高中物理复习专题之绳子弹簧和杆产生的弹力特点绳拉物问题牛顿第二定律分析整体法与隔离法
- 格式:doc
- 大小:1.22 MB
- 文档页数:28
高中物理第二轮专题——弹簧模型高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见。
由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高。
在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视。
弹簧类命题突破要点:1。
弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少。
弹性势能的公式E p=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
隔离法和整体法 决定物体在斜面上运动状态的因素概念规律:1.隔离法和整体法(1).隔离法 将研究系统内某个物体或物体的一部分从系统中隔离出来进行研究的方法 (2).整体法 将系统内多个物体看做一个对象进行研究的方法 2.决定物体在斜面上运动状态的因素:若物体以初速V 。
沿倾角为θ的斜面向下运动,则:当μ=tan θ时,匀速;μ﹤tan θ时,加速;当μ﹥tan θ时,减速。
与m 无关(由重力沿斜面向下的分量mgsin θ跟摩擦力 μmgcos θ大小的关系决定)。
例题:【例1】如图1---39所示,斜面上放一物体A 恰能在斜面上保持静止,如果在物体A 的水平表面上再放一重物,下面说法中正确的是( )A .物体A 将开始加速下滑B .物体A 仍保持静止C .物体A 所受的摩擦力增大D .物体A 所受的合力增大【例3】如图1---41所示,人重G 1,板重G 2,各滑轮摩擦、质量不计,为使系统平衡,人必须用多大的力拉绳?、G 1、 G 2之间应满足什么关系?【例4】如图1---42所示,重为G 的均匀链条,两端用等长的轻绳连接挂在等高的地方,绳与水平方向成θ角,试求:(1).绳子的张力大小。
(2).链条最低点的张力大小.(2).将链条从最底点隔离开,只研究右半条链条,作其受力图如上页右。
练习题:1.如图1—43所示,两只相同的均匀光滑小球,置于半径为R 的圆柱形容器中,且小球的半径r 满足2r >R ,则以下关于A 、B 、C 、D 四点的弹力大小的说法中正确的是( ) A . D 点的弹力可以大于、等于或小于小球的重力 B . D 点的弹力等于A 点的弹力(大小)A θ 图1---39F 1 F 2 θ θG图1—41θ θ 图1--42C . B 点的弹力恒等于一个小球重力的2倍D . C 点弹力可以大于、等于或小于小球的重力2.如图1---44,A 、B 是质量均为M 的两条磁体,C 为木块,水平放置静止时,B 对A 的弹力为F 1,C 对B 的弹力为F 2则( )A . F 1=Mg F 2=2MgB . F 1>Mg F 2=2MgC .F 1<Mg F 2=MgD .F 1>Mg F 2>2Mg3.如图1—45,在两块相同的竖直木板之间有质量均为M 的4块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则2、3两块砖之间的摩擦力大小为____________.如为5块砖呢?4.如图1-46所示,放置在水平面上的直角劈M 上有一质量为m 的物体,若m 在其上匀速下滑,M 仍保持静止,则正确的是:( ) A .M 对地面的压力等于(m+M )g B .M 对地面的压力大于(m+M )g C .地面对M 没有摩擦力 D .地面对M 有向左的摩擦力5.如图1-47所示,要使静止在粗糙斜面上的物体A 下滑,可采用下列哪种办法?( ) A .对物体加一竖直向下的力 B .减少物体的质量 C .增大斜面的倾角D .在物体A 的后面放一个与A 完全相同的物体6.如图1-48所示,半径为R 的光滑球重为G ,光滑木块厚为h ,重为G 1,用至少多大的水平力F 推木块才能使球离开地面?7.(1998年上海)有一个直角支架AOB ,AO 水平放置,表面粗糙,AO 上套有小环P ,OB 上套有小环Q 且光滑,两环质量均为m ,两环间用质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图1—49,现将P 环向左移动一小段距离,两环再次达到平衡,则移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力F N 和细绳的拉力F T的变化情况是( )A 、F N 不变,F T 变大B 、F N 不变,F T 变小C 、F N 变大,F T 变大D 、F N 变大,F T 变小S A N SN B C 图1---44F F 1 2 3 4 图1—45 Aα图1-47F图1-48图1--49 O PQ B A。
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习,吊着重为180N的物体,不计摩向上移动些,二绳张力大例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为()A.mgB.33mg C.21mg D.41mg 变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳() A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。
在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。
(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。
