实验1连续搅拌釜式反应器停留时间分布的测定
- 格式:doc
- 大小:609.00 KB
- 文档页数:6
实验三 连续搅拌釜式反应器液相反应的动力学参数测定一、实验目的连续流动搅拌釜式反应器与管式反应器相比较,就生产强度或溶剂效率而论,搅拌釜式反应器不如管式反应器,但搅拌釜式反应器具有其独特性能,在某些场合下,比如对于反应速度较慢的液相反应,选用连续流动的搅拌釜式反应器就更为有利,因此,在工业上,这类反应器有着特殊的效用。
对于液相反应动力学研究来说,间歇操作的搅拌釜式反应器和连续流动的管式反应器都不能直接测得反应速度,而连续操作的搅拌釜式反应器却能直接测得反应速度。
但连续流动搅拌釜式反应器的性能显著地受液体的流动特性的影响。
当连续流动搅拌釜式反应器的流动状况达到全混流时,即为理想流动反应器——全混流反应器,否则为非理想流动反应器。
在全混流反应器中,物料的组成和反应温度不随时间和空间而变化,即浓度和温度达到无梯度,流出液的组成等于釜内液的组成。
对于偏离全混流的非理想流动搅拌釜式反应器,则上述状况不复存在。
因此,用理想的连续搅拌釜式反应器(全混流反应器)可以直接测得本征的反应速度,否则,测得的为表观反应速度。
用连续流动搅拌釜式反应器进行液相反应动力学,通常有三种实验方法:连续输入法、脉冲输入法和阶跃输入法。
本实验采用连续输入的方法,在定常流动下,实验测定乙酸乙酯皂化反应的反应速度和反应常数。
同时,根据实验测得不同温度下的反应速度常数,求取乙酸乙酯皂化反应的活化能,进而建立反应速度常数与温度关系式(Arrhenius formula )的具体表达式。
通过实验练习初步掌握一种液相反应动力学的实验研究方法。
并进而加深对连续流动反应器的流动特性和模型的了解;加深对液相反应动力学和反应器原理的理解。
二、实验原理1.反应速度 连续流动搅拌釜式反应器的摩尔衡算基本方程: dtdn dV r F F A vA A AO =---⎰)(0 (1) 对于定常流动下的全混流反应器,上式可简化为0)(=---V r F F A A AO (2) 或可表达为VF F r A AO A -=-)( (3) 式中;AO F ——流入反应器的着眼反应物A 的摩尔流率, 1-⋅s mol ;A F ——流出反应器的着眼反应物A 的摩尔流率, 1-⋅s mol ;)(A r -——以着眼反应物A 的消耗速度来表达的反应速度,13--⋅⋅s mmol ;由全混流模型假设得知反应速度在反应器内一定为定值。
式中:C(t)—示踪剂的出口浓度。
C o—示踪剂的入口浓度。
U—流体的流量Qλ—示踪剂的注入量。
由此可见,若采用阶跃示踪法,则测定出口示踪物浓度变化,即可得到F(t)函数;而采用脉冲示踪法,则测定出口示踪物浓度变化,就可得到E(t)函数。
三、实验装置和流程本实验采用脉冲示踪法分别测定三釜串联反应器的停留时间分布,测定是在不存在化学反应的情况下进行的。
实验流程见图1。
四、实验步骤测定三釜串联反应器的停留时间分布,按以下步骤操作:4.1打开高位槽(1)的上水阀,当高位槽出现溢流后打开各分阀及流量计(2)上的阀门,将流量调为20L/H,并使流量稳定;4.2打开搅拌器电源,慢速启动电机,将转速调至所需稳定值;4.3接通三台DDS—11A型电导率仪电源,并检查电极是否正常。
4.4检查数模转换器联线,接通电源。
若转换器显示值偏离零点较大,调节电导率仪的调零旋钮。
4.5启动计算机,在WindowsX桌面上双击图标启动本采集软件。
系统在采集前,先进行“系统整定”,正常后单击“测定操作”进入“实验记录”子窗体。
4.6用针筒在反应器的入口快速注入3mL1.7N的氯化钾溶液,同时单击“实验记录”子窗体上的“启动”按钮或按下功能键“F5”,此时由计算机实时采集数据/4.7待反应器浓度不再变化后,单击“停止”按钮或按下功能键“F9”以结束采集。
此时可由“视图”菜单选择显示分布函数和密度函数曲线。
按“保存”图标实验报告;单击“报告”按钮可浏览实验结果。
五、实验数据处理在一定的温度下,氯化钾水溶液的电导率×(微姆/厘米)或(毫姆/厘米)取决于它的浓度C,由实验可以确定电导率(或与之对应的数模转换器的毫伏数)—浓度的对应关系,因而测定溶液的电导率(或对应的毫伏数)就可求得浓度。
从我们实测的氯化钾水溶液(以自来水作为溶剂)的电导率(或对应的毫伏数)—浓度数据可以看出:当浓度很低时,在一定的温度下,它的电导率(扣除自来水电导率后的净值)较好地与浓度成正比,故在计算F(t)和E(t)时同样可用电导率(或对应的毫伏数)代替浓度进行计算。
