放射性基本知识及其安全防护
- 格式:docx
- 大小:38.03 KB
- 文档页数:23
一、放射性1、放射性核衰变核衰变:有些原子核不稳定,能自发地改变核结构,这种现象称为核衰变;放射性:在核衰变过程中总是放射出具有一定动能的带电或不带电的粒子,即α、β、γ射线,这种现象称为放射性;天然放射性:天然不稳定核素能自发放出射线的特性;人工放射性:通过核反应由人工制造出来的核素的放射性。
2、放射性衰变的类型①α衰变:不稳定重核(一般原子序数大于82)自发放出4He核(α粒子)的过程;α粒子的质量大,速度小,照射物质时易使其原子、分子发生电离或激发,但穿透能力小,只能穿过皮肤的角质层②β衰变:放射性核素放射β粒子(即快速电子)的过程,它是原子核内质子和中子发生互变的结果;负β衰变(β-衰变):核素中的中子转变为质子并放出一个β-粒子和中微子的过程。
β-粒子实际上是带一个单位负电荷的电子。
β射线电子速度比α射线高10倍以上,其穿透能力较强,在空气中能穿透几米至几十米才被吸收;与物质作用时可使其原子电离,也能灼伤皮肤;正β衰变(β+衰变):核素中质子转变为中子并发射出正电子和中微子的过程;电子俘获:不稳定的原子核俘获一个核外电子,使核中的质子转变成中子并放出一个中微子的过程。
因靠近原子核的K层电子被俘获的几率大于其他壳层电子,故这种衰变又称为K 电子俘获;③γ衰变:原子核从较高能级跃迁到较低能级或者基态时所发射的电磁辐射;γ射线是一种波长很短的电磁波(约为0.007~0.1nm),穿透能力极强,它与物质作用时产生光电效应、康普顿效应、电子对生成效应等;3、放射性活度和半衰期①放射性活度:单位时间内发生核衰变的数目;A—放射性活度(s-1),活度单位贝可(Bq),其中1Bq=1s-1,1贝可表示1s内发生1次衰变;N—某时刻的核素数;t—时间(s);λ—衰变常数,放射性核素在单位时间内的衰变几率;②半衰期(T1/2):放射性核素因衰变而减少到原来的一半所需时间;4、核反应:用快速粒子打击靶核而给出新核(核产物)和另一粒子的过程称为核反应;方法:用快速中子轰击发生核反应;吸收慢中子的核反应;用带电粒子轰击发生核反应;用高能光子照射发生核反应;二、照射量和剂量1、照射量dQ——γ或x射线在空气中完全被阻止时,引起质量为dm的某一体积元的空气电离所产生的带电粒子(正或负)的总电量值(C,库仑);x——照射量,国际单位制单位:库仑/kg,即C/kg伦琴(R),1R=2.58×10-4C/kg伦琴单位定义:凡1伦琴γ或x射线照射1cm3标准状况下(0℃,101.325kPa)空气,能引起空气电离而产生1静电单位正电荷和1静电单位负电荷的带电粒子;2、吸收剂量:在电离辐射与物质发生相互作用时单位质量的物质吸收电离辐射能量的大小;D——吸收剂量;——电离辐射给予质量为dm的物质的平均能量;吸收剂量D的国际单位为J/kg,专门名称为戈瑞,简称戈,用符号Gy表示:1Gy=1J/kg拉德(rad) 1rad=10-2Gy吸收剂量率(P):单位时间内的吸收剂量,单位为Gy/s或rad/s3、剂量当量(H):在生物机体组织内所考虑的一个体积单元上吸收剂量、品质因数和所有修正因素的乘积,H=DQND——吸收剂量(Gy);Q——品质因数,其值决定于导致电离粒子的初始动能,种类及照射类型;N——所有其他修正因素的乘积,通常取为1;剂量当量(H)的国际单位J/kg,希沃特(Sv),1Sv=1J/kg雷姆(rem),1rem=10-2Sv剂量当量率:单位时间内的剂量当量,Sv/s或rem/s;4、第二节环境中的放射性本节要求:了解环境中放射性的来源,放射性核素在土壤、水、大气等环境中的分布,了解放射性核素对人体的危害及内照射概念。
放射防护知识点总结文案放射防护是一项非常重要的工作,特别是在核医学、核能及其他放射性物质和辐射环境中的工作岗位。