) 左运动时,则对于:如图所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧上移的高度是多少?的劲度系数分别为k1和k2,若在m1上随时间t变化的图像如图(乙)所示,则(在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化,,的细绳,细绳上有一小的清滑轮,吊着重为180N的物体,不计向上移动些,二绳张力两端被悬挂在水平点A.mgB.33mg C.21mg D.41mg 2-1.一段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳(A )A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC2-2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.F 的取值范围为:≤F≤2-3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时(D )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大2-4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。
模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:案例1如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?甲乙分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
案例1 绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体L2分析与解答: 为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
高中物理力学中弹簧和弹性体题的解题技巧高中物理力学中,弹簧和弹性体是一个重要的考点,涉及到弹性力、胡克定律等概念。
在解题过程中,我们需要掌握一些解题技巧,以便更好地应对这类题目。
首先,我们来看一个例题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,求在物体静止时,弹簧的伸长量。
解题思路:1. 弹簧的伸长量可以通过胡克定律来求解。
根据胡克定律,弹簧的伸长量与外力成正比,与劲度系数成反比。
所以我们可以得到公式:F = kx,其中F为外力,x为伸长量。
2. 在物体静止时,弹簧受到的重力和拉力之和为零。
所以我们可以得到方程:mg = kx。
3. 根据方程求解x,即可得到弹簧的伸长量。
这个例题展示了解决弹簧和弹性体题目的一般思路。
接下来,我们再来看一个例题,进一步探讨解题技巧。
例题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,现在将物体向下拉出一个距离x,然后释放,求物体在通过平衡位置时的速度。
解题思路:1. 在通过平衡位置时,物体受到的合力为零。
根据牛顿第二定律,合力等于质量乘以加速度。
所以我们可以得到方程:mg - kx = ma,其中a为物体的加速度。
2. 根据胡克定律,弹簧的伸长量与物体的加速度成正比。
所以我们可以得到公式:x = a/k。
3. 将公式x = a/k代入方程mg - kx = ma,整理得到:a = gk/(m + k)。
4. 根据加速度求解速度v,即可得到物体在通过平衡位置时的速度。
通过这个例题,我们可以看到解题过程中的一些关键点。
首先,要注意建立合适的方程,根据物体所受的力和加速度之间的关系进行推导。
其次,要灵活运用胡克定律,将弹簧的伸长量与物体的加速度联系起来。
最后,要善于整理方程,将未知量整理到一边,已知量整理到另一边,以便求解。
除了以上的解题思路和技巧,我们还可以通过一些类似的题目进行练习,以便更好地掌握解题方法。
例如,可以考虑以下问题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,现在将物体向上推出一个距离x,然后释放,求物体在通过平衡位置时的速度。
高中物理中“轻绳”、“轻杆”和“轻弹簧”的问题分析中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。
但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。
一、三个模型的正确理解1. 轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。
②内部张力大小处处相等,且与运动状态无关。
③轻绳的弹力大小可发生突变。
2. 轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力〔力的方向不一定沿着杆的方向〕;②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。
3. 轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变〔除弹簧被剪断外〕;④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量。
二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。
【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。
绳拉物问题【问题综述】此类问题的关键是:1.准确判断谁是合运动,谁是分运动;实际运动是合运动2.根据运动效果寻找分运动;3.一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。
4.根据运动效果认真做好运动矢量图,是解题的关键。
5.对多个用绳连接的物体系统,要牢记在绳的方向上各点的速度大小相等。
6.此类问题还经常用到微元法求解。