科技论文串联流动反应釜停留时间分布测定串联流动反应釜停留时间分布测定一.摘要1.1中文摘要:本实验是通过实验了解停留时间分布测定的基本原理和实验方法。
利用脉冲示踪法测定物料停留时间的分布。
观察示踪物料浓度随时间的变化,利用装置的平均停留时间,绘出多釜串联模型的停留时间分布密度曲线图。
1.2英文摘要:This experiment is through the experiment about determination of residence time distribution of thebasic principle and experimental method. Use of pulse tracing method for the determination ofresidence time distribution. Observation of tracer material concentration changes with time,utilizing device average residence time, draw the multi reactor series model of residence timedistribution density curves.二、实验目的1. 熟悉停留时间分布测定的基本原理和实验方法。
2. 掌握停留时间分布的统计特征值的计算方法。
3. 学会用理想反应器的串联模式来描述实验系统的流动特性。
三、实验原理停留时间分布测定所采用的方法主要是示踪响应法。
它的基本思路是:在反应器入口以一定的方式加入示踪剂,然后通过测量反应器出口处示踪剂浓度的变化,间接地描述反应器内流体的停留时间。
常用的示踪剂加入方式有脉冲输入、阶跃输入和周期输入等。
本实验选用的是脉冲输入法。
脉冲输入法是在极短的时间内,将示踪剂从系统的入口处注入主流体,在不影响主流体原有流动特性的情况下随之进入反应器。
停留时间分布综合实验报告停留时间分布综合实验一、实验目的1.掌握用脉冲示踪法测定停留时间分布及数据处理方法; 2.了解和掌握停留时间分布函数的基本原理; 3.了解停留时间分布与模型参数的关系;4.了解多级混本实验通过单釜、多釜及管式反应器中停留时间分布的测定, 将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施 和釜、管式反应器特性;5.了解和掌握模型参数N 的物理意义及计算方法。
二、实验原理在连续流动反应器中,由于反应物料的返混以及在反应器内出现的层流,死角,短路等现象,使得反应物料在反应器中的停留时间有长有短,即形成停留时间分布,影响反应进程和最终结果。
测定物料的停留时间分布是描述物料在反应器内的流动特性和进行反应器设计计算的内容之一。
停留时间分布可以用停留时间分布密度函数 E(t)和停留时间分布函数 F (t)来表示,这两种概率分布之间存在着对应关系,本实验只是用冲脉示踪法来测定 E(t),利用其对应关系也可以求出 F(t)来。
函数 E(t)的定义是:在某一瞬间加入系统一定量示踪物料,该物料中各流体粒子将经过不同的停留时间后依次流出,而停留时间在[t,t+d t]间的物料占全部示踪物料的分率为 E(t)dt 。
根据定义E(t)有归一化性质:0.1`)(0=⎰∞dt t E(1)E(t)可以用其他量表示为)()/()(0t c M Q t E ⋅= (2)其中:Q0主流体体积流量,M 为示踪物量,c(t )为t 时刻流出的示踪剂浓度。
对停留时间分布密度函数E (t)有两个重要概念,数学期望_t 和方差2t σ,它们分别定义为E(t)对原点的一次矩和二次矩。
当实验数据的数量大,且所获样品是瞬间样品,即相应于某时刻t 下的样品,则:∑∑∑∑====-∆∆=∆∆=Ni iAiNi iAii Ni iiN i iiit ct ct tt E t t E t t 1111)()((3)211221122)()(t t ct ct t t t E t t E tNi iAiNi iAii N i iiNi ii it -∆∆=-∆∆=∑∑∑∑====σ (4)式中△ti 是两次取样时间,若等时间间隔取样,2112211t cct cct t Ni AiNi Aii t Ni AiNi Aii -==∑∑∑∑====-σ(5) 对恒容稳定流动系统有:τ==-v V t R(6)为了使用方便,常用对比时间τθt=来代换t,经这样变换后,有以下关系:)()(t E E τθ=(7)222τσσθt =(8)对全混流12=θσ,对活塞流02=θσ,对一般情况102<<θσ。
