时域仿真法暂态稳定分析
- 格式:doc
- 大小:462.50 KB
- 文档页数:11
电力系统暂态稳定性分析的数学模型及其求解方法电力系统暂态稳定性是电力系统运行中一个重要的问题,它涉及到了电力系统的可靠性和安全性。
在电力系统中,由于各种原因(如电力故障、突发负荷变化等),系统会发生暂态扰动,这会对系统的稳定性产生影响。
因此,对电力系统的暂态稳定性进行分析和求解具有重要的实际意义。
一、电力系统暂态稳定性的数学模型电力系统暂态稳定性的数学模型是对电力系统进行描述和分析的基础。
其核心是用一组偏微分方程描述电力系统的动态行为。
通常,电力系统暂态稳定性的数学模型可以分为两个方面,即电力系统的动态方程和控制方程。
1. 电力系统的动态方程电力系统的动态方程描述了电力系统各个元件(包括发电机、负荷等)的动态行为。
其中,最重要的是发电机的动态方程,其模型可以采用不同的形式,如压敏调压器模型、电压控制器模型等。
此外,还需要考虑负荷、传输线和变压器的动态方程等。
2. 电力系统的控制方程电力系统的控制方程是为了描述系统中各种控制装置的动态行为。
常见的控制方程包括励磁控制方程、电压和功率控制方程等。
这些方程描述了控制装置对电力系统的调控作用,能够稳定系统的运行。
二、电力系统暂态稳定性的求解方法为了求解电力系统的暂态稳定性问题,需要采用一些数值计算方法。
以下介绍几种常用的求解方法。
1. 时域法时域法是一种基于系统动态方程的求解方法。
它通过数值积分的方式,迭代求解系统的动态响应。
这种方法适用于电力系统的小扰动和中等扰动情况,可以得到系统的暂态过程。
2. 频域法频域法是一种基于系统频域响应的求解方法。
它可以通过系统的频率响应特性来分析系统的暂态稳定性。
常见的频域法有等效系统法、阻抗法等。
这些方法适用于长时间尺度上的电力系统分析。
3. 优化算法优化算法是一种基于优化理论的求解方法。
它通过优化问题的数学模型,寻找系统的最优运行条件,以提高电力系统的暂态稳定性。
常见的优化算法有遗传算法、粒子群算法等。
4. 强化学习算法强化学习算法是一种基于智能系统的求解方法。
基于Matlab的电力系统暂态稳定分析P R Sharma*1, Narender Hooda2法里达巴德YMCA科技大学,印度DCR科技大学,Murthal摘要:本文介绍了多机系统与基于Simulink模型的帮助下暂态稳定评估。
电力系统暂态稳定是基于从时域仿真输出得到的发电机转子的相对角度。
IEEE9条公交系统的自给自足的模式已经给出充分的细节,通过在不同的故障清除时间(FCT)的暂态稳定性分析,结果相对于模型在PSpice等电磁暂态仿真程序更准确和令人满意。
关键词:MATLAB;Simulink;FCT;暂态稳定1.简介现代电力系统由于安装大型发电机组、特高压联络线是一个复杂的系统。
由于增加了操作可能导致电力系统高度危险的状态,所以对对电力系统动态稳定的需要是在不断增加的。
暂态稳定评估(TSA)是电力系统的发展对电力系统保持平衡的能力的进化时受到扰动的动态安全评估的一部分。
系统反应这类大的变化对转子角、功率流母线电压和其他系统变量对系统的干扰。
暂态稳定性是表征经受故障电力系统的动态特性的情况下,初始状态下继续进行故障是平衡的。
如果一个系统故障后能保持同步运行并返回到初始状态或接近它可认为该系统具有暂态稳定性。
暂态稳定性是两个操作条件和干扰的功能。
这使得暂态稳定分析的复杂系统的非线性关系不可忽视。
在稳定评估临界清除时间(CCT)是为了维护电力系统的稳定性非常重要的参数。
CCT是最大持续时间发生在电力系统的失稳可能故障。
故障清除时间是随机设置的。
如果故障清除时间(FCT)比CCT更那么相对转子角度会失去稳定和系统将失去稳定。
通常用来查明了TSA 的方法是通过使用时域仿真,直接和人工智能的方法。
时域仿真方法实现了状态空间微分的求解方法。
Simulink 是一个互动的环境建模和模拟各种各样的动态系统。
一个系统是容易模块构建和迅速显示出结果来。
Simulink 中用于研究系统的非线性的影响,并因此是一种理想的研究工具。