放射防护的实施旨在减少辐射对人体健康的影响,保护工作者和公众的生命、健康和财产,防止辐射污染和保护环境。
除了专业人员外,一般公众也需要了解一些放射防护知识,以保护自己和家人的安全。
下面将就放射防护的知识点进行总结介绍。
一、放射防护的基本原则1. 时间原则:尽可能减少暴露时间,减少辐射吸收。
2. 距离原则:与辐射源保持足够的距离,以减少辐射暴露。
3. 隔离原则:通过隔离、屏蔽和阻挡等措施减少辐射照射。
二、放射源的分类根据放射源的来源和性质,可以将放射源分为天然放射源和人工放射源。
1. 天然放射源:包括地球、太阳天然放射,以及人体内存在的钾、铷、钍等放射性元素。
2. 人工放射源:包括放射性同位素、放射性药物、放射性废物等。
三、辐射防护的措施1. 个体防护:佩戴防护服、佩戴防护眼镜、戴口罩、佩戴手套等。
2. 工作场所防护:增加屏蔽物、加强通风、限制人员进入等。
3. 应急处置:紧急撤离、急救护理、辐射源限制等。
4. 监测控制:辐射剂量监测、环境辐射监测、辐射源追踪等。
四、放射剂量的计量和限值1. 放射剂量的计量单位:剂量当量、照射剂量、照射率、活度等。
2. 放射剂量的限值标准:职业暴露限值、公众接触限值、环境放射标准等。
五、放射防护的法律法规和标准1. 国家标准:《放射防护管理规定》、《电离辐射防护基本标准》、《职业病防治法》等。
2. 行业标准:医疗机构、核能公司、辐射设备制造商等应遵守相关行业标准。
六、辐射对人体的影响1. 急性辐射病:全身照射导致的急性辐射病,表现为神经系统损伤、消化系统损伤等。
2. 慢性辐射病:长期低剂量照射导致的慢性辐射病,包括白血病、癌症等。
3. 遗传影响:辐射对人类生育后代造成的影响,包括遗传基因突变、胎儿畸形等。
七、公众的放射防护知识1. 食品安全:避免食用过多放射性污染的食品,关注食品安全监测信息等。
放射性与辐射防护
放射性是指物质内部存在放射性核素并释放能量的属性。
放射性物
质可以通过放射性衰变或核反应释放辐射能量,包括α、β、γ 射线、
中子等。
而辐射防护是一系列措施,旨在降低人体或环境受到放射性
材料辐射的风险。
辐射防护的主要目标是保护人员免受辐射伤害,确保放射性材料的
使用和处理不会对公众和环境造成不良影响。
一些辐射防护措施包括:
1. 时间:最简单且有效的措施是减少接触辐射源的时间,尽量减少
暴露时间。
2. 距离:与辐射源保持适当的距离,减少辐射强度。
3. 屏蔽:使用合适的屏蔽材料,如混凝土、铅等,来减少辐射的穿透。
4. 个人防护装备:佩戴适当的防护装备,如防护服、手套、面具、
护目镜等。
5. 辐射监测:对辐射源和工作环境进行监测,确保辐射水平在安全
范围内。
6. 控制源的使用:限制放射性材料的使用和储存,并确保按照合适
的方法处理废弃物。
7. 培训和教育:对从事与放射性材料相关工作的人员进行培训,提
高他们的安全意识和实践技能。
辐射防护的重要性不仅适用于核能、医疗和工业等行业,也适用于日常生活中的一些常见设备,如手机、微波炉等。
正确的辐射防护措施可以有效降低人们暴露于放射性材料所带来的风险。
放射防护的基本方法为了达到防护目的,按照剂量限制的基本原则,减少各类人员的内、外照射剂量,应采取的方法有:(1)控制辐射源的质与量,是根治放射损害的方法。
在不影响应用效果的前提下,应尽量减少辐射源的强度、能量和毒性。
(2)减少照射时间,外照射的总剂量与总照射时间成正比,因此必须昼减少受照射时间。
可采取减少不必要停留时间、轮换作业、提高操作技术等措施,减少个体受照射时间。
(3)加强屏蔽防护。
在放射源与人员之间设置防护屏,吸收或减弱射线的能量。
(4)距离防护。
点状放射源的剂量与距离平方成反比,操作中应尽可能远离放射源,切忌直接用手持放射源。
(5)围封隔离。
对于开放源及其作业场所必须采取封锁隔离的方法,把开放源控制在有限空间,防止向环境中扩散。