实验一 多釜串联连续流动反应器中停留时间分布的测定一、实验目的本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。
1、掌握停留时间分布的测定方法;2、了解停留时间分布与多釜串联模型的关系;3、掌握多釜串联模型参数N 的物理意义及计算方法。
二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。
返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。
然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。
物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。
所用的概率分布函数为停留时间分布密度函数E (t)和停留时间分布函数F (t)。
停留时间分布密度函数E (t )的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t +dt 间的流体粒子所占的分率dN/N 为E (t )dt 。
停留时间分布函数F (t )的物理意义是:流过系统的物料中停留时间小于t 的物料所占的分率。
停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。
当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。
由停留时间分布密度函数的物理含义,可知: E (t )dt =VC (t )/Q (1) ⎰∞=0)(dt t VC Q (2)所以 ⎰⎰∞∞==)()()()()(dtt C t C dtt VC t VC t E (3)由此可见E (t )与示踪剂浓度C (t )成正比。
本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液的电导值。
在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即E (t )∝L (t ),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。
实验一多釜串联连续流动反应器中停留时间分布的测定一、实验目的本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。
1、掌握停留时间分布的测定方法;2、了解停留时间分布与多釜串联模型的关系;3、掌握多釜串联模型参数N的物理意义及计算方法。
二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。
返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。
然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。
物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。
所用的概率分布函数为停留时间分布密度函数E(t)和停留时间分布函数F(t)。
停留时间分布密度函数E(t)的物理意义是:同时进入的N个流体粒子中,停留时间介于t到t+dt间的流体粒子所占的分率dN/N为E(t)dt。
停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t的物料所占的分率。
停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。
当系统达到稳定后,在系统的入口处瞬间注入一定量Q的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。
由停留时间分布密度函数的物理含义,可知:E(t)dt=VC(t)/Q (1)⎰∞=)(dtt VCQ (2)所以 ⎰⎰∞∞==)()()()()(dtt C t C dtt VC t VC t E (3)由此可见E (t )与示踪剂浓度C (t )成正比。
