变电站避雷器原理及参数
- 格式:doc
- 大小:82.50 KB
- 文档页数:7
避雷器的工作原理避雷器是一种用于保护电力设备和建筑物免受雷击的重要设备。
在雷电天气中,避雷器能够有效地将雷电能量导向地下,从而降低雷电引起的损害。
这篇文档将介绍避雷器的工作原理,包括避雷器的构造和工作过程。
一、避雷器的构造避雷器通常由金属氧化物元件和母线构成。
金属氧化物元件是避雷器的核心部分,它是一种非线性电阻器件,在正常情况下,其电阻很高,几乎不传导电流。
但当雷电引起电压梯度超过避雷器设定值时,金属氧化物元件就会变为导电状态,将雷电能量引入地下。
二、避雷器的工作过程1. 初始状态:在正常工作状态下,避雷器的金属氧化物元件处于高电阻状态。
当没有雷电发生时,避雷器中几乎没有电流通过。
2. 雷电击中:当雷电击中避雷器所保护的设备或建筑物时,雷电引起的电压梯度会使得金属氧化物元件的电阻急剧下降。
这时,避雷器就起到了导流的作用。
3. 引导电流:当避雷器工作时,金属氧化物元件通常能够对雷电产生电流的高达数千安培的能力。
这些电流从避雷器的母线中传导至地下,从而减少了雷电产生的电压和能量。
4. 恢复状态:在避雷器将雷电能量引导至地下后,金属氧化物元件的电阻会逐渐恢复到高电阻状态。
这样,避雷器便能够再次为设备和建筑物提供保护。
三、避雷器的分类根据不同的应用场景和工作原理,避雷器可以分为气体避雷器、硅酮避雷器和金属氧化物避雷器等几种类型。
1. 气体避雷器:气体避雷器通过将过电压放电时产生的电弧引导至气体中,来实现对雷电的保护。
它通常用于高压输电线路和变电站等场合。
2. 硅酮避雷器:硅酮避雷器利用硅酮元件的导电性能,将雷电能量引导至地下。
它适用于低压电力设备和电子设备的保护。
3. 金属氧化物避雷器:金属氧化物避雷器是目前应用最广泛的避雷器,它具有高能耗、高导电能力等特点。
金属氧化物避雷器常用于各类电力系统、电气设备和建筑物的保护。
四、避雷器的应用避雷器作为一种重要的电力设备,广泛应用于各种场合。
主要应用领域包括电力系统的输电线路和变电站、建筑物的屋顶、工厂和农田等。
避雷器的工作原理避雷器是一种用于保护电力设备和建造物免受雷击伤害的重要设备。
它能够迅速将雷电引入地下,保护设备和建造物的安全。
下面将详细介绍避雷器的工作原理。
一、避雷器的基本结构避雷器通常由避雷器本体、绝缘支撑、接地装置和接线装置等组成。
1. 避雷器本体:避雷器本体是避雷器的核心部份,主要由金属氧化物压敏电阻器和外壳组成。
金属氧化物压敏电阻器是避雷器的主要工作元件,它能够在电压超过一定阈值时迅速变成高阻抗状态,从而将雷电引入地下。
2. 绝缘支撑:绝缘支撑用于支撑避雷器本体,并确保其与其他部件之间的绝缘。
3. 接地装置:接地装置用于将避雷器与地面有效连接,以便将雷电引入地下。
4. 接线装置:接线装置用于将避雷器与电力设备或者建造物的电路连接起来。
二、避雷器的工作原理基于金属氧化物压敏电阻器的特性。
当电力系统或者建造物受到雷电冲击时,电压会瞬间升高。
当电压超过避雷器的耐受电压时,金属氧化物压敏电阻器会迅速变成高阻抗状态,形成一个低阻抗通路,将雷电引入地下。
具体来说,金属氧化物压敏电阻器是由氧化锌等金属氧化物制成的。
在正常工作状态下,金属氧化物压敏电阻器的电阻非常高,几乎不导电。
但当电压超过其耐受电压时,金属氧化物中的晶粒之间会形成导电通道,电阻迅速减小,从而将雷电引入地下。
避雷器的接地装置起到了至关重要的作用。
接地装置通过将避雷器与地面有效连接,形成一个低阻抗通路,使雷电能够迅速通过避雷器引入地下。
这样就能够保护电力设备和建造物免受雷击伤害。
三、避雷器的应用领域避雷器广泛应用于各种电力系统和建造物中,以保护设备和人员的安全。
1. 电力系统:避雷器常用于变电站、输电路线、配电装置等电力系统中,用于保护设备免受雷击伤害。
特殊是在雷暴天气中,避雷器能够迅速将雷电引入地下,保护电力系统的正常运行。
