绳子、弹簧和杆产生的弹力特点(答案)
- 格式:doc
- 大小:115.00 KB
- 文档页数:8
弹力要点弹性:物体受力发生形变不受力自动恢复原来形状的特性;(1) 塑性:物体受力发生形变不受力不能自动恢复原来形状的特性。
(2) 弹力的定义:物体由于发生弹性形变而产生的力。
(如压力,支持力,拉力) (3) )产生条件:发生弹性形变(4) 弹簧测力计:测量力的大小的工具叫做弹簧测力计。
(5) 弹簧测力计(弹簧秤)的工作原理:在弹性限度内,弹簧的伸长与受到的拉力成正比。
即弹簧受到的拉力越大,弹簧的伸长就越长。
(6) ;使用弹簧测力计的注意事项:A 、观察弹簧测力计的量程和分度值,不能超过它的测量范围。
(否则会损坏测力计)B 、使用前指针要校零,如果不能调节归零,应该在读数后减去起始未测量时的示数,才得到被测力的大小。
C 、测量前,沿弹簧的轴线方向轻轻来回拉动挂钩几次,放手后观察指针是否能回到原来指针的位置,以检查指针、弹簧和外壳之间是否有过大的摩擦; D 、被测力的方向要与弹簧的轴线的方向一致,以免挂钩杆与外壳之间产生过大的摩擦;E 、指针稳定后再读数,视线要与刻度线垂直【典型例题】类型一、弹力1、关于弹力,下列说法错误的是( ) A .弹力是指弹簧形变时对其他物体的作用 B .压力、支持力、拉力都属于弹力C .在弹性限度内,同一弹簧受到的拉力越大伸长越长D .弹力是指发生弹性形变的物体,由于要恢复原状,对接触它的物体产生的力【思路点拨】发生弹性形变的物体,在恢复原来形状时才会产生弹力;产生弹力的条件是:有弹性形变,相互接触。
【答案】A 【解析】A 、发生弹性形变的物体都会产生弹力,弹力不是仅弹簧具有的。
此选项错误;B 、压力、支持力、拉力都是按照作用效果命名的,都是弹力。
此选项正确;C 、在弹性限度内,同一弹簧的伸长与受到的拉力成正比。
此选项正确;D 、弹力是指物体发生弹性形变时,对跟它接触的物体产生的力。
此选项正确;故选A 。
几种常见的力产生条件大小方向 作用点补充说明弹力① 接触 ② 有挤压① 如桌面上的物体受到的支持力、电灯受到绳的拉力等从力的性质上来说都属于弹力.② 支持力与压力垂直于接触面, 各自指向被支持和被压物体; 支持力与压力互为相互作用力.③ 在弹性限度内, 弹簧的伸长与受到的拉力成正比④ . 1122()F xF k x F x ∆==∆∆类型二、弹簧测力计2、赵明准备自己制作一只弹簧测力计,他找来弹簧、钩码、直尺、指针等器材。
专题03 弹力目录➢ 1 轻环平衡问题➢ 2 轻杆2.1 活杆问题2.2 死杆问题➢ 3 弹簧形变量的巧解技巧1考点梳理1.弹力的定义发生弹性形变的物体,由于要恢复原状,要对与它接触的物体产生力的作用,这种力称为弹力.如图所示,用手向右拉弹簧,弹簧因形变(伸长)而产生弹力F,它作用在手上,方向向左.因此,弹力的施力者是发生弹性形变的物体,受力者是使它发生弹性形变的物体。
2.弹力的产生条件:①两物体直接接触;②两物体发生弹性形变。
3.判断弹力有无的方法弹力的方向总是跟形变的方向相反,但是在很多情况下,接触处的形变不明显,这就给弹力是否存在的判定带来了困难.通常用以下两种办法可以解决:(1)假设法:即假设接触处有弹力,看物体的运动状态是否与当前情况一致,若一致,则假设正确,接触处有弹力;若不一致,则假设错误,接触处无弹力。
但是“假设法”有一定的局限性,只对较简单的情况适用.我们深入思考弹力产生的原因可知,弹力是被动出现的,它属于被动力。
弹力是否存在,是由主动力和运动状态决定的。
(2)分析物体所受的主动力和运动状态,是判断弹力有或无的金钥匙。
分析主动力,就是分析沿弹力所在的直线上,除弹力以外其他力的合力,看这些力的合力是否满足题目给定的状态,若满足,则不存在弹力;若不满足,则存在弹力。
4.弹力的方向弹力的方向总是与作用在物体上使物体发生形变的外力的方向相反,或者就是物体恢复原状的趋势的方向。
弹力是接触力,不同的物体接触,弹力方向的判断方法不同:例如,绳子只能产生拉力,物体受绳子拉力的方向总是沿绳子指向其收缩的方向。
桌面产生的支持力的方向总是垂直于支持面指向被支持的物体。
杆的弹力比较复杂,不一定沿杆也不一定垂直于杆,需根据受力情况或物体运动状态而定。
5.几种常见弹力类型方向示意图说明接触方式面与面垂直公共接触面支持力、压力一定垂直于接触面指向被支持或被压的物体,关键在于“面”的判断点与面过点垂直于面点与点垂直于切面轻绳沿绳收缩方向轻绳、轻弹簧的弹力一定沿绳或弹簧方向,但注意弹簧可垃可支轻质弹簧沿弹簧形变的反方向轻杆可沿杆轻杆弹力不一定沿杆方向,要依具体情形确定可不沿杆6.弹力大小和胡克定律(1)弹力的大小与物体的形变程度有关,形变量越大,产生弹力越大;形变量越小,产生的弹力越小,形变消失,弹力消失轻绳、轻弹簧内部各处弹力大小相等。
弹簧弹力的特点
弹簧弹力是指弹簧在受到外力作用后,产生的恢复力。
弹簧弹力的特点主要有以下几个方面:
1. 线性弹性:弹簧弹力与弹簧的形变量成正比,即弹簧的形变越大,弹力也越大。
这种关系称为线性弹性,是弹簧弹力的基本特点。
2. 可逆性:弹簧弹力是一种可逆的力,即当外力作用消失时,弹簧会恢复原状,弹力也会消失。
这种特点使得弹簧在很多机械装置中得到广泛应用。
3. 稳定性:弹簧弹力的大小和方向只与弹簧的形变量有关,与外力的大小和方向无关。