电力电子化电力系统暂态稳定性分析综述一、概述随着科技的快速发展和电力电子技术的广泛应用,电力电子化电力系统已成为现代电网的重要组成部分。
这也给电力系统的暂态稳定性带来了新的挑战。
暂态稳定性是指电力系统在受到大扰动后,能否保持同步运行并恢复到稳定状态的能力。
对电力电子化电力系统的暂态稳定性进行深入分析和研究,对于确保电力系统的安全稳定运行具有重要意义。
电力电子化电力系统暂态稳定性分析涉及多个领域的知识,包括电力电子技术、电力系统分析、稳定性理论等。
其分析方法主要有时域仿真法、基于机器学习的预测方法、基于大数据技术的分析方法等。
这些方法各有优缺点,需要根据具体的应用场景和需求进行选择和优化。
近年来,随着人工智能、大数据等技术的快速发展,电力电子化电力系统暂态稳定性分析也取得了一些新的进展。
例如,基于机器学习的预测方法可以通过对历史数据的训练,建立模型对未来的暂态稳定性进行预测,从而提高分析的准确性和效率。
同时,基于大数据技术的分析方法可以通过处理海量的电力系统状态数据,建立高维度的模型,以更全面地反映电力系统的动态特性。
电力电子化电力系统暂态稳定性分析仍面临一些挑战。
电力电子装置的非线性特性和快速动态响应给电力系统的稳定性分析带来了困难。
随着电网规模的扩大和互联程度的提高,电力系统的动态特性变得更加复杂多变,这也增加了暂态稳定性分析的难度。
现有的分析方法在准确性和实时性方面仍有待提高。
1. 电力电子化电力系统的定义与发展背景随着科技的不断进步,电力电子技术在电力系统中扮演着日益重要的角色。
电力电子化电力系统,简而言之,是指应用现代电力电子技术,如变流器、整流器、逆变器等设备,实现电能的高效转换、稳定控制和灵活调节的电力系统。
这一技术极大地提高了电力系统的运行效率和稳定性,推动了电力系统的现代化和智能化发展。
发展背景方面,随着工业化和城市化的进程,电力需求持续增长,传统的电力系统已难以满足日益增长的电力需求。
暂态第1章稳态习题1.什么是电力系统?有哪些特点和基本要求?答:电力系统是由发电机、变压器、输电线路、用电设备(负荷)组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
电力系统的特点是:电能不能大量储存,发电、供电、用电必须同时完成,过渡过程非常迅速。
对电能质量要求很高,电能质量的优劣,直接影响各行各业。
电力生产的事故,也是其它行业的灾难。
电力系统的基本要求:①保证可靠地持续供电;②保证良好的电能质量;③保证系统运行的经济性。
2.我国电力系统的现状如何?答:①发电装机容量、发电量持续增长。
截止2007年底,全国新增装机容量10,009万千瓦,总量达到71,329万千瓦。
其中,水电新增1,306.5万千瓦,火电新增8,158.35万千瓦。
同时,华能玉环电厂、华电邹县电厂、国电泰州电厂共七台百万千瓦超超临界机组的相继投运,标志着中国已成功掌握世界先进的火力发电技术,电力工业已经开始进入―超超临界‖时代。
此外,中国电网建设快速发展,新增220千伏及以上输电线路回路长度4.15万公里,新增220千伏及以上变电设备容量18,848万千伏安。
②电源结构不断调整。
上大压小的举措提高了火电行业平均单机装机容量,增强了行业的总体经济效益,提高了环境效益。
对于新能源的各项政策及规划,将引导降低火电在电力中的占比,增加水电、核电、风电的比例,优化电力结构。
③西电东送和全国联网发展迅速。
我国能源资源和电力负荷分布的不均衡性,决定了―西电东送‖是我国的必然选择。
西电东送重点在于输送水电电能。
按照经济性原则,适度建设燃煤电站,实施西电东送。
目前,西电东送已进入全面实施阶段:贵州到广东500千伏交、直流输变电工程已先后投产运行,向广东送电规模已达1088万千瓦。
三峡到华东、广东±500千伏直流输变电工程先后投产。
蒙西、山西、陕西地区向京津唐电网送电能力逐步增加。
华北与东北、福建与华东、川渝与华中等一批联网工程已经投入运行,2003年跨区交换电量达到862亿千瓦时。
电力系统稳定性分析的系统仿真方法稳定性分析是电力系统运行与控制中的重要环节,直接关乎系统的可靠性和安全性。
