分)17.(12分)已知等差数列{a n}的前n项和为S n,公比为q的等比数列{b n}的首项,且a1+2q=3,a2+4b2=6,S5=40.(1)求数列{a n},{b n}的通项公式a n,b n;(2)求数列{+}的前n项和T n.18.(12分)钓鱼岛及其附近海域自古以来就是中国人民进行捕鱼、避风、休息的场所,被誉为深海中的翡翠.某学校就钓鱼岛有关常识随机抽取了16名学生进行测试,用“10分制”以茎叶图方式记录了他们对钓鱼岛的了解程度,分数以小数点前的一位数字为茎,小数点后的一位数字为叶.(1)指出这组数据的众数和中位数;(2)若所得分数不低于9.5分,则称该学生对钓鱼岛“非常了解”.求从这16人中随机选取3人,求至多有1人“非常了解”的概率;(3)以这16人的样本数据来估计该所学校学生的总体数据,若从该所学校(人数可视为很多)任选3人,记ξ表示抽到“非常了解”的人数,求ξ的分布列及数学期望.19.(12分)如图,在四棱锥P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E为PC的中点,且DE=EC.(1)求证:PA⊥面ABCD;(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈(,),求a的取值范围.20.(12分)如图,已知⊙M:(x﹣4)2+y2=1和抛物线C:y2=2px(p>0,其焦点为F),且=(,0,),过抛物线C上一点H(x0,y0)(y0≥1)作两条直线分别与⊙M相切于A、B两点.(1)求抛物线C的方程;(2)求直线AB在y轴上的截距的最小值.21.(12分)设函数f(x)=mlnx+﹣(1)若m≤0,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求m的取值范围.请从22、23、24三题中任选一题作答。
选修4-1:几何证明选讲22.(10分)如图,C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB平分线DC 交AE于点F,交AB于D点.(Ⅰ)求∠ADF的度数;(Ⅱ)若AB=AC,求AC:BC.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数),以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标轴方程为ρcos (θ﹣)=2.(1)求曲线C的普通方程与直线l的直角坐标方程;(2)设点P为曲线C上的动点,求点P到直线l距离的最大值及其对应的点P的直角坐标.选修4-5:不等式选讲24.已知a∈R,设关于x的不等式|2x﹣a|+|x+3|≥2x+4的解集为A.(Ⅰ)若a=1,求A;(Ⅱ)若A=R,求a的取值范围.河北省保定市2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分,每小题只有一个正确选项)1.(5分)设集合A={x||x|≤2},B={y|y=2x,x∈R},则A∩B=()A.(0,2]B.[﹣2,2)C.[0,2)D.[2,+∞)考点:交集及其运算.专题:集合.分析:根据题意,解|x|≤2可得集合,B为函数y=2x的值域,由指数函数的性质可得集合B,进而由交集的意义,计算可得答案.解答:解:根据题意,集合B={y|y>0}=(0,+∞),集合A={x||x|≤2=[﹣2,2],则A∩B=(0,2];故选:A.点评:本题考查集合的交集的运算,关键是由集合的意义正确求出集合A、B.2.(5分)已知复数z=,则下列判断正确的是()A.z的实部为1 B.|z|=C.z的虚部为﹣i D.z的共轭复数为1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:通过化简复数z即得结论.解答:解:z====﹣1﹣i,∴|z|==,故选:B.点评:本题考查复数的相关知识,注意解题方法的积累,属于基础题.3.(5分)已知向量=(1,k),=(﹣4,2),+与垂直,那么k的值为()A.﹣2 B.1C.﹣3或1 D.2或3考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求向量的坐标,由与垂直即可得到,进行数量积的坐标运算即可求出k.解答:解:;∵与垂直;∴;解得k=1或﹣3.故选C.