1 汽车通过绳子拉小船,则()A、汽车匀速则小船一定匀速B、汽车匀速则小船一定加速C、汽车减速则小船一定匀速D、小船匀速则汽车一定减速(1)如图甲,被分解的速度应是实际的速度,即小船上系绳那一点的水平速度,而不应是沿绳子方向的分运动的运动,故甲图是错误的(2)如乙图,v2还有沿绳方向的速度分量,还需再将v2分解,才能符合实际效果。
但此法麻烦复杂。
(2)如丙图,将船在水平方向的运动分解为两个分运动,一个分运动沿绳方向,根据运动的合成与分解的独立性原理,当这个分运动消失,表现为另一个分运动,可见是以滑轮为圆心的圆周运动,故另一个分运动方向与绳方向垂直。
由图可知v1=vcosθ,v1不变,当θ增大时,v增大,故B正确;v不变,当θ增大时,v1减小,故D正确;注意它的逆推断不一定,故C错2:如图,汽车拉着重物G,则(AcD )A、汽车向左匀速,重物向上加速B、汽车向左匀速,重物所受绳拉力小于重物重力C、汽车向左匀速,重物所受绳拉力大于于重物重力D、汽车向右匀速,重物向下减速3:如左图,若已知物体A的速度大小为v A,求重物B的速度大小v B?v A/cosθ4:如右图,若α角大于β角,则汽车A的速度大于汽车B的速度5 如图所示,A、B两物体用细绳相连,在水平面上运动,当α=45度,β=30度时,物体A的速度为2 m/s,B这时B 的速度为 。
6.质量分别为m 和M 的两个物体跨过定滑轮如图所示,在M 沿光滑水平面运动的过程中,两物体速度的大小关系为( A ) A .V 1﹤V 2 B .V 1﹥V 2 C .V 1=V 2 7.如图所示,汽车以v 0=5.0m/s 的速度在水平路面上开动,通过绳子牵引重物P 。
「高中物理」瞬时加速度判断中绳与弹簧的力学特征
基础知识
瞬时加速度判断
(1)牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果———产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
(2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性:
①轻,即绳(或线)的质量和重力均可视为零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。
②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。
由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。
③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。
由此特点知,绳子中的张力可以突变。
(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:
①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。
由此特点
可知,同一弹簧的两端及其中间各点的弹力大小相等。
②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。
③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。
绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
案例1 绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高三力学实验知识点总结高三力学实验是物理学学习的重点内容之一,通过实际操作和观察,能够深入理解力学知识,提升学生的实践能力和科学思维。
以下是高三力学实验的知识点总结:1. 弹簧定律实验弹簧定律实验是力学实验中最基础的实验之一。
实验装置由弹簧、挂钩、质量等元素组成。
通过在弹簧上挂载不同质量的物体,利用弹簧拉伸的变形量与所施加力的关系,验证弹簧定律。
实验原理是当物体受到力的作用时,弹簧发生弹性变形,变形量与所受力成正比。
2. 牛顿第二定律实验牛顿第二定律实验是通过观察物体在施加力的情况下的运动变化,验证力与加速度成正比的关系。
实验装置一般由滑轮、绳子和物体等组成。
通过在滑轮上绕绳子,将不同的质量物体与绳子相连,施加不同大小的力,观察物体的加速度变化。
实验结果表明,当施加的力增加时,物体的加速度也随之增加。
3. 斜面实验斜面实验是通过观察物体在斜面上的运动情况来研究重力和斜面间的关系。
实验装置由斜面、物体和测量工具等组成。
通过改变斜面的角度和物体的质量,观察物体沿斜面下滑的加速度变化。
实验结果表明,斜面越陡,物体的加速度越大,与斜面的夹角成正比。
4. 动量守恒实验动量守恒实验是通过观察碰撞过程中的动量变化情况来验证动量守恒定律。
实验装置由两个相互碰撞的物体组成。
通过调节物体的质量和初速度,观察碰撞后物体的速度变化情况。
实验结果表明,在碰撞过程中,总动量保持不变,始末动量之和相等。
5. 弹性碰撞实验弹性碰撞实验是通过观察碰撞过程中物体的变形和动能转化情况来研究弹性碰撞的特点。
实验装置由两个弹性物体组成。
通过改变物体的质量和初速度,观察碰撞后物体的变形情况和动能的转化。
实验结果表明,在弹性碰撞中,动能完全转化并且物体无塑性变形。
6. 高度定律实验高度定律实验是通过观察自由落体运动中物体高度和时间的关系,验证高度定律。
实验装置由计时器和下落物体组成。
通过测量物体自由落体的时间和不同高度,观察物体高度和时间的关系。
牛顿运动定律的综合应用知识要点梳理一、瞬时加速度的分析牛顿第二定律F合=ma左边是物体受到的合外力,右边反映了质量为m的物体在此合外力作用下的效果是产生加速度a。
合外力和加速度之间的关系是瞬时关系,a为某一时刻的加速度,F合即为该时刻物体所受的合外力,对同一物体的a与F合关系为“同时变”。
分析物体在某一时刻的瞬时加速度,关键是分析那一时刻前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种基本模型的建立:(1)钢性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其弹力立即消失,不需要恢复弹性形变的时间。