在稳定性分析中,系统仿真方法具有广泛的应用,能够准确模拟电力系统的动态响应和稳定性特性。
本文将介绍电力系统稳定性分析中常用的系统仿真方法。
一、概述电力系统稳定性分析旨在评估系统在各种扰动条件下的稳定性能力,包括暂态稳定性和动态稳定性。
传统的基于解析计算的方法在复杂系统中存在计算量大、求解时间长等问题,而系统仿真方法通过建立电力系统的动态数学模型,模拟电力系统运行的各种特性,能够更加准确地分析系统的稳定性。
二、系统仿真方法1. 状态空间法状态空间法是电力系统仿真中常用的一种方法,通过建立系统的状态空间方程,描述系统的状态变化和控制策略。
在仿真过程中,可以根据系统的实际运行情况调整状态空间方程的参数,以达到更真实的仿真结果。
状态空间法在系统较大、复杂的情况下有较好的适用性。
2. 时域法时域法是一种基于传递函数的仿真方法,将系统的微分方程转化为代数方程,通过求解代数方程来得到系统的响应。
时域法能够较为直观地模拟系统的动态过程,并可以考虑非线性特性的影响。
在电力系统稳定性分析中,时域法往往用于评估系统在大范围扰动下的动态稳定性。
3. 频域法频域法是一种通过频率响应来分析系统稳定性的仿真方法。
通过将系统的输入和输出信号进行傅里叶变换,得到系统的频率响应函数,从而评估系统在不同频率下的稳定性。
频域法适用于频率控制方案的设计和优化,能够提供系统对频率扰动的响应特点。
4. 蒙特卡洛法蒙特卡洛法是一种基于随机抽样的仿真方法,通过随机模拟系统输入和参数的不确定性,来评估系统的稳定性。
蒙特卡洛法能够考虑到系统各种不确定性因素的影响,并能够给出系统的概率稳定性指标。
在电力系统规划和可靠性评估中,蒙特卡洛法具有重要的应用价值。
三、仿真实例为了验证系统仿真方法的有效性,以一台发电机的暂态稳定性为例进行仿真分析。
首先,建立发电机的动态数学模型,包括转子、励磁系统和并联传动系统等。
8时域仿真法暂态稳定分析8.1 引言电力系统暂态稳定分析的主要目的是检查系统在大扰动下(如故障、切机、切负荷、重合闸操作等情况),各发电机组间能否保持同步运行,如果能保持同步运行,并具有可以接受的电压和频率水平,则称此电力系统在这一大扰动下是暂态稳定的。
在电力系统规划、设计、运行等工作中都要进行大量的暂态稳定分析,因为系统一旦失去暂态稳定就可能造成大面积停电,给国民经济带来巨大损失。
通过暂态稳定分析还可以研究和考察各种稳定措施的效果以及稳定控制的性能,因此有很大的意义。
当电力系统受到大扰动时,发电机的输入机械功率和输出电磁功率失去平衡,引起转子的速度及角度的变化,各机组间发生相对摇摆,其结果可能有两种不同情况。
一种情况是这种摇摆最后平息下来,系统中各发电机仍能保持同步运行,过渡到气个新的运行状态,则认为系统在此扰动下是暂态稳定的。
另一种情况是这种摇摆最终使一些发电机之间的相对角度不断增大,也就是说发电机之间失去了同步,此时系统的功率及电压发生强烈的振荡,对于这种情况,我们称系统失去了暂态稳定。
这时,应将失步的发电机切除并采取其他紧急措施。
除此以外,系统在大扰动下还可能出现电压急剧降低而无法恢复的情况,这是另一类失去暂态稳定的形式,也应采取紧急措施恢复电压,恢复系统正常运行。
这两大类暂态稳定问题分别称为功角型和电压型暂态稳定问题,并且常互相影响,互相关联。
为了防止在大扰动下系统失去暂态稳定,在电力系统中需要根据预想的典型大扰动,分析系统在这些典型扰动下的暂态稳定性,这就是电力系统暂态稳定分析的基本任务,其中最大量的分析是功角稳定问题。
现代电力系统一方面采用了先进技术和装置来改善系统的暂态稳定性,如快速高顶值倍数的励磁系统、快关汽门、制动电阻、静止无功补偿装置、高压直流输电技术等等;但另一X 方面又出现了一些对暂态稳定不利的因素,例如:大型机组参数恶化,其相应的暂态电抗d T相对减少;超高压长距离重负荷输电线路的投入;同杆并架线路的增大和惯性时间常数J增加等等。
此外,有些措施对第一摇摆稳定有利,但对系统后续摇摆中的阻尼性能及相应的系统稳定性带来不利影响,因此要注意稳定措施的全局规划及协调。