因此,弹簧弹力具有稳定性,可以在一定范围内保持相对稳定的弹力。
4. 非常规性:弹簧弹力的大小和方向与外力的大小和方向不一定成正比或反比,而是由弹簧的材料、形状、尺寸等因素决定。
因此,弹簧弹力具有非常规性,需要通过实验或计算来确定。
在中心扩展下,弹簧弹力的应用范围非常广泛。
例如,弹簧可以用于减震、缓冲、支撑、传递力量等方面。
在汽车、火车、飞机等交通工具中,弹簧被广泛应用于悬挂系统、减震器、制动器等部位,起到减少震动、保护车身、提高行驶稳定性等作用。
在机械制造中,弹簧也被广泛应用于机械传动、弹簧夹紧、弹簧卡紧等方面,起到
传递力量、固定零件、保护机械等作用。
在生活中,弹簧也被应用于各种家具、玩具、文具等产品中,起到支撑、缓冲、调节等作用。
弹簧弹力是一种非常重要的力学特性,具有线性弹性、可逆性、稳定性和非常规性等特点。
在各个领域中得到广泛应用,为人们的生产和生活带来了很多便利。
2019-2020年高中物理人教版必修一教学案:第三章第2节弹力(含答案)1.弹力是物体由于发生弹性形变而产生的力。
2.弹力产生的条件:(1)两物体相互接触;(2)接触面之间发生弹性形变。
3.压力和支持力的方向总垂直于物体的接触面指向被压或被支持的物体;绳的拉力沿着绳而指向绳收缩的方向。
4.弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比。
5.弹簧的劲度系数由弹簧本身的因素决定,与所受外力大小无关。
一、弹性形变和弹力1.形变物体在力的作用下形状或体积发生改变,这种变化叫做形变。
2.弹性形变物体在形变后撤去作用力时能够恢复原状,这种形变叫做弹性形变。
3.弹力发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。
4.弹性限度如果物体的形变过大,超过一定限度,撤去作用力后物体不能完全恢复原状,这个限度叫做弹性限度。
5.弹力产生的两个条件(1)物体间相互接触;(2)在接触面上发生弹性形变。
二、几种弹力1.常见弹力平时所说的压力、支持力和拉力等都是弹力。
2.弹力的方向(1)压力和支持力的方向垂直于物体的接触面,指向受力物体。
(2)绳的拉力沿着绳而指向绳收缩的方向。
三、胡克定律1.内容弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比。
2.公式F=kx,其中k为弹簧的劲度系数,单位:牛顿每米,符号:N/m。
x为弹簧的伸长量或缩短量。
1.自主思考——判一判(1)发生形变的物体才能有弹力,且一定有弹力。
(×)(2)物体的形变越大,弹力也越大。
(×)(3)弹力的方向一定与物体发生形变的方向相反。
(√)(4)弹力的大小与物体大小有关,体积越大的物体产生的弹力也越大。
(×)(5)弹簧的劲度系数k与弹力F有关。
(×)2.合作探究——议一议(1)相互接触的物体间一定有弹力作用吗?提示:不一定,物体如果只是接触而没发生弹性形变,则无弹力作用。
案例1 绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?分析与解答: 为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。
则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。
图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
轻杆、轻绳、轻弹簧的力学特征模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1) 剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
绳子、弹簧和杆产生的弹力特点
模型特点:
1. 轻绳
(1)轻绳模型的特点
“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律
①轻绳各处受力相等,且拉力方向沿着绳子;
②轻绳不能伸长;
③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;
④轻绳的弹力会发生突变。
2. 轻杆
(l)轻杆模型的特点
轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律
①轻杆各处受力相等,其力的方向不一定沿着杆的方向;
②轻杆不能伸长或压缩;
③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧
(1)轻弹簧模型的特点
轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律
①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;
②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;
③弹簧的弹力不会发生突变。
案例探究:
【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?