(6)除污保洁。
操作开放型放射源,使用开放型放射性元素时,要随时清除工作环境介质的污染,监测污染水平,控制向周围环境的大量扩散。
(7)个人防护。
要合理使用配备的个人防护用品,如口罩、手套、工作鞋帽、服装等;遵守个人防护规则,在开放型放射性工作场所中,禁止一切可能使放射性元素侵入人体的行为,如禁止饮水、吸烟、进食、化妆等。
放射防护的基本方法(二)放射防护是指通过一系列措施和方法,保护人们免受放射性物质的危害。
放射防护的基本方法包括以下几个方面:1. 预防措施:预防是放射防护的首要任务,包括监测和控制放射性物质的扩散,确保放射源的安全使用和管理。
在核设施或医疗机构等核辐射工作场所,应确保设备的正常运行和维护,防止事故发生。
此外,需要进行放射性物质的申报登记、核查和跟踪管理,避免非法使用和处理。
2. 个人防护措施:人们在接触放射性物质时应采取适当的个人防护措施。
对于核辐射工作者,应佩戴防护服、防护手套、防护眼镜等个人防护装备,防止放射性物质直接接触皮肤和黏膜。
同时,要遵循操作规程和使用防护屏蔽器材,减少接触辐射源的时间和剂量。
3. 空气防护:空气是放射性物质传播的主要途径之一,因此在可能存在放射性物质的环境中,应通过通风、过滤等手段控制空气中放射性物质的浓度。
放射性基本知识及其安全防护1. 什么是放射性?放射性是指物质具有放射性衰变的性质,即放射出高能粒子或电磁波的过程。
放射性包括三种辐射形式:α粒子、β粒子和γ射线。
•α粒子是带有两个质子和两个中子的氦离子,具有较小的穿透能力;•β粒子是带有电荷的电子或正电子,能够渗透数毫米的空气或一些材料;•γ射线是一种高能电磁波,能够穿透很厚的屏蔽材料。
2. 放射性的来源放射性的来源多种多样,包括自然界和人工产生。
2.1 自然界放射性源自然界中存在许多放射性核素,如钾-40、铀-238和钍-232等。
这些核素会通过放射性衰变产生放射性辐射。
2.2 人工放射性源人类的活动也会产生放射性物质。
例如,核能发电厂产生的核废料和探测用的放射性同位素都属于人工放射性源。
3. 放射性的危害放射性对人类和环境造成潜在危害。
3.1 人体的辐射效应人体受到辐射后,会发生不同程度的生物效应,包括:•紧急效应:高剂量辐射会迅速导致身体组织的高度破坏,可能导致急性放射病或死亡;•长期效应:长期低剂量辐射可能导致遗传效应和慢性疾病,如癌症。
3.2 环境的辐射影响放射性物质排放到环境中可能对生态系统产生影响。
一些放射性物质在土壤和水中会逐渐积累,从而进入食物链中,对动植物和人类产生食物污染和辐射危害。
4. 放射性安全防护为了减少放射性对人类和环境的危害,需要采取一系列的安全防护措施。
4.1 辐射防护原则辐射防护原则包括三个基本原则:时间、距离和屏蔽。
•时间原则:尽量减少接触放射性源的时间,减少暴露剂量;•距离原则:保持与放射性源的距离,距离越远,暴露剂量越小;•屏蔽原则:使用合适的屏蔽材料,如铅和混凝土,来阻挡辐射。
4.2 个人防护在进行与放射性物质相关的工作时,必须采取个人防护措施,包括:•戴防护手套、眼镜和口罩等个人防护装备;•避免食物和饮水的污染;•注重个人卫生,经常洗手,防止放射性物质附着在身体表面。
4.3 环境防护对于放射性源,需要采取适当的环境防护措施,包括:•确保放射性废料的储存和处置符合相关的安全标准;•监测环境中的辐射水平,及时发现和处理辐射事故;•加强环境监测和管理,保护环境和公众的安全。
放射防护的基本方法有哪些随着现代医疗科技的发展和使用越来越广泛,放射防护也逐渐成为人们重视的问题。
放射防护是指采取一系列措施保护人体免受放射性物质的危害,防范放射性污染对人类健康和环境的破坏。
下面将介绍一些放射防护的基本方法。
1、避免接触放射性物质放射性物质对人体的伤害主要是来源于吸入和摄入。