点评:考查向量坐标的加法运算,数量积运算,以及非零向量垂直的充要条件,解一元二次方程.4.(5分)已知变量x与y线性相关,数据如表:则y与x的线性回归方程=x+必过点()x0 12 3y1 26 7A.(1,3)B.(2,6)C.(3,7)D.(1.5,4)考点:线性回归方程.专题:概率与统计.分析:本题是一个线性回归方程,这条直线的方程过这组数据的样本中心点,因此计算这组数据的样本中心点,做出x和y的平均数,得到结果.解答:解:由题意知,y与x的线性回归方程=x+必过样本中心点,∵=(0+1+2+3)=,=(1+2+6+7)=4,∴y与x的线性回归方程=x+必过点(1.5,4).故选:D点评:本题考查的知识点是线性回归方程,熟练掌握回归直线过这组数据的样本中心点,是解答的关键.5.(5分)执行如图所示的程序框图,则输出的S的值为()A.7B.8C.9D.10考点:程序框图.专题:图表型;算法和程序框图.分析:由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解答:解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.(5分)设S n是等差数列{a n}的前n项和,已知S7=49,则a2,a6的等差中项是()A.B.7C.±7 D.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由S7=49结合等差数列的性质求得a4=7,再由等差中项的概念列式求解a2,a6的等差中项.解答:解:在等差数列{a n}中,由S7=49,得:a4=7,∴a2,a6的等差中项是a4=7.故选:B.点评:本题考查等差数列的通项公式,考查了等差数列的性质,关键是由S7=49求得a4,是基础题.7.(5分)某几何体的三视图如图所示,且该几何体的体积是2,则正视图中的x=()A.2B.3C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,求出底面面积,代入棱锥体积公式,可得答案.解答:解:由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,其底面面积S=(1+2)×2=3,高h=x,故棱锥的体积V==x=2,故选:A点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.8.(5分)若变量x,y满足约束条件,则点(3,4)到点(x,y)的最小距离为()A.3B.C.D.考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,再由点到直线的距离公式求得点(3,4)到点(x,y)的最小距离.解答:解:由约束条件作出可行域如图,点(3,4)到点(x,y)的最小距离为P(3,4)到直线x+y﹣4=0的距离.为.故选:C.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,训练了点到直线的距离公式的应用,是中档题.9.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线都与圆(x﹣c)2+y2=ac(c=相切,则双曲线的离心率为()A.B.C.2D.考点:双曲线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:双曲线﹣=1(a>0,b>0)的渐近线与(x﹣c)2+y2=ac相切,可得圆心(c,0)到渐近线的距离d=r,利用点到直线的距离公式即可得出.解答:解:取双曲线的渐近线y=x,即bx﹣ay=0.∵双曲线﹣=1(a>0,b>0)的渐近线与(x﹣c)2+y2=ac相切,∴圆心(c,0)到渐近线的距离d=r,∴=,化为b2=ac,两边平方得ac=c2﹣a2,化为e2﹣e﹣1=0.∵e>1,∴e=.故选D.点评:本题考查了双曲线的渐近线及其离心率、点到直线的距离公式、直线与圆相切的性质扥个基础知识与基本技能方法,属于中档题.10.(5分)已知△ABC中,角A,B,C所对的边分别为a,b,c,且b+c=8,1+=,则△ABC面积的最大值为()A.4B.4C.D.考点:余弦定理.专题:解三角形.分析:1+=,利用同角三角函数基本关系式、两角和差公式、正弦定理可得,可得.利用基本不等式的性质可得:b+c=8≥2,利用S△ABC=即可得出.