2. 建造物:避雷器也常用于高层建造、通信塔、石油化工设施等建造物中,用于保护建造物和设备免受雷击伤害。
避雷器能够吸收和引导雷电,保护建造物的结构和设备的安全。
防雷器工作原理防雷器,也称为避雷器,是一种用于保护建筑物、设备和人身安全的重要装置。
它的主要功能是通过引导和分散雷电的电流,将其安全地传导到地面,以防止雷电对建筑物和设备的损坏。
1. 工作原理防雷器的工作原理基于电场和电荷的相互作用。
当雷电接近建筑物或设备时,电场会发生变化,导致电荷的分布发生改变。
防雷器利用这种电场变化来引导雷电电流,从而保护建筑物和设备。
2. 防雷器的组成防雷器通常由以下几个主要部分组成:- 金属导体:用于引导和传导雷电电流。
- 避雷器芯:通常由金属氧化物(如锌氧化物)制成,具有高电导率和耐高温性能。
- 绝缘材料:用于隔离防雷器与其他部件和结构。
- 接地系统:用于将雷电电流安全地引导到地面。
3. 工作过程当雷电接近建筑物或设备时,防雷器会感应到电场的变化。
在防雷器芯的作用下,电荷会被吸引到防雷器的金属导体上。
防雷器芯的高电导率使得电荷能够快速传导到地面,避免了电荷在建筑物或设备中积聚和产生损坏。
4. 防雷器的分类根据不同的工作原理和应用场景,防雷器可以分为以下几类:- 放电管式防雷器:利用气体放电原理,将雷电电流引导到地面。
- 金属氧化物压敏电阻器式防雷器:利用金属氧化物的非线性电阻特性,将雷电电流引导到地面。
- 链式防雷器:由多个防雷器组成串联电路,用于增加防雷能力。
- 雷电感应式防雷器:利用电磁感应原理,通过感应线圈和电容器来引导雷电电流。
- 避雷针:利用尖峰放电原理,将雷电电流引导到地面。
5. 防雷器的应用防雷器广泛应用于各种建筑物和设备,包括但不限于:- 高层建筑:用于保护建筑物的屋顶和外墙不受雷击。
- 电力系统:用于保护变电站、输电线路和配电设备不受雷击。
- 通信系统:用于保护通信基站、天线和通信设备不受雷击。
- 工业设备:用于保护工厂、机器设备和生产线不受雷击。
总结:防雷器是一种重要的装置,它通过引导和分散雷电电流,将其安全地传导到地面,保护建筑物、设备和人身安全。
变电站避雷器原理及参数一、氧化锌避雷器的定义:金属氧化锌避雷器(MOA)是一种过电压保护装置,它由封装在瓷套的若干非线性电阻阀片串联组成。
其阀片以氧化锌为主要原料,并配以其它金属氧化物,所以又称为氧化锌(Zno)避雷器。
二、氧化锌避雷器的工作原理:在额定电压下,流过氧化锌避雷器阀片的电流仅为10-5A以下,相当于绝缘体。
因此,它可以不用火花间隙来隔离工作电压与阀片。
当作用在金属氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。
此后,当作用电压降到动作电压以下时,阀片自动终止“导通”状态,恢复绝缘状态,因此,整个过程不存在电弧燃烧与熄灭的问题。
三、结构:一般220kV等级的氧化锌避雷器采用2串、110kV采用1串。
氧化锌避雷器底部与底座绝缘*的是绝缘瓷套(有采用一个大瓷套或采用四各小瓷套)。
氧化锌避雷器部有一导线从底部引出至,当中串联一只泄漏电流表,以监视避雷器阀片绝缘情况。
避雷器屏蔽线接于避雷器瓷套的最后一级裙边上,用一导线连接,作用是使瓷套表面电导电流不进入泄漏电流表,使泄漏电流表测量更加精确。
四、最常见异常分析及处理:1、泄漏电流表为零。
可能引起该现象的原因有:表计指示失灵;屏蔽线将电流表短接。
处理方法为:(1)用手轻拍表计看是否卡死,无法恢复时,应添报缺单,修理或更换。
(2)用令克棒将屏蔽线与避雷器导电部分相碰之处挑开,既可恢复正常。
2、泄漏电流表指示偏大:根据历史数据进行分析,如发现表计打足,应判断避雷器有问题,应立即汇报调度,将避雷器退出运行,请检修检查。
3、避雷器瓷套管破裂放电。
在工频情况下,避雷器的瓷套管用于保证避雷器必要的绝缘水平,如果瓷套管发生破裂放电,则将成为电力系统的事故隐患。
此种情况,应及时停用、更换。