因此,避免接触放射性物质是最基本的防护措施。
在操作放射性物质时必须加强防护,遵从操作规程和安全操作要求,防止放射性颗粒扬散。
此外,一旦发现放射性泄漏或者事故,应及时进行紧急处理。
2、隔离和封存放射性废弃物放射性废弃物是指已使用或过期的放射性物质、设备以及繁殖的原料等。
正确处理和封存这些废弃物可以有效减少放射性物质的污染,防止放射性物质对生态环境和人类健康的危害。
常见的处理方法包括密封、封存、埋地等。
3、加强放射性监测和检测加强对放射性物质的监测和检测可以及时发现和处理放射性物质的泄漏和事故。
不同地区和不同岗位都需要有相应的放射性检测标准和监测计划,并要引导公众了解这些信息,以便掌握放射性危害的实际情况。
4、用个人防护装备在进行放射性工作时,应用防辐射的人身防护装备,包括手套、防护服、防护面罩等。
防护服应当符合国家相关标准,且在使用中要严格按照规程和要求进行穿戴和使用。
5、定期体检和监测对职业接触放射性物质的员工应定期接受身体健康监测。
这样可以及时发现对人体有害的放射性污染,并采取相应的应对措施。
6、公众教育和宣传公众教育和宣传是预防放射性伤害的关键。
要加强对公众的安全教育,提高公众的安全防范意识,引导公众积极参与防护行动。
以上是放射防护的基本方法,这些方法需要各级管理部门和相关人员严格执行,才能最大限度地减少放射性物质对人类健康和生态环境的破坏。
我们每个人都应该积极参与和支持放射防护工作,为生态环境和人类健康保驾护航。
放射卫生防护的基本原则、措施放射医学的发展使的放射诊断与治疗领域出现出现了许多新技术、新方法,但是事物具有两面性,新技术新方法的应用一方面使得诊断与治疗更加高效,但是另一方面却也会导致医务人员、检查者、公众的照射剂量上升。
例如放射介入治疗一方面能够使患者的生命线延长,改善患者的生活质量,另一方面也会造成患者皮肤受到损伤。
因此为了避免医务人员、检查者、公众受到不必要的照射,在放射诊断与治疗中要做好相关防护措施,保证人员的安全。
一、放射卫生防护的基本原则(1)时间:对于将要或是正处于辐射环境的人员来讲,需要将受照时间或是摄入时间减至最短。
(2)距离:距离越远,受照者受到的辐射越低,因此,尽量远离放射源,使放射源与受照者之间的距离达到最大。
(3)分散:将放射性材料稀释或是分散,使其达到最高稀释值,使材料的放射浓度减至最小。
(4)减源:“源”是指辐射源或是放射性材料,减源,即是减少使用或生产的放射性材料的数量,减少机器生产的辐射量。
(5)源屏障:停止或减缓辐射的流动、弥散,使之不逸出屏障。
(6)个人屏障:通过个人屏障将人员与辐射源或的放射性材料隔开,使之不进入屏障。
(7)减轻效应:使照射者受到的损伤减小或限制损伤,使照射在时间内和人员间最优分布,使病灶被最大程度清除,治疗效果达到最优。
(8)最优技术:根据患者情况,选择最优技术,使危险达到最小值,利益达到最大值,在放射时选择生产剂量最低的电离辐射技术,或者将现有技术改进使其生产的剂量较小。
(9)限制受到其它因子的作用:部分因子可以与辐射产生协同作用,因此,在放射时注意不要再与其他危险因子产生复合。
(10)促排(仅适用于体内源或表面污染):将放射性物质从体内或体表清除,使身体吸收的放射性物质的量减到最小。
二、放射卫生防护的措施(一)基本措施1.加强组织领导建设,促进安全文化建设建立健全放射安全制度,卫生监督机构、医疗机构、医务人员三者之间需要形成行之有效的制度,卫生监督机构的发力,医疗机构的管理、监督、检查,医务人员的岗前培训、准入、考核等都需要一套行之有效的科学的制度,加强安全责任教育,培养医务人员形成良好的安全责任意识。
放射防护措施及其内容放射防护是指为减少放射性物质对人体的辐射危害而采取的一系列防护措施。
下面将详细介绍放射防护的措施及其内容。
一、放射防护措施的原则:1.时间原则:尽量减少接触放射性物质的时间,以减少辐射暴露的剂量。