一般题目中所给细线和接触面在不加特殊说明时,均可按此模型处理。
(2) 弹簧(或橡皮绳):此种物体的特点是形变量大,恢复弹性形变需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变。
二、力、加速度、速度的关系牛顿第二定律说明了力与运动的关系:力是改变物体运动状态的原因,即力→加速度→速度变化(物体的运动状态发生变化)。
合外力和加速度之间的关系是瞬时关系,但速度和加速度不是瞬时关系。
①物体所受合外力的方向决定了其加速度的方向,合力与加速度的大小关系是F合=ma。
只要有合力,不管速度是大、还是小、或是零,都有加速度;只有合力为零,加速度才能为零,一般情况下,合力与速度无必然的联系,只有速度变化才与合力有必然的联系。
②合力与物体运动速度同方向时,物体做加速运动;反之物体做减速运动。
③物体所受到合外力的大小决定了物体当时加速度的大小,而物体加速度的大小又是单位时间内速度的变化量的大小(速度的变化率)。
加速度大小与速度大小无必然的联系,与速度的变化大小也无必然的联系,加速度的大小只与速度的变化快慢有关。
④区别加速度的定义式与决定式定义式:,即加速度定义为速度变化量与所用时间的比值。
而揭示了加速度决定于物体所受的合外力与物体的质量。
三、整体法和隔离法分析连接体问题在研究力与运动的关系时,常会涉及相互关联物体间的相互作用问题,即连接体问题。
绳拉物问题【问题综述】 此类问题的关键是:1.准确判断谁是合运动,谁是分运动;实际运动是合运动2.根据运动效果寻找分运动;3.一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动; ②垂直于绳方向的旋转运动。
4.根据运动效果认真做好运动矢量图,是解题的关键。
5.对多个用绳连接的物体系统,要牢记在绳的方向上各点的速度大小相等。
6.此类问题还经常用到微元法求解。
1 汽车通过绳子拉小船,则( ) A 、汽车匀速则小船一定匀速 B 、汽车匀速则小船一定加速 C 、汽车减速则小船一定匀速 D 、小船匀速则汽车一定减速分析:(1)如图甲,被分解的速度应是实际的速度,即小船上系绳那一点的水平速度,而不应是沿绳子方向的分运动的运动,故甲图是错误的 (2)如乙图,v 2还有沿绳方向的速度分量,还需再将v 2分解,才能符合实际效果。
但此法麻烦复杂。
(2)如丙图,将船在水平方向的运动分解为两个分运动,一个分运动沿绳方向,根据运动的合成与分解的独立性原理,当这个分运动消失,表现为另一个分运动,可见是以滑轮为圆心的圆周运动,故另一个分运动方向与绳方向垂直。
由图可知v 1=vcos θ,v 1不变,当θ增大时,v 增大,故B 1减小,故D 正确;注意它的逆推断不一定,故C 错 2:如图,汽车拉着重物G ,则( AcD ) A 、汽车向左匀速,重物向上加速B 、汽车向左匀速,重物所受绳拉力小于重物重力C 、汽车向左匀速,重物所受绳拉力大于于重物重力D 、汽车向右匀速,重物向下减速3:如左图,若已知物体A 的速度大小为v A ,求重物B 的速度大小v B ?v A /cos θ4:如右图,若α角大于β角,则汽车A 的速度 大于 汽车B 的速度5 如图所示,A 、B 两物体用细绳相连,在水平面上运动,当α=45度,β=30度时,物体A 的速度为2 m/s ,这时B 的速度为 。
6.质量分别为m 和M 的两个物体跨过定滑轮如图所示,在M 沿光滑水平面运动的过程中,两物体速度的大小关系为( A ) A .V 1﹤V 2B .V 1﹥V 2C .V 1=V 2v B v Aθ AB G α A B β α A Bβ7.如图所示,汽车以v0=5.0m/s的速度在水平路面上开动,通过绳子牵引重物P。
若汽车从A点开到B点,AB=20m。
求:(1)此过程中重物P的平均加速度;(2)若H=4m,物体P的平均速度。
(1)A点沿绳子的速度:V0*cos60=2.5 m/sB点沿绳子的速度:V0*cos30=2.5√3 m/s所用时间从汽车上算汽车是匀直运动t=20/5=4sa=(2.5√3-2.5 )/4 m/s^2 我不化成小数了(2)H=4m绳子走的距离:长绳子减短绳子S=8-(8/3)*√3平均速度:T=S/t=〈8-(8/3)*√3〉/4 结果我不化了解开绳拉物体问题的“死结”物体与轻绳连接这一种模型是高中物理中的一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。
下面主要就这类问题的主要情形及同学们易出错的地方加以分析剖析。
一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。
①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
【例1】如右图所示,A 、B 两物体通过一条跨过定滑轮的绳子相连接。
A 沿斜面下滑,B 沿水平面滑动。
由于A 、B 的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。
因而A 、B 两物体的速度大小相等。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和分解的知识解答。
【例2】如右图所示,人用绳子通过定滑轮拉物体A ,当人以速度0v 匀速前进时,求物体A 的速度。
首先要分析物体A 的运动与人拉绳的运动之间有什么关系。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于0v ;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长。
这样就可以求得物体A 的速度0cos A v v θ=。
当物体A 向左移动,θ将逐渐变大,A v 逐渐变大。
虽然人做匀速运动,但物体A 却在做变速运动。
