医学影像学总论(一)好
- 格式:ppt
- 大小:8.76 MB
- 文档页数:60
影像学名词解释(一)影像诊断学总论1.数字化X线成像:包括CR和DR,成像过程中,均需将透过人体的X线信息进行像素化和数字化,再经计算机系统进行各种处理,最后转换为模拟X线图像。
2.自然对比:X线检查时,基于人体组织结构固有的密度和厚度差异所形成的灰度对比,称之为自然对比。
3.人工对比:对于缺乏自然对比的组织或器官,可以人为引入密度高于或低于该组织或器官的物质,使之产生灰度对比,称之为人工对比。
4.X线造影检查:通过人工对比方法进行的X线检查即为X线造影检查。
5.CT:X线计算机体层成像,是由英国工程师Hounsfield设计并于1971年应用于临床的一种现代医学成像技术。
CT的应用,明显提高了病变的检出率和诊断的准确率,显著扩大了医学影像诊断的应用领域,从而极大地促进了医学影像诊断学的发展。
6.体素:CT成像中,需将扫描层面分为若干体积相同的立方体或长方体,称之为体素。
7.像素:CT成像中,需将扫描层面的数字矩阵,依其数值的高低赋予不同的灰阶,进而转换为黑白不同灰度的方形单元,称之为像素。
8.CT平扫:指不用对比剂(不包括应用胃肠道对比剂)的扫描,常规先行平扫。
9.CT:对比增强检查:经静脉注入水溶性有机碘对比剂后再行扫描的方法,常简称为CT增强检查。
10.CT动态增强扫描:指注射对比剂后对某一选定层面或区域、在一定时间范围内进行连续多期扫描(常用三期扫描,即动脉期、静脉期和实质期),主要用于了解组织、器官或病变的血液供应状况。
11.CT灌注成像:指在静脉注射对比剂的同时对选定的层面进行连续多次动态扫描,以获得该层面内每--体素的时间-密度曲线,然后根据曲线利用不同的数学模型计算出组织血流灌注的各项参数,并通过色阶赋值形成灌注图像,以此来评价组织器官的灌注状态。
12.CT造影:指对某一器官或结构进行造影再行扫描的方法,它能更好地显示结构和发现病变。
13.CT血管造影:采用静脉团注的方式注人含碘对比剂,当对比剂流经靶区血管时,利用多层螺旋CT进行快速连续扫描,再行多平面及三维CT重组获得血管成像的一种方法。
医学影像学总论影像诊断学:X线、CT、DSA、MRI、介入放射学:DSA、超声、CT、MR第一章医学影像学总论一.(概述、优缺点、适用范围)一. X线成像X线成像1.X线产生原理:必须具备以下三个条件①自由活动的电子群②电子群在高压电场和真空条件下高速进行③电子群在高速运行时突然受阻通过人体后的衰减的X线作用于胶片或采集板上使胶片上的化学物质(溴化银)产生化学反应而形成图像2.X线特点①X线是波长极短的电磁波,诊断用X线波长为0.008~0.031nm,比可见光短得多,肉眼不可见②主要特征:(1)穿透作用,能穿透一般可见光不能穿透的物质波长越短,穿透力越强。
X线管电压越高,产生的X线波长越短(2)荧光作用,能激发荧光物质(如铂氰化钡、钨酸钙等)产生肉眼可见的荧光,X线透视的基础(3)感光作用,可使涂有卤化银的胶片感光,X线摄影的基础物质的密度高,比重大,吸收的X线量多,在图像上呈白影。
反之,物质的密度低,比重小,吸收的X线量少,在图像上呈黑影电离作用,可使物质的分子分解为正、负离子。
空气的电离程度(正负离子量)与空气吸收的X线量成正比,放射剂量学的基础生物效应,可使机体和细胞结构受到损害甚至坏死,损害程度与吸收X线量的大小有关,放射治疗学的基础和放射防护必要性的依2.优缺点分类:X线检查方法包括:普通X线检查(荧光透视和摄影)、特殊检查(体层摄影、软线摄影等)、造影检查。
1 透视:①透视的主要优点是可转动患者体位,改变方向进行观察;了解器官的动态变化。
②透视的主要缺点是荧屏亮度较低,影像对比度及清晰度较差,难于观察密度与厚度差别较小的器官以及密度与厚度较大的部位。
2 摄影:①摄影的主要优点是成像清晰,对比度及清晰度均较好;对于较厚部位以及厚度和密度较小的病变比透视容易显示;照片可作永久记录,长期保存,便于复查时对照和会诊。
②摄影的主要缺点是每张照片仅是一个方位和一瞬间的X线影像,为建立立体概念,常需作互相垂直的两个方位摄影;费用比透视稍高,但相较其它影像学检查如CT、MRI则相对低廉。
医学影像学总论随着医学科技的发展,医学影像学在临床诊断中扮演着不可或缺的角色。
本文将对医学影像学进行总论性的介绍,包括其定义、分类、应用、发展趋势等方面。
一、定义医学影像学是利用一系列影像设备和技术,通过对病人进行影像采集、处理和解释,来完成临床诊断和治疗的学科。
它通过获取人体内部结构、功能和代谢的图像信息,帮助医生进行疾病诊断和治疗监测。
二、分类医学影像学可以根据不同的原理和技术进行分类。
常见的分类包括放射学影像学、超声影像学、核医学、磁共振成像(MRI)、计算机断层扫描(CT)等。