解答:解:∵1+=,∴==,化为,∴=.∵b+c=8≥2,化为bc≤16,当且仅当b=c=4时取等号.∴S△ABC==≤4.故选:B.点评:本题考查了正弦定理、两角和差公式、同角三角函数基本关系式、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.11.(5分)已知函数f(x)=x2sinx+xcosx,则其导函数f′(x)的图象大致是()A.B.C.D.考点:利用导数研究函数的单调性.专题:函数的性质及应用;导数的概念及应用.分析:先求导,再根据函数的奇偶性排除A,C,再根据函数值得变化趋势得到答案.解答:解:∵f(x)=x2sinx+xcosx,∴f′(x)=x2cosx+cosx,∴f′(﹣x)=(﹣x)2cos(﹣x)+cos(﹣x)=x2cosx+cosx=f′(x),∴其导函数f′(x)为偶函数,图象关于y轴对称,故排除A,C,当x→+∞时,f′(x)→+∞,故排除D,故选:C.点评:本题考查了导数的运算法则和函数图象的识别,属于中档题.12.(5分)已知函数f(x)=ax3+bx2+cx+d(a≠0),设f′(x)是函数f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.任何一个三次函数都有“拐点”,且其“拐点”恰好就是该函数的对称中心,设函数f(x)=x3﹣x2+3x﹣,则f()+f()+…+f()+f()=()A.2016 B.2015 C.2014 D.1007.5考点:导数的运算.专题:导数的概念及应用.分析:根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得函数f(x)的对称中心,得到f(1﹣x)+f(x)=2,即可得出.解答:解:依题意,得:f′(x)=x2﹣x+3,∴f″(x)=2x﹣1.由f″(x)=0,即2x﹣1=0.∴x=,∴f()=1,∴f(x)=x3﹣x2+3x﹣,的对称中心为(,1)∴f(1﹣x)+f(x)=2,∴f()+f()+…+f()+f()=2015.故选:B.点评:本题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,函数的对称性的应用,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知命题P为:“∃x∈R,|x|≤0”,则¬P为:∀x∈R,|x|>0.考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题写出结果即可.解答:解:因为特称命题的否定是全称命题,所以,命题P为:“∃x∈R,|x|≤0”,则¬P为:∀x∈R,|x|>0.故答案为:∀x∈R,|x|>0.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.14.(5分)二项式(2x2﹣)n的展开式中第3项与第4项的二项式系数相等,则展开式的第3项的系数为80.考点:二项式系数的性质.专题:二项式定理.分析:由展开式中第3项与第4项的二项式系数相等可得,从而求得n值,再代入通项得答案.解答:解:由题意可得,∴n=5.则展开式的第3项的系数为.故答案为:80.点评:本题考查二项式系数的性质,关键是区分项的系数和二项式系数,是基础题.15.(5分)已知圆C:(x﹣3)2+(y﹣5)2=5,过圆心C作直线l交圆于A、B两点,交y轴于点P,且2=,则直线l的方程为2x﹣y﹣1=0或2x+y﹣11=0.考点:直线和圆的方程的应用.专题:直线与圆.分析:由已知中过圆心C作直线l交圆于A、B两点,交y轴于点P,且2=,可得||=||,即||=3||=3,求出P点坐标,代入两点式,可得答案.解答:解:∵过圆心C作直线l交圆于A、B两点,交y轴于点P,且2=,∴||=||,即||=3||=3,设P点坐标为(0,b),则=3,解得:b=11,或b=﹣1,故直线l的方程为:或,即2x﹣y﹣1=0或2x+y﹣11=0,故答案为:2x﹣y﹣1=0或2x+y﹣11=0点评:本题主要考查直线和圆的位置关系,两点间距离公式,直线的方程,难度不大,属于基础题.16.(5分)三棱锥的四个面中,设Rt△的个数为n,若当n取最大值时,该三棱锥的最大棱长为(n+1)2﹣2n,则该三棱锥外接球的表面积为81π.