2.距离原则:尽量远离放射性物质,以增加辐射距离,减少辐射暴露剂量。
3.屏蔽原则:使用适当的屏蔽材料,如铅、钢等,阻挡或减少辐射物质对人体的直接照射。
4.规范原则:依据国家放射卫生规定和相关标准执行放射防护措施,确保人员的安全。
二、放射防护的措施及其内容:1.个人防护:(1)穿戴防护服:防护服应由铅质或其他密封性良好的防护材料制成,以阻挡放射性物质的直接照射。
防护服的设计应合理,确保穿戴舒适,且能覆盖全身。
同时,定期检查防护服的密封性能,确保其防护效果。
(2)使用防护眼镜和防尘口罩:防护眼镜可防止放射性粉尘进入眼睛,预防辐射眼病。
防尘口罩可阻挡放射性物质吸入呼吸道,同时也减少其他有害气体和粉尘的吸入。
(3)佩戴防护手套和鞋套:防护手套和鞋套可以防止放射性物质直接接触皮肤,减少辐射暴露。
2.环境防护:(1)建立辐射区域标识:在可能暴露于放射性物质的区域设置明显的标识,提醒人员注意辐射危险,并采取必要的防护措施。
(2)使用防护屏蔽:对于放射性源或放射性设备,应建立适当的屏蔽措施,使用屏蔽材料如铅墙、铅门等,以减少辐射剂量。
(3)空气过滤和排放控制:采用合适的过滤器对空气进行过滤,以减少放射性粉尘和气体的扩散。
同时,控制放射性物质的排放,避免对环境和人员造成污染。
3.放射源管理:(1)限制放射性物质的使用范围:尽量减少放射性物质的使用数量和范围,避免扩散和泄露。
(2)定期检验和检测:对放射源定期进行检验和检测,确保其密封性良好,避免泄露。
(3)正确处理和储存:合理处理和储存放射源,确保其安全,避免对环境和人员造成辐射危害。
4.人员培训和教育:(1)加强放射防护知识的培训:对从事放射工作的人员进行相关知识的培训,提高其对辐射的认识和防护意识。
2024年放射作业个体防护要点
1. 佩戴防护服和防护用品:包括防护服、手套、护目镜、防护面罩和防护鞋。
这些防护用品可以帮助阻隔放射性物质对皮肤、眼睛和呼吸道的接触。
2. 保持安全距离:尽量与放射源保持一定距离,减少接触放射性物质的风险。
3. 遵守操作规程:严格按照相关操作规程进行工作,不擅自更改或违反规程。
4. 食品和饮水安全:避免在受污染的环境中食用或饮用,确保食物和饮水的安全。
5. 定期接受身体检查:定期进行放射性物质的监测和个人剂量记录,确保暴露在辐射环境下的个人身体状况。
6. 妥善处理放射性废物:正确处理和储存放射性废物,避免对环境和个人造成伤害。
7. 加强个人卫生:定期清洁身体、衣物和个人用品,避免污染物质的传播。
这些是一些常见的个体防护要点,但具体的操作规程和防护措施可能因具体的放射作业类型和环境而有所不同。
在进行放射作业时,请始终遵守相关的安全规程和指南。
第 1 页共 1 页。
接触放射性物质的工人安全教育要点引言:放射性物质是一种常见的工作环境中可能存在的危险因素。
对于接触放射性物质的工人来说,安全教育是预防事故和保护自身健康的关键。
本文将对接触放射性物质的工人安全教育的要点进行详细分析和说明,以提高工人的安全意识和防护措施。
一、认识放射性物质1. 放射性物质的定义和特征放射性物质是指具有放射性衰变性质的物质。
其特征包括放射性衰变、核辐射、穿透性、不可感知等。
2. 接触放射性物质的风险接触放射性物质可能导致辐射疾病、癌症、染色体畸变等健康问题。
了解风险的存在和可能带来的影响,是工人保护自身安全的前提。
二、安全教育要点1. 学习放射性物质的基本知识工人应了解放射性物质的性质、分类、辐射源、测量方法等基本知识,以便正确评估风险和采取相应的防护措施。
2. 掌握个人防护措施穿戴适合的防护装备是减少接触放射性物质的主要方式。
工人需熟悉和正确使用防护服、手套、面罩等个人防护装备,避免直接暴露于放射性物质中。
3. 掌握安全操作规程掌握安全操作规程是预防事故和保护自身安全的关键。