电力系统暂态稳定分析目前主要有两种方法,即时域仿真(time simulation)法,又称逐步积分(step by step)法,以及直接法(direct method),又称暂态能量函数法(transient energy function method)。
时域仿真法将电力系统各元件模型根据元件间拓扑关系形成全系统模型,这是一组联立的微分方程组和代数方程组,然后以稳态工况或潮流解为初值,求扰动下的数值解,即逐步求得系统状态量和代数量随时间的变化曲线,并根据发电机转子摇摆曲线来判别系统在大扰动下能否保持同步运行,即暂态稳定性。
时域仿真法由于直观,可适应有几百台机、几千条线路、几千条母线的大系统,可适应各种不同的元件模型和系统故障及操作,因而得到广泛应用。
本章介绍时域仿真法暂态稳定分析,而直接法暂态稳定分析在下一章中介绍。
8.2 简化模型时域仿真法暂态稳定分析本节采用简化的元件模型来介绍时域仿真法暂态稳定分析的基本原理、步骤,并提出采用复杂元件模型时会出现的问题。
电力系统基本上是由发电机、励磁系统、原动机及调速器以及网络和负荷组成的。
其相互联系示于图8-1。
其中发电机分为二部分,即转子运动方程部分和电磁回路方程部分。
转子运动方程反映了当发电机输入机械功率m P 和输出电功率e P 不平衡时引起发电机转速ω和转子角δ的变化。
发电机转速信号送入调速系统和参考速度比较,其偏差作为调速器的控制输入量,以控制原动机的输出机械功率m P 。
发电机转子角δ则用于进行发电机dq 坐标下电量和网络xy 同步坐标下电量间的接口。
发电机的电磁回路方程即发电机定子、转子绕组在dq 坐标下的电压方程,它以励磁系统输出励磁电压f E (文献中常用fd E )为输入量,发电机端电压和电流经坐标变换,可跟同步坐标下网络方程接口,并联立求解。
所解得的机端电压t U 反馈回励磁系统,励磁系统将机端电压和参考电压ref U 比较,以控制发电机励磁电压f E 。
而发电机的输出电磁功率e P 将影响转子运动的功率平衡及转子速度和角度的变化。
网络一般表示为节点导纳阵形式,网络除和发电机相连外,还和负荷相连。
图8-1中只画出了实际网络和一台发电机、一个负荷之间的联系。
实际的电网有许多发电机和负荷,通过网络互相联系和互相影响,造成了电力系统暂态稳定分析的复杂性。
图8-1 电力系统基本组成部分及相互联系示意图暂态稳定分析由于主要研究发电机转子摇摆特性,主要和网络中的工频分量有关,故发电机可忽略定子暂态而采用实用模型,而网络采用准稳态模型,负荷则采用第4章所介绍的静态模型或(和)计及机械暂态或机电暂态的动态模型。
为了突出电力系统暂态稳定分析的基本原理和步骤,本节对发电机采用经典二阶模型,忽略凸极效应,并设暂态电抗dX '后的暂态电动势E '幅值恒定,从而忽略励磁系统的动态,以简化分析。
应当指出,E '恒定已计及了励磁系统的一定作用,即认为励磁系统足够强,从而能保证dX '后的暂态电动势E '恒定。
另外,本节中忽略调速器和原动机动态作用,即认为机械功率m P 为定常值。
在上述模型及相应假定下,发电机忽略定子绕组内阻时的定子电压标幺值方程为G d G I X j E U '-'= (8-1)式中,G U ,GI 为发电机端电压及流出的电流,均为同步坐标下的复数量;δ∠'='E E 为暂态电动势,E '=const.。
式(8-1)是同步坐标下的复数线性代数方程。
发电机的转子运动方程为(标幺值,下同):⎪⎩⎪⎨⎧-=-= 1ωδωdtd P P dt d Te m J (8-2) 式中) Re(*G Ge I U P = m P =const.当将式(8-1)、式(8-2)和网络方程联立求解时,可解出G U ,GI ,ω,δ。
对于负荷,设采用最简单的线性负荷模型,从而对于三相对称负荷有 L L L I Z U = 或 L L L U Y I = (8-3)式中,L L Y Z ,分别为负荷等值阻抗和导纳;LL I U ,分别为负荷电压及其吸收的电流。
若设网络节点导纳阵方程为I UY = (8-4) 式中,I U和分别为节点电压和各节点注入网络的电流。