【例3】光滑水平面上有A 、B 两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为A m 和B m 。
当水平力F 拉着A 且绳子与水平方向的夹角为45A θ=,30B θ=时,A 、B 两物体的速度之比是多少?【解析】在本题中,由于A 、B 的速度方向均不沿绳子方向,所以两物体的速度均不等于绳子伸长或缩短的速度。
设沿绳子方向的分速度大小为v ,则由速度的合成与分解可得:cos cos 45A A v v v θ==,cos cos30B B v vv θ==可得:32A B v v =∶∶二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。
那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。
【例4】如右图所示,有一质量为m 的小球P 与穿过光滑水平板中央小孔O 的轻绳相连,用力拉着绳子另一端使P 在水平板内绕O 做半径为a 、角速度为1ω的匀速圆周运动。
求:(1)此时P 的速率多大?(2)若将绳子从这个状态迅速放松后又拉直,使P 绕O 做半径为b 的匀速圆周运动,从放松到拉直这段过程经过了多长时间?(3)P 做半径为b 的圆周运动的角速度2ω?【解析】(1)根据线速度与角速度的关系可知:11v a ω=(2)如右图,绳子放松后,小球保持1v 的速度沿切线做匀速直线运动,从放开到拉紧这段位移为x 。
22x b a =-又因为1x v t =则可得:11x t v ==。
(3)在拉直过程中,P 的速度1v 可分解为沿绳子方向和垂直于绳子方向的两个分速度。
当绳子突然拉直时,由于绳子弹力的作用,使沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度2v 保持不变,所以小球P 将以速度2v 做半径为b 的匀速圆周运动。
所以有:21cos v v α=,其中22v b ω=,cos a bα=。
则可解得:2212a bωω=【点评】本题的第(3)问是同学经常出错的地方,错误的原因就在于,没有注意到小球的速度在绳子拉直的瞬间会发生突变,而错误地认为小球的速率仍然为1v 。
一、滑块问题1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸远小于L。
小滑块与木板之间的动摩擦因数为μ==04102.(/)g m s(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M上,最终使得m能从M上面滑落下来。
问:m在M上面滑动的时间是多大?解析:(1)小滑块与木板间的滑动摩擦力f N mg ==μμ小滑块在滑动摩擦力f作用下向右匀加速运动的加速度a f m g m s 124===//μ木板在拉力F和滑动摩擦力f作用下向右匀加速运动的加速度a F f M 2=-()/使m能从M上面滑落下来的条件是a a 21>即NgmMFmfMfF20)(//)(=+>>-μ解得(2)设m在M上滑动的时间为t,当恒力F=22.8N,木板的加速度a F f M m s 2247=-=()/./)小滑块在时间t内运动位移S a t1122 =/木板在时间t 内运动位移S a t 2222=/ 因S S L 21-= 即s t t t 24.12/42/7.422==-解得 2.长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:(取g =10m/s 2)(1)木块与冰面的动摩擦因数.(2)小物块相对于长木板滑行的距离.(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大?解析:(1)A 、B 一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度222 1.0m/s 2v a g sμ=== 解得木板与冰面的动摩擦因数μ2=0.10(2)小物块A 在长木板上受木板对它的滑动摩擦力,做匀减速运动,加速度 a 1=μ1g =2.5m/s 2小物块A 在木板上滑动,木块B 受小物块A 的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有μ1mg -μ2(2m )g =ma 2 解得加速度a 2=0.50m/s 2 设小物块滑上木板时的初速度为v 10,经时间t 后A 、B 的速度相同为v 由长木板的运动得v =a 2t ,解得滑行时间20.8s vt a == 小物块滑上木板的初速度 v 10=v +a 1t=2.4m/sv小物块A 在长木板B 上滑动的距离为22120112110.96m 22s s s v t a t a t ∆=-=--=(3)小物块A 滑上长木板的初速度越大,它在长木板B 上相对木板滑动的距离越大,当滑动距离等于木板长时,物块A 达到木板B 的最右端,两者的速度相等(设为v ′),这种情况下A 的初速度为保证不从木板上滑落的最大初速度,设为v 0. 有220121122v t a t a t L --=012v v a t v a t ''-==由以上三式解得,为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度不大于最大初速度0 3.0m/s v =动力学中的传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失 ②滑动摩擦力突变为静摩擦力 ③滑动摩擦力改变方向 二、传送带模型的一般解法 ①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响; ③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
难点疑点:传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。