4、避雷器部有放电声。
在工频情况下,避雷器部是没有电流通过的。
因此,不应有任何声音。
若运行中避雷器有异常声音,则认为避雷器损坏失去作用,而且可能会引发单相接地。
变电站避雷器原理及参数一、氧化锌避雷器的定义:金属氧化锌避雷器(MOA)是一种过电压保护装置,它由封装在瓷套内的若干非线性电阻阀片串联组成。
其阀片以氧化锌为主要原料,并配以其它金属氧化物,所以又称为氧化锌(Zno)避雷器。
二、氧化锌避雷器的工作原理:在额定电压下,流过氧化锌避雷器阀片的电流仅为10-5A以下,相当于绝缘体。
因此,它可以不用火花间隙来隔离工作电压与阀片。
当作用在金属氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。
此后,当作用电压降到动作电压以下时,阀片自动终止“导通”状态,恢复绝缘状态,因此,整个过程不存在电弧燃烧与熄灭的问题。
三、结构:一般220kV等级的氧化锌避雷器采用2串、110kV采用1串。
氧化锌避雷器底部与底座绝缘*的是绝缘瓷套(有采用一个大瓷套或采用四各小瓷套)。
氧化锌避雷器内部有一导线从底部引出至大地,当中串联一只泄漏电流表,以监视避雷器阀片绝缘情况。
避雷器屏蔽线接于避雷器瓷套的最后一级裙边上,用一导线连接大地,作用是使瓷套表面电导电流不进入泄漏电流表,使泄漏电流表测量更加精确。
四、最常见异常分析及处理:1、泄漏电流表为零。
可能引起该现象的原因有:表计指示失灵;屏蔽线将电流表短接。
处理方法为:(1)用手轻拍表计看是否卡死,无法恢复时,应添报缺单,修理或更换。
(2)用令克棒将屏蔽线与避雷器导电部分相碰之处挑开,既可恢复正常。
2、泄漏电流表指示偏大:根据历史数据进行分析,如发现表计打足,应判断避雷器有问题,应立即汇报调度,将避雷器退出运行,请检修检查。
3、避雷器瓷套管破裂放电。
在工频情况下,避雷器的瓷套管用于保证避雷器必要的绝缘水平,如果瓷套管发生破裂放电,则将成为电力系统的事故隐患。
此种情况,应及时停用、更换。
4、避雷器内部有放电声。
在工频情况下,避雷器内部是没有电流通过的。
因此,不应有任何声音。
避雷器的工作原理及作用引言概述:避雷器作为一种重要的电气设备,广泛应用于各种电力系统和电子设备中,用于保护设备免受雷击和过电压的损害。
本文将详细介绍避雷器的工作原理及其在电力系统中的作用。
一、避雷器的工作原理1.1 电气原理避雷器是一种通过将过电压引导到地面的装置,其内部结构由金属氧化物压敏电阻器(MOA)和放电电极组成。
当系统中出现过电压时,MOA会变成高阻抗状态,将过电压引导到地面,起到保护设备的作用。
1.2 电磁原理避雷器的工作原理还与电磁感应有关。
当雷电产生过电压时,避雷器内部的金属氧化物压敏电阻器会感应到电磁场的变化,从而导致电阻器的电阻值迅速下降,使过电压通过避雷器放电到地面。
1.3 热效应原理避雷器在工作过程中会产生一定的热量,这是因为MOA在放电过程中会有能量损耗。
避雷器内部的金属氧化物会发生瞬间的电热效应,将过电压的能量转化为热能,并通过散热装置将热量散发出去,保证避雷器的正常工作。
二、避雷器的作用2.1 过电压保护避雷器的主要作用是保护电力系统和电子设备免受过电压的损害。
当系统中出现雷击或其他原因导致的过电压时,避雷器能够迅速将过电压引导到地面,保护设备的安全运行。
2.2 延长设备寿命过电压是电力系统中常见的问题,长期受到过电压的影响会导致设备的损坏和寿命缩短。
避雷器的存在可以有效降低过电压对设备的影响,延长设备的使用寿命。
2.3 提高电力系统的可靠性电力系统中的过电压问题往往会导致设备故障和停电,给生产和生活带来不便。
避雷器的使用可以有效减少过电压带来的故障和停电现象,提高电力系统的可靠性和稳定性。
三、避雷器的分类3.1 传统避雷器传统避雷器主要是指采用金属氧化物压敏电阻器作为主要元件的避雷器。
它具有结构简单、可靠性高的特点,广泛应用于各种电力系统。