工人应严格遵守以减少任何不必要的接触放射性物质的机会。
在涉及放射性物质的作业前,进行必要的检查和试验,确保工作环境安全。
4. 学习应急处置方法工人需要学习应急处置方法,包括放射性物质泄漏、事故的应对措施和紧急疏散程序。
只有在事前有清晰的处置预案并熟悉相关的应急程序,才能做到应对迅速、有效的处理紧急情况。
5. 定期健康检查定期健康检查是对工人安全的重要保障措施之一。
通过定期体检、辐射剂量监测,及时发现可能存在的健康问题,采取相应的措施。
结论:接触放射性物质的工人安全教育是确保工作环境安全和保护工人健康的重要一环。
认识放射性物质的特征、了解接触的风险、掌握个人防护措施和应急处置方法,以及定期进行健康检查,将帮助工人提高安全意识,减少事故发生的可能性。
通过安全教育的持续推进,建立并强化工人的安全责任感,提高整体工作环境的安全性。
放射性基本知识及其安全防护技术培训班讲义之一广州瑞发有限公司编制第一章放射源§1-1 物质、原子和同位素自然界中存在的各种各样的物体,大的如宇宙中的星球,小的如肌体的细胞。
都是由各种不同的物质组成的。
物质又是由无数的小颗粒所组成的。
这种小颗粒叫做“原子”由几个原子还可以组成较复杂的粒子叫分子。
如水,就是由二个氢原子和一个氧原子化合成一个水分子。
无穷多的水分子聚在一起。
就是宏观的水。
原子虽然很小,它仍有着复杂的结构。
原子由原子核和一定数量的电子组成。
原子核在中心,带正电。
电子绕着原子核在特定的轨道上运动,带负电。
整个原子的正负电荷相等,是中性的。
原子核内部的情况又是怎样的呢?简单地讲,原子核是由一定数量的质子和中子组成。
中子数比质子数稍多一些。
两者数目具有一定的比例。
一个原子所包含的质子数目与中子数目之和,称为该原子的质量数。
它也就是原子核的质量数。
简单归纳一下:质子(带正电,数目与电子相等)原子核原子中子(不带电,数目=质量数-原子序数)电子(质量小,带负电,数目与质子相等,称为原子序数)原子的化学性质仅仅取决于核外电子数目,也就是仅仅取决于它的原子序数。
我们把原子序数相同的原子称作元素。
有些原子,尽管它们的原子序数相同,可是中子数目不相同,这些原子的化学性质完全相同。
而原子核有着不同的特性。
例如:11H、21H、31H,它们就是元素氢的三种同位素。
又如:59CO和60CO是元素钴的两种同位素。
235U和238U是元素铀的两种同位素自然界中已发现107种元素,而同位素有4千余种。
原子核里的中子比质子稍多,确切地说,质子数与中子数应有一个合适的比例(如轻核约为1:1,重核约为1:15)。
只有这样的原子核才是稳定的,这种同位素就叫做稳定同位素。
如果质子的数目过多或过少,也即中子数目过少或过多。
原子核往往是不稳定的,它能够自发地发生变化,同时放出射线和能量。
这种原子核就叫做放射性原子核。
它组成的原子就叫做放射性同位素,如59CO是稳定同位素,60CO是放射性同位素。
放射性同位素分为天然和人工两种。
天然的就是自然界中容观存在的。
如铀、钍、镭及其子体;以及钾、钙等等。
人工的就是通过人为的方法制造的。
如利用反应堆或加速器产生的粒子打在原子核上,发生核反应,使原子核内的质子(或中子)数目发生变化。
生成放射性同位素,60CO就是把59CO放在反应堆里照射。
吸收一个中子后变成的,所以60CO就是人工放射性同位素。
§1-2放射性衰变和三种射线放射性原子核通过自发地变化,放出射线和能量,同时自己变成一个新的原子核。
这个过程叫做放射性衰变。
绝大多数放射性原子核衰变时主要放射三种射线(或称粒子),一种叫做α射线,它就是由2个质子和2个中子组成的氦原子核。
即12He,带有两个单位的正电荷,质量数为4。
另一种叫做β射线,它是高速运动的电子。
带1个单位的负电荷,第三种叫Υ射线,它是一种电磁波,不带电,放出哪种射线就叫做哪种衰变。