对于发电机节点,I 相应元为G I ;对于负荷节点,I 相应元为LI -;对于网络节点,I 相应元为零。
式(8-1)~式(8-4)构成了系统的基本方程。
这是一组联立的微分方程组和代数方程组。
暂态稳定时域仿真分析的核心是当n t 时刻的变量值已知时,如何求出1+n t 时刻的变量值,以便由0t 时的变量初值(一般是潮流计算得的稳态工况下变量值),逐步计算出,,21t t …时刻的变量值,并在系统有操作或发生故障时作适当处理。
下面先介绍上述简化模型下,n t ~1+n t 时段的计算方法。
对于式(8-1)~式(8-4)的简化模型电力系统,可将负荷阻抗并入导纳阵,这只要修正负荷接点对应的导纳阵对角元,从而负荷接点转化为网络节点,式(8-4)中相应节点的注入电流化为零。
同时将各发电机方程(8-1)改写为导纳方程形式,即G G G G G G d G dG U Y I U Y E Y X j U X j E I -'-'='-''==def (8-5) 式中,dG X j Y '=1,为发电机暂态导纳,式(8-5)的等值电路如图8-2所示。
显然可把G Y 并入网络导纳阵,即修正发电机节点相对应的导纳阵对角元,则联立求解发电机和网络方程的问题就转化为在发电机节点有注入电流E Y I G G '=' 时,网络方程(已将G Y 和LY 并入导纳阵)的求解问题。
网络方程的求解本质上是求解一组复数线性代数方程,可用高斯消去法。
由于系统无操作时,导纳阵不变,故可预先对导纳阵作三角分解,存储因子表,然后每一时步根据各节点注入的电流求解各节点电压。
在计算每一时步各发电机的等值注入电流GI ' 时,由于E' 的相角δ随时间而变,需由转子运动方程计算确定,故实用中可根据n t 时刻的n n n e n m P P δω,,,,,,先用某种微分方程的数值求解法来估算1+n t 时刻的1+n ω和1+n δ,如设n n t t h -=+1,由式(8-2)取⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-++≈-+=+≈+++ 12/)(11,,1h T P P h h n n n n J n e n m n n n n ωωδδωωωω (8-6) 式(8-6)又称作是微分方程(8-2)在n t ~1+n t 时段上的差分代数方程,从而可得11++∠'='n n E E δ ,则各发电机1+n t 时刻等值电流源1,+'n G I 可求,可进而求解网络方程得1+n U ,然后可根据式(8-5)计算发电机端电流G I ,并计算发电机的电磁功率) Re(G *I U P Ge =。
这样计算得的1+n t 时刻的变量精度可能较差,必要时可进行校正和迭代计算,以改善精度。
图8-2 经典模型发电机等值电路图简化模型的电力系统暂态稳定分析的步骤和流程框图见图8-3。
下面对其作简要说明。
(1) 暂态稳定分析首先输入原始数据,这包括系统元件的模型、参数、网络拓扑信息、扰动过程信息、稳定分析要求(如计算步长、仿真总时间、失稳判据等)、打印输出要求,另外还应输入暂态分析的初始稳态工况,一般为潮流计算结果。
此即流程框图中框①。
(2) 然后根据潮流及原始数据计算各代数变量和状态变量的初值,及E '和m P 的稳态值,采用简化模型时E '和m P 在暂态过程中保持不变。
此即流程框图中框②。
对于负荷节点,潮流中已计算得负荷有功功率0L P 、无功功率0L Q 、及负荷母线电压0L U ,则由 2000L L L L U Y jQ P =+ (8-7) 可计算负荷等值导纳L Y 。
对于发电机节点,潮流中已计算得发电机发出的有功0G P 、无功功率0G Q 及端电压0G U ,则由 0*000G G G G I U jQ P =- (8-8) 计算0G I ,再由式(8-1)计算0000G d G I X j U E E '+=∠'='δ,得E '及0δ,电磁功率0G0*00) Re(m G e P I U P == ,E '和0m P 在暂态中保持不变。