本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液的电导值。
在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即E (t )∝L (t ),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。
实验一多釜串联连续流动反应器中停留时间分布的测定实验目的:测定多釜串联连续流动反应器中的停留时间分布。
实验原理:多釜串联连续流动反应器是由多个容积相等的釜串联而成的反应器。
在反应过程中,反应物随着流体一起在不同釜内流动。
在不同釜内停留的时间不同,即停留时间分布不同。
停留时间分布的测定可以帮助了解反应器的传质和反应过程。
测定停留时间分布的方法有很多,其中一种是通过追踪单个分子的行踪来测定停留时间分布。
具体原理如下:追踪单个分子实验的基本原理是在反应混合物中加入极微小的标记剂,使得反应混合物中只有非常少量的分子带有标记剂。
标记剂可以是荧光分子、放射性同位素或其他具有特殊性质的分子。
在反应过程中,标记剂所在的分子会随着流体在不同的釜内流动,并在其中停留不同的时间。
通过对标记剂的跟踪,可以测定不同停留时间釜内的标记分子数目,进而得到停留时间分布。
实验步骤:1.准备多釜串联反应器,并安装流速计和采样管。
2.将标记剂加入反应混合物中。
3.将反应混合物注入反应器,开始反应。
4.在不同时间内采取样品,对样品中的标记分子进行计数和浓度测定,得到停留时间分布。
实验注意事项:1.要使用极微小的标记剂,确保标记分子的数量足够少,否则会影响停留时间分布的测定结果。
2.要准确地测定标记分子的浓度,可以使用荧光探测器、放射性探测器等设备进行测定。
3.要保证反应混合物的均匀性,避免反应过程中发生不均匀的分布,影响测定结果。
实验结果:通过单个分子追踪实验,可以得到多釜串联流动反应器中的停留时间分布。
停留时间分布的形状和峰值位置可以反映反应器的传质效率和反应速率等重要参数。
对于反应器的设计和优化,停留时间分布的测定是非常重要的。
实验一 连续搅拌釜式反应器停留时间分布的测定
一、 实验目的
(1) 加深对停留时间分布概念的理解; (2) 掌握测定液相停留时间分布的方法; (3) 了解停留时间分布曲线的应用。
(4)了解停留时间分布于多釜串联模型的关系,了解模型参数N 的物理意义及计算方法。
(5) 了解物料流速及搅拌转速对停留时间分布的影响。
二、 实验原理 (1)停留时间分布
当物料连续流经反应器时,停留时间及停留时间分布是重要概念。
停留时间分布和流动模型密切相关。
流动模型分平推流,全混流与非理想流动三种类型。
对于平推流,流体各质点在反应器内的停留时间均相等,对于全混流,流体各质点在反应器内的停留时间是不一的,在0~∞范围内变化。
对于非理想流动,流体各质点在反应器内的停留时间分布情况介乎于以上两种理想状态之间,总之,无论流动类型如何,都存在停留时间分布与停留时间分布的定量描述问题。
(2)停留时间分布密度函数E (t )
停留时间分布密度函数E (t )的定义:
当物料以稳定流速流入设备(但不发生化学变化)时,在时间t =0时,于瞬时间dt 进入设备的N 个流体微元中,具有停留时间为t 到(t +dt )之间的流体微元量dN 占当初流入量N 的分率为E (t )dt ,即
()=dN
E t dt N
(1) E (t )定义为停留时间分布密度函数。
由于讨论的前提是稳定流动系统,因此,在不同瞬间同时进入系统的各批N 个流体微元均具有相同的停留时间分布密度,显然,流过系统的全部流体,物料停留时间分布密度为同一个E (t )所确定。
根据E (t )定义,它必然具有归一化性质:
()1∞
=⎰
E t dt (2)
不同流动类型的E (t )曲线形状如图1所示。
根据E (t )曲线形状,可以定性分析物料在反应器(设备)内停留时间分布。
平推流 全混流 非理想流动
图1 各种流动的E (t )~t 关系曲线图
(3)停留时间分布密度函数E (t )的测定
停留时间分布密度函数E (t )的测定,常用的方法是脉冲法。
此法采用的示踪剂,既不与被测流体发生化学反应,又不影响流体流动特性,也就是说,示踪物在反应器(设备)内的停留时间分布与被测流体的停留时间分布相同。