1. 放射学影像学:利用X射线、CT等放射线技术进行影像采集,常用于检测骨骼、胸部、腹部等部位的疾病和异常情况。
2. 超声影像学:通过超声波技术,对人体内部器官、血管等进行成像,常用于妇产科、心脏病等领域的诊断。
3. 核医学:利用放射性同位素进行影像采集,可观察到人体内部的生物学过程和代谢情况,广泛应用于心脏病、肿瘤等疾病的诊断。
4. 磁共振成像(MRI):利用磁场和无线电波对人体进行成像,能够提供高质量的解剖和功能信息,对大部分体腔和软组织病变具有较高的敏感性。
5. 计算机断层扫描(CT):通过旋转扫描获取大量断层图像,再通过计算机重建技术提取有关信息,用于检测各种病理改变。
三、应用医学影像学在临床诊断中起着至关重要的作用。
它可以帮助医生确定疾病的性质、范围和进展情况,为治疗和手术提供重要的依据。
1. 诊断:医学影像学可以显示出人体结构的异常和病变,帮助医生确定疾病的类型、大小、位置等信息,对疾病的早期发现和诊断起着重要的作用。
2. 治疗规划:医学影像学可以提供有关病变的详细信息,帮助医生制定合理的治疗方案。
例如,在肿瘤治疗中,医学影像学可以帮助医生确定肿瘤的位置、大小和扩散情况,从而指导手术、放疗和化疗等治疗方式的选择。
3. 治疗监测:医学影像学可以监测治疗过程中的疗效和进展情况。
通过对比治疗前后的影像,可以评估治疗的效果,并做出调整和决策。
医学影像学总论第一篇:医学影像学总论医学影像学放射学发展史X线的发现(1895,Roentgen-Nobel奖)医学影像学X线放射诊断USGγ闪烁照像CTMRIPET分子影像学介入放射学 C T密度分辨率的提高—放射学的飞跃(1969)Hounsfield 1979年获Nobel奖同期出现了超声成像(Ultrasonagraphy)开创了无创伤无辐射的影像学检查 MRI发明软组织分辨率进一步提高多方位成像能力无电离辐射发明人Block,Purcell获得Nobel奖介入放射学放射诊断学不仅仅局限于诊断而且将诊断与治疗结合主要内容:影像引导下穿刺活检、囊肿血肿脓肿排空、经血管栓塞化疗、管道成形术及SRS 将成为独立于内、外科之外的第三大治疗学科其他PET、fMRI的出现使影像学实现从形态学诊断向功能性诊断的过渡(80~90`s)图像存储传输系统(PACS)和远程放射学(Telaradiology)二十一世纪的医学影像学形态诊断形态+功能性诊断2D3D 真实真实+虚拟诊断诊断+治疗X线X线成像的产生X线的定义:电磁波( =0.0006~ 50nm)X线产生的条件:1.自由活动的电子群;2.电子群的高速运动;3.运动的电子群突然受阻。
X线产生所需的主要部件 1.X-线球管;2.变压器; 3.操作台。
决定X线质量的要素 X线的特性穿透性——摄影透视基础荧光效应——透视基础感光效应——摄影基础电离效应——可以使任何物质发生电离生物效应——X线可以使机体和细胞结构发生生理及生物学改变,放疗、放射防护基础 X线成像的三个必备条件借助于X线的特性(穿透性、荧光效应、感光效应)基于人体组织密度和厚度的差异显像过程天然对比(Natural contrast)概念:依靠人体组织器官密度厚度差异在荧屏或照片上形成的明暗黑白差别正常代表性组织:1.骨骼—高密度2.软组织及液体—中等密度3.脂肪组织—稍低密度 4.气体—低密度异常代表性组织:1.肺内渗出性病变2.骨质增生或骨质破坏3.泌尿系或胆系含钙结石 4.产气病变人工对比及对比剂(Artificial contrast,Contrast media)概念—体内许多部位(腹部、颅脑)内均由密度厚度相近的软组织或液体组成,缺乏天然对比,需借助于某些对人体无害的物质人为的形成对比,所用物质称为对比剂对比剂分类:1.阳性造影剂(Baso4、水溶性含碘对比剂)2.阴性造影剂(气体)水溶性含碘对比剂离子型—泛影葡胺(urografin)非离子型单体,代表药有碘海醇(Iohexel)双聚体,碘曲伦(Iotrolan)对比剂的引入途径直接引入(Direct)—口服、灌注或穿刺注射间接引入(Indirect)—吸收、排泄 X线检查方法及其价值普通检查:1.Fluoroscopy—优点、缺点2.Radiography—优点、缺点特殊检查:1.体层摄影术2.高千伏摄影:120KV3.软线摄影:40KV4.放大摄影造影检查:1.Bronchography2.GI3.Urography4.Angiography etc.X线诊断原则和诊断步骤诊断原则1.根据解剖、生理基础认识正常2.根据病理知识判断异常3.以影像为基础结合临床综合分析并诊断诊断步骤1.照片条件、体位合适与否2.培养良好的看片顺序3.分析病变(部位、分布、形状、密度、边缘、周围组织改变、器官功能改变及动态变化4.结合临床 X线诊断结果肯定诊断否定诊断可能性诊断 X线检查中的防护X线穿过人体将出生一定的生物学效应,超过容许范围可能出现放射损伤,应注意防护。