某种放射性同位素发射什么射线,能量是多少,可查阅衰变图。
亦可查阅“核素常用数据表”等书。
我国常用的放射性同位素大部分是由原子能研究院生产的,他们编有专门的产品手册。
给出了多种数据。
§1-3 半衰期与衰变常数一定数量的放射性原子核,在每一秒钟内都有一部分在发生衰变,变成了新的原子核,也就是说,放射性原子核的数目不断减少,放射性原子核减少到原来数目的一半所经过的时间叫做半衰期,记作T½。
单位是时间的单位,如秒、小时、天、年等等。
对每种放射性原子核来说,它是个常数。
例如:60CO的半衰期T½=5.3年,其意思是说,如果现在有1000个60CO原子核,由于放射性衰变,5.3年后只剩下500个了。
另外500个变成了60N1原子核,再过5.3年60CO原子核只剩下250个了。
依此类推,放射原子核60CO的数目越来越少。
放射性原子核数目随时间的减少服从指数规律,这是实验得到的结果。
如果我们已知某一时刻(t=0)的放射性核数为N0个,t时刻的核数为N(t)个,则有N(t)=N0e-λt (1-1)这里λ叫做衰变常数,单位1/秒或1/小时,1/年等:e是自然对数的底,e=2.718……。
由此式,我们就可求出任意时刻所剩的放射性原子核数。
§1-4 放射性活度放射性活度,以往常称为放射性强度。
为习惯起见,这里仍用放射性强度的提法。
放射性强度的意思是,每秒钟内有多少个原子核发生衰变,即衰变率。
(不是放射性原子核的总数!)理论和实验都证明了,放射性强度A随时间的变化按指数规律减弱。
A(t)=Aoe-λt (1-2)这里A0是初始(t=0)的放射性强度;A(t)是t时刻的放射性强度;λ是衰变常数。
对半衰期较短的放射源,谈及强度时,一定要标明时间,即放射性强度是什么时候的强度,否则没意义。
放射性强度的专用单位叫做居里。
1居里=3.7×1010衰变/秒(1-3)(国际制单位叫做贝可)1贝可=1秒-11居里=3.7×1010贝可即每秒发生3.7×1010次衰变,或者说,一秒钟内有3.7×1010个核发生衰变.其放射性强度就叫做1居里。
1毫居里=1/1000居里=3.7×107衰变/秒;1微居里=1/108居里=3.7×104衰变/秒。
居里、毫居里也简称居、毫居。
§1-5 天然放射性和射线放射性同位素有天然和人工的两种。
天然的放射性原子核存在于什么地方?放射什么射线?半衰期有多长?天然放射性同位素,是和宇宙共生的。
它们与地球年龄(约109年)相同或更长。
在地球的土壤和岩石中,含有铀、钍的多种放射性同位素及它们的一系列放射性的子体。
还有46K等等。
它们的半衰期一般都很长,达108--109年。
它们放出a、β、Υ三种射线,这些放射性原子核在海水、地下水中也有微量存在。
在空气中放射性的氡(222Rn,220Rn)气,它们是由钍的子体衰变成的,所以只要地壳中的铀钍衰变不完,空气中就不断有氡气出现。
人体中除了含有少量上述的天然放射性同位素外,还有碳的放射性同位素14C,这是通过食物进入体内的。
从太阳和其它恒星发射的各种射线(俗称宇宙射线)也会射到地球上来。
它们虽然被大气层吸收了一部分,也还有一部分进入人类的生活环境。
以上所说的天然放射性同位素和射线,统称天然本底。
近年来,由于原子能电站及核武器的发展,核爆炸的放射性沉降物及核反应堆排出的废气越来越多,它们当中的放射性物质都有一部分进入人类生活的环境,我们把这些也归到天然本底中。
天然放射性同位素有些是有用的。
如铀,开采加工后可制成核燃料及核弹材料239U。
又如通过测定铀钍的放射性强度可确定地质年龄。
利用14C可确定化石及古生物的年代等等。
第三章Υ射线的防护Υ射线仪表是一种投资小见效快效益高的工业监控仪表。
然而,正如任何事物都有二重性一样,这种仪表要用放射源,要处理好射线的安全防护问题。