所以,当注入一定量Q 的示踪物时,经过t →(t +dt )时间间隔流出的示踪物量占示踪物注入总量Q 的分率就是与示踪物注入同时进入系统的物料中,停留时间为t →(t +dt )的那部分流体物料占总流体的物料的分率, 即:
亦即:
()()⋅⋅=V C t dt
E t dt Q
或
()
()⋅=
V C t E t Q
(3) V ——流体体积流量,(ml/s) Q ——加入的示踪物总量,(mg)
C (t )——示踪物的出口浓度,(mg/ml)
显然,若测得C (t )-t 的关系,将C (t )乘以
V
Q
,即得E (t )-t 的关系。
(4)E (t )的计算方法
本实验用水为流体,以KCl 为示踪物,用电导率仪测定示踪物KCl 的浓度C (t )随时间的变化关系曲线。
KCl 的浓度经仪器转化为电讯号(以mv 值显示),电讯号的相对大小又可以用相对长度(mm )来表示。
如图2中的一条曲线是电讯号V (t )与时间t 的关系曲线。
设C (t )=k ˊV (t
)
图2 V (t )~t 曲线
则由()()=
V
E t C t Q
得, ()()'=
V
E t k V t Q
令'=
V k k Q
则E (t )=kV (t ) 图2中,
001
()()()1()()∞∞===⎰⎰E t dt
dA V t dt k E t dt A V t dt E t dt
k
()
()=
=dA V t E t Adt A
V (t )——记录曲线图的纵坐标,mm ; k `——比例系数;
A ——V (t )~t 曲线下面的总面积,mm·s 。
由式(10)知,V (t )除以A 即得E (t )。
(5)停留时间分布密度函数E (t )的分析
为了比较、分析不同流动状态下的E (t ),一般用散度(无因次方差)2θσ进行定量比较。
如,对于平推流,2θσ=0,对于全混流,2θσ=1,对于一般流动0<2θσ<1。
平均停留时间t 的计算:
()()
=∑∑tE t t E t (4)
方差2t σ的计算
22
2()
()
σ=
-∑∑t t E t t E t (5)
散度(无因次方差) 2θσ的计算
2
2
t 2σθσ=
t
(6)
三、 实验仪器及药品
反应器:4个,Ф110mm ,H=120mm 电导率仪:一台 DDS-302B 型 搅拌器:4台 水槽:1个 计算机:1台 KCl (分析纯) 2.5N 四、 装置流程
水槽
图3 釜式反应器停留时间分布测定装置
五、实验步骤
(1)打开控制柜总电源,之后打开电导率仪的电源开关,校正零点。
(2)将示踪剂倒入示踪剂罐中,备用。
(3)打开水龙头使水槽中充满水。
(4)启动离心泵,调节流量计的开度,是使流量达到适当值,让水充满4个反应釜。
(5)打开个搅拌器开关,至于适当档位上,调节转速以达实验要求。
(6) 打开计算机,进入四釜串联返混装置主画面,点击进入数据采集画面,设定电磁阀开时间,点开始键,待基线回到初始位置时,按停止键保存数据。
(7)加入相同量的示踪剂,分别改变水的流量和反应釜内的搅拌转速,重复以上操作。
(7)实验结束,关搅拌器、电导率仪、计算机、总电源及水阀门。
六、实验数据处理
1、根据单釜、二釜、三釜和四釜的V(t)~t曲线,将其换算成E(t)~t关系。
并画出
E(t)~t曲线。
2、检验E(t)数据的归一性。
3、计算平均停留时间、方差和无因次方差。
4、若用多级全混流串联模型描述该流动,计算模型中的釜数N。
七、思考题
(1) 影响多釜串联反应器停留时间分布的因素有哪些?
(2) 根据实验测得的4釜、3釜、2釜及1釜的停留时间分布曲线,比较分析哪一种更接近理想全混流流动模型?
(3) 对于4釜串联的情况,多级全混流串联模型中釜数N 是否等于4?若不等于4,请说明原因,并说明如何操作能是N 尽量接近于4。
八、 自测题
1. 下图的四条实验曲线中,你认为哪条是单釜的曲线 ?哪条是四釜串联的曲线 ?哪条曲线更接近于全混流流动 ?
2004006008001000120014001600
0.0
0.20.40.60.8
1.0D
C
B
电压,m v
时间,s
A
2. 本实验中采用的示踪剂是
A. KCL ;
B. N 2;
C. 颜料;
D. 沙子 3.实验中以 测定示踪物的浓度。
A .气相色谱仪; B. 电导率仪; C . 压差计; D. 液相色谱 4.示踪剂的注入方式为 。
A. 阶跃式;
B. 脉冲式;
C. 随即式;
D. 周期式。