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:由题意画出图形,可知三棱锥P﹣ABC的四个面中,Rt△的个数n的最大值为4,结合直径所对圆周角为直角可知最大棱PC为三棱锥外接球的直径,则该三棱锥外接球的表面积可求.解答:解:如图,三棱锥P﹣ABC的四个面中,Rt△的个数n的最大值为4,此时PA⊥面ABC,∠ABC=90°,则∠PBC=90°,三棱锥的最大边为PC,由题意可得PC=52﹣24=9,其外接球的半径为,∴外接球的表面积为S=4π•.故答案为:81π.点评:本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.三、解答题(共5小题,满分60分)17.(12分)已知等差数列{a n}的前n项和为S n,公比为q的等比数列{b n}的首项,且a1+2q=3,a2+4b2=6,S5=40.(1)求数列{a n},{b n}的通项公式a n,b n;(2)求数列{+}的前n项和T n.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:等差数列与等比数列.分析:(1)运用等差数列的通项和求和公式及等比数列的通项,列方程,解得即可得到所求通项;(2)化简所求数列,结合裂项相消求和和等比数列的求和公式,化简整理即可得到.解答:解:(1)设等差数列{a n}的公差为d,则,解得,所以a n=2+3(n﹣1)=3n﹣1,b n=•()n﹣1=()n;(2)+=(﹣)+=(﹣)+22n+1,即有T n=[()+()+…+(﹣)]+=(﹣)+(22n+3﹣8)=(22n+3﹣)﹣.点评:本题考查等差数列和等比数列的通项和求和公式的运用,同时考查裂项相消求和,考查化简整理的运算能力,属于中档题.18.(12分)钓鱼岛及其附近海域自古以来就是中国人民进行捕鱼、避风、休息的场所,被誉为深海中的翡翠.某学校就钓鱼岛有关常识随机抽取了16名学生进行测试,用“10分制”以茎叶图方式记录了他们对钓鱼岛的了解程度,分数以小数点前的一位数字为茎,小数点后的一位数字为叶.(1)指出这组数据的众数和中位数;(2)若所得分数不低于9.5分,则称该学生对钓鱼岛“非常了解”.求从这16人中随机选取3人,求至多有1人“非常了解”的概率;(3)以这16人的样本数据来估计该所学校学生的总体数据,若从该所学校(人数可视为很多)任选3人,记ξ表示抽到“非常了解”的人数,求ξ的分布列及数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)利用茎叶图的数据得出众数:8.6;中位数:=8.75,(2)判断出概率类型为古典类型,运用排列知识求解即可P(A)=P(A0)+P(A1)=(3)方法1:判断运用对立重复试验,求解概率,得出分布列,求解数学期望即可.方法2:直接运用则ξ~B(3,),得出数学期望E(ξ)=3×.解答:解:(1)众数:8.6;中位数:=8.75,(2)设A i表示所取3人中有i个人对钓鱼岛“非常了解”,至多有1人对钓鱼岛“非常了解”记为事件A,则P(A)=P(A0)+P(A1)==;(3)ξ的可能取值为0,1,2,3.P(ξ=0)=()3=;P(ξ=1)=××()2=;P(ξ=2)=×()2×=;P(ξ=3)=()3=所以ξ的分布列为:ξ0 1 2 3PE(ξ)=0×=0.27,另解:ξ的可能取值为0,1,2,3.则ξ~B(3,),P(ξ=k)=×()k×()3﹣k.所以E(ξ)=3×=0.75.点评:本题考查了离散型的概率分布问题,数学期望的求解,考查了学生的阅读分析能力,计算能力,属于中档题.19.(12分)如图,在四棱锥P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E为PC的中点,且DE=EC.(1)求证:PA⊥面ABCD;(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈(,),求a的取值范围.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:综合题;空间位置关系与距离;空间角.分析:(1)证明CD⊥平面PAD,可得CD⊥PA,利用PA⊥AD,AD∩CD=D,可以证明PA⊥面ABCD;(2)以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,求出平面的法向量,利用向量的夹角公式,结合平面EBD与平面ABCD所成锐二面角θ∈(,),即可求a的取值范围.