分析与解答:
为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,
对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,
所以a=gsin θ。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。
这时F 2不发生变化,故mg 与F 2的合力仍然保持不变,与F 1大小相等,
方向相反,如图(4)所示,所以F 合= F 1=mgstg θ, a=gstg θ。
【案例2】一根细绳,长度为L ,一端系一个质量为m 的小球,在竖直面内做圆周运动,求小球通过最高点时的速度至少是多少?若将绳换为一根匀质细杆,结果又如何?
分析与解答:
(1)对绳来说,是个柔软的物体,
B
A
θ B
A
甲
乙
O
B
A
θ mg
F 2 F 1 F 1
F 2
F 合
(3)
F 2
F 1
(4)
F v
它只产生拉力,不能产生支持作用, 小球在最高点时,
弹力只可能向下,如图(1)所示。
这种情况下有mg L
mv mg F ≥=+2
即gL v ≥,否则不能通过最高点。
(2)对细杆来说,是坚硬的物体,它的弹力既可能向上又可能向下,速度大小v 可以取任意值。
可以进一步讨论:
①当杆对小球的作用力为向下的拉力时,如图(2)所示:
F+mg=L
mv 2
>mg 所以 v >gL
②当杆对小球的作用力为向上的支持力时,如图(3)所示:
mg -F=L
mv 2
<mg 所以 v <gL
当N=mg 时,v 可以等于零。
③当弹力恰好为零时,如图(4)所示:
mg=L
mv 2
所以 v=gL
【案例3】如图所示,小车上固定一弯折硬杆ABC,C
端固定质量为m 的小球,已知α=30°恒定。
当小车水平向左以v=0.5m/s 的速度匀速运动时,BC 杆对小球的作用力的大小是 ,方向是
;当小车水平向左以a=g 的加速度作匀加速运动时,BC 杆对小球的作用力的大小是 ,方向是。
分析与解答:
对细杆来说,是坚硬的物体,可以产生与杆垂直的横向的力,也可以产生与杆任何夹角的弹力
(2)
(4)
(3)
(1)当小车水平向左以v=0.5m/s 的速度匀速运动时,由平衡条件,细杆对小球的力必定与重力等大反向,如图(1)所示。
(2)当小车水平向左以a=g 的加速度作匀加速运动时,小球所受合力F 合=mg 沿水平方向,则小球受细杆的弹力N=2mg ,与水平方向夹角为450,如图(2)所示。
精品练习:
1.如图所示,有一质量为m 的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
2. 如图所示,小车上有一弯折轻杆,杆下端固定一质量为m 的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
3. 如图所示,一质量为m 的小球用轻绳悬挂在小车顶部,小车向左以加速度a 做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
4. 若将上题中的轻绳换成固定的轻杆,当小车向左以加速度a 做匀加速直线运动时,求杆对球的作用力的大小及方向。
5. 如图6所示,小球在细线OB 和水平细线AB 的作用下而处于静止状态,则在剪断水平细线的瞬间,小球的加速度多大?方向如何?
6. 如图9所示,一轻质弹簧和一根细线共同提住一个质量为m 的小球,平衡时细线是水平
mg
C A
B
N
(1)
N
mg
C
A
F 合=mg (2)
的,弹簧与竖直方向的夹角是,若突然剪断细线,则在剪断的瞬间,弹簧拉力的大小是__________,小球加速度与竖直方向夹角等于_________。
精品练习答案:
1.解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力
为,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
2.解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如
图所示。
则可知杆对小球的弹力为,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
3.解析:以小球为研究对象进行受力分析,如图4所示。
根据小球做匀加速直线运动可得在竖直方向
在水平方向
解之得
轻绳对小球的作用力大小随着加速度的增大而增大,它的方向沿着绳子,与竖直方向的夹角为。
4.解析:如图,小球受到重力和杆对它的弹力F作用而随小车一起向左做匀加速直线运动。
在竖直方向
在水平方向
解之得。
由解答可知,轻杆对小球的作用力大小随着加速度的增大而增大,它的方向不一定沿着杆的方向,而是随着加速度大小的变化而变化。
只有时,F才沿着杆的方向。
5.解析:在没有剪断之前对小球进行受力如图所示,由平衡条件可得,。
当剪断水平细线AB时,此时小球由于细线OB的限制,在沿OB方向上,小球不可能运动,故小球只能沿着与OB垂直的方向运动,也就是说小球所受到的重力,此时的作用效果是拉绳和沿垂直绳的方向做加速运动,其受力如图
所示。
由图可知,则可得方向垂直于OB向下。
绳OB的拉力,则可知当剪断水平细线AB时,细线OB的拉力发生了突变。
6.解析:在细线未剪断前,由平衡条件可得
水平细线的拉力
弹簧的拉力
当剪断细线的瞬时,,而弹簧形变不能马上改变,故弹簧弹力F保持原值。
在图所示中,。
所以在剪断细线的瞬时F和mg的合力仍等于原的大小,方向水平向右。
则可知小球的加速度方向沿水平向右,即与竖直成
角,其大小为。