由于核科学知识不普及,很多人一听到放射源,就想到原子弹,想到电视剧“血疑”,产生恐惧感。
这是一种及大的误解。
放射性和电一样,只要遵照有关的规则和标准,采取一定的安全措施,就可造福于人类,对健康没有影响。
为了使大家对放射性安全问题有一个正确的认识,本章将介绍射线防护知识及放射源的使用注意事项等。
§3-1 射线对人体的影响一、描写Υ射线剂量大小的物理量和单位当Υ射线照射物质时,一部分被物质吸收,另外一部分穿透物质。
Υ射线照射人体时,同样也要被人体组织吸收掉一部分。
这部分被人体吸收的Υ射线,有可能对人体造成一定的影响。
为了建立一个统一的尺度来衡量Υ射线对人体危害的大小,沿用了医学上表示药量多少的“剂量”一词。
也就是说,根据人体受到的Υ射线剂量的大小,来描写人体可能受到的危害程度。
为了后面讨论方便,首先介绍描写与Υ射线剂量大小有关的三种物理量和单位。
(一)Υ射线照射量XΥ射线照射量描写的是空间某一点处的空气吸收的Υ射线的多少。
照射量X仅对空气而言。
不管放射源附近空间某一点处有无人体或其它物质存在。
该点处的照射量是一确定的值。
照射量的专用单位为伦琴(R)。
定义为:在一个大气压0℃的标准状态下,空间某一点处的1公斤空气中,由于Υ射线照射总共产生了电荷量各为2.58×10-4库仑的正负离子,则该点处的Υ射线照射量为1伦琴。
1伦琴=103毫伦=106微伦同样受到1伦琴的照射,有的是1年中受到的,有的是一天或1秒钟受到的对体的影响是不同的。
因此引入照射量率X,它的单位是伦琴/小时,毫伦/小时,微伦/秒等。
上面的伦琴叫做专用单位,是历史上沿用下来的,我们国家正在推广国际制单位。
1990年以前要完成向国际制单位的过渡。
照射量的国际制单位为库仑/千克(C·Kg-1)。
没有专门的名称和符号,两种单位的关系为:1伦琴(R)=2.58×10-4库仑/千克(C·kg)1c·kg-1=3.877×103伦琴(R)(二)Υ射线的吸收剂量D同样的照射量下,不同的物质吸收的Υ射线能量是不一样的。
例如:肌肉和骨胳都受了1伦琴的照射,骨胳吸收的能量要多些。
因此,又引入了吸收剂量的概念,它表示的是某种物质吸收Υ射线能量的多少。
吸收剂量的专用单位叫做拉德(rad)。
1克物质从Υ射线中吸收了100尔格的能量。
则吸收剂量为1拉德。
即:1拉德=100尔格/克吸收剂量率的单位是拉德/小时,毫拉德/小时等等。
吸收剂量的国际制单位叫戈瑞,符号是GY,其大小为1戈瑞=1焦耳/公斤(J·Kg-1)。
两种单位的关系为:1拉德(rad)=10-2戈瑞(GY)1戈瑞(GY)=102(rad)吸收剂量与照射量呈正比关系,即:D=C·XC值随Υ射线能量及被照射物质的不同而不同,在我们所使用的60CO及137C S放射源情况,对人体组织器官来说,当D以拉德为单位,X以伦琴为单位时,C≈1。
(三)剂量当量H射线对人体的影响,除与吸收的能量即吸收剂量大小有关外,还与射线的种类有关,也就是说,不同种类的射线对人体的影响不同。
例如:同样是1拉德的吸收剂量,a射线对体的危害要比Υ射线大得多。
为了描述射线对生物肌体危害的大小,又引入了“剂量当量”的概念。
剂量当量等于吸收剂量乘上品质因数。
其专用单位叫做雷姆(rem)。
即:H=DQN对Υ射线,品质因数Q=1,N是其它修正因子,目前指定为1。
所以当生物组织受到Υ射线照射时,吸收剂量为1拉德。
则剂量当量就是1雷姆。
如前所述,剂量当量率的单位为雷姆/时,毫雷姆/时,微雷姆/秒等等。
剂量当量的国际制单位为希沃特(SV)1希沃特(SV)=1焦耳/公斤(Jkg)两种单位之间的关系为:1雷沃(rem)=10-2希沃特(SV)1希沃特(SV)=102雷沃(rem)上面讲了三种与Υ剂量大小有关的物理量和单位,比较难记,但有一个简单而重要的结论,应该记住,对Υ射线照渐人体组织而言,当照射量为1伦琴时,吸收剂量近似为1拉德。