解答:(1)证明:∵E为PC的中点,DE=EC=PE∴PD⊥DC,∵CD⊥AD,PD∩AD=D,∴CD⊥平面PAD,∵PA⊂平面PAD,∴CD⊥PA,∵PA⊥AD,AD∩CD=D,∴PA⊥面ABCD;…(6分)(2)解:以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,B(1,0,0),D(0,2,0)P(0,0,a),C(2,2,0),…(7分)平面BCD法向量=(0,0,1),平面EBD法向量…(9分),可得…(12分)点评:本题考查了线面垂直的判定,考查了利用空间向量求二面角的大小,解答的关键是建立正确的空间坐标系,该题训练了学生的计算能力,是中档题.20.(12分)如图,已知⊙M:(x﹣4)2+y2=1和抛物线C:y2=2px(p>0,其焦点为F),且=(,0,),过抛物线C上一点H(x0,y0)(y0≥1)作两条直线分别与⊙M相切于A、B两点.(1)求抛物线C的方程;(2)求直线AB在y轴上的截距的最小值.考点:直线与圆锥曲线的综合问题;抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求得抛物线的焦点和圆的圆心,由条件可得圆心M到抛物线C的焦点的距离为,即可得到抛物线方程;(2)设出H的坐标,由中点坐标公式和直径式圆的方程可得MH为直径的圆,运用和已知圆相减,可得AB的方程,再令x=0,可得截距的表达式,由函数的单调性,即可得到最小值.解答:解:(1)由题意知⊙M的圆心M的坐标为(4,0),抛物线C的焦点为(,0),由=(,0),圆心M到抛物线C的焦点的距离为,即4﹣=,解得p=,从而抛物线C的方程为y2=x;(2)由(1)知,设点H (y02,y0),则HM的中点(,),以HM为直径的圆为(x﹣)2+(y﹣)2=…①⊙M:(x﹣4)2+y2=1 …②①﹣②得:直线AB的方程为(4﹣y02)x﹣y0y+4y02﹣15=0,令x=0,得直线AB在y轴上的截距为d==4y0﹣(y0≥1)函数f(y0)=4y0﹣在[1,+∞)为单调递增函数,∴直线AB在y轴上的截距的最小值为4×1﹣=﹣11.点评:本题考查抛物线的方程和性质,主要考查抛物线方程的运用,同时考查圆的方程的运用,由四点共圆和两元方程相减得到相交弦方程是解题的关键,属于中档题.21.(12分)设函数f(x)=mlnx+﹣(1)若m≤0,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求m的取值范围.考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:综合题;导数的综合应用.分析:(1)求出导函数,根据导函数的正负性,求出函数的单调区间;(2)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.解答:解:(1)函数f(x)的定义域为(0,+∞),f′(x)=.…(2分)当m≤0时,mx﹣e x<0,所以当0<x<2时,f′(x)>0,f(x)单调递增;…(3分)x>2时,f′(x)<0,f(x)单调递减.综上:f(x)的单调递增区间为(0,2),单调递减区间为(2,+∞).…(4分)(2)若m≤0时,由(1)知,函数f(x)在(0,2)内单调递增,故f(x)在(0,2)内不存在极值点;…(6分)当m>0时,设函数g(x)=mx﹣e x(x∈(0,2)).因为g′(x)=m﹣e x,①当0<m≤1时,x∈(0,2),g′(x)<0,∴g(x)<g(0)=﹣1,f′(x)>0,f(x)单调递增,故f(x)在(0,2)内不存在两个极值点.…(8分)②当m>1时,x∈(0,lnm)时,g′(x)>0,函数y=g(x)单调递增,x∈(lnm,+∞)时,g′(x)<0,函数y=g(x)单调递减,∴函数y=g(x)的最大值为g(lnm)=m(lnm﹣1).…(9分)函数f(x)在(0,2)内存在两个极值点.当且仅当解得e<m<.综上所述,函数f(x)在(0,2)内存在两个极值点时,m的取值范围为(e,).…(12分)点评:本题考查了导数在求函数的单调区间,和极值,运用了等价转化思想.是一道导数的综合应用题.属于中档题.请从22、23、24三题中任选一题作答。