3.2 复合避雷器复合避雷器是指采用金属氧化物压敏电阻器和其他元件结合而成的避雷器。
它具有防雷能力强、耐受雷电冲击能力强的特点,适用于高压电网和雷电频繁的地区。
间隙避雷器工作原理间隙避雷器是一种用于防止高压电力系统中的雷电过电压损害的装置。
它的工作原理基于电压的间隙击穿特性和灭弧原理。
接下来我将详细介绍间隙避雷器的工作原理,并分享一些我对这个设备的观点和理解。
1. 什么是间隙避雷器?间隙避雷器是一种电力系统过电压保护装置,通常用于高压输电线路和变电站。
它由一个或多个串联的放电间隙组成,通常由金属氧化物(如锌氧化物)构成。
当系统中出现过电压时,间隙避雷器会工作并吸收大部分过电压能量,从而保护电力设备不受损坏。
2. 工作原理间隙避雷器的工作原理可以分为两个阶段:电压上升阶段和放电阶段。
- 电压上升阶段:当电力系统中发生雷电过电压时,系统电压会迅速上升,达到间隙避雷器的击穿电压。
此时,间隙避雷器的放电间隙发生电晕放电,产生大量的电离电子和短暂的电弧。
这些电弧会消耗一部分过电压能量,使电压得到限制。
- 放电阶段:一旦电压超过间隙避雷器的击穿电压,放电间隙内的电弧将变得稳定并形成电弧通道。
这个电弧通道具有很低的电阻,可以提供一个低阻抗路径,以便将剩余的过电压引导到地面。
电弧通道的形成将使系统电压保持在较低的水平,保护电力设备不受过电压损害。
3. 观点和理解间隙避雷器是电力系统中必不可少的过电压保护装置之一。
它的工作原理简单而高效,能够有效地限制和消耗过电压能量,保护电力设备的正常运行。
使用间隙避雷器可以显著降低电力系统遭受雷电击穿和其他过电压事件的风险。
它在抵御不同类型的过电压时表现出色,并且在受损后可以快速恢复正常工作。
除了在高压输电线路和变电站中使用外,间隙避雷器也可以应用于其他电力设备和系统中,例如发电厂和工业用电。
然而,间隙避雷器并不是万能的解决方案。
它只能对过电压提供保护,而不能解决其他电力系统问题。
在设计和安装电力系统时,还需要同时考虑其他的过电压保护措施,如继电器和保险丝等。
间隙避雷器是非常重要的电力系统保护装置,它通过利用电压的间隙击穿特性和放电原理,有效地限制和消耗过电压能量,保护电力设备不受过电压损害。
特高压变电站的防雷保护特高压变电站是负责输电的重要设施,其稳定运行与安全操作至关重要。
雷电是特高压变电站运行中必须防范的自然现象之一,如果不采取有效的防雷保护措施,将会给变电站造成严重的损失。
因此,特高压变电站的防雷保护措施十分重要。
一、防雷保护的基本原理防雷保护的基本原理是采取一定的防护措施,使雷电电流在安全的通道上流动,保护特高压变电设施和相关设备,避免雷电直接击中变电站从而造成设备的损坏和人员的伤亡。
1. 建造避雷针:特高压变电站上方需要建造一定高度的避雷针,使其成为电气系统的最高点,引导雷电电流沿路排放,形成安全的通道。
2. 接地网:在特高压变电站周围铺设接地网,将雷电过电压与大地直接接触,保护变电站不受到雷电的损害。
3. 屏蔽和接地:在特高压设备周围设置防雷屏蔽,有效防止雷电直接击中电气设备。
4. 安装避雷器:在特高压变电站安装避雷器能有效保护电器设备,避免雷电过压对设备造成损害。
5. 特别地面处理:特高压变电站周围的地面需要进行特别的处理,以防止地面反射雷电。
特高压变电站的防雷保护方案的制定是十分关键的,下面介绍几个方案应该获得重点关注。
对于架空线路电缆的防雷保护,主要是通过在高杆上建造避雷针进行防护和按规定距离安装避雷器来达到防雷的目的。
2. 金属屏蔽试验3. 天线防护策略天线是特高压变电站所必须安装的重要设备,防护其又尤为重要。
天线防护策略主要采用金属线圈的方式来实现,这可以有效地抵抗雷电对天线的破坏。
四、总结特高压变电站的防雷保护对于保障电力的稳定和安全至关重要。
在制定防雷保护方案时,需要充分考虑变电站周围的环境和设备,采取针对性的措施,确保有效的防护。
需要指出的是,特高压变电站防雷保护是一项复杂的工程,需要专业人员在工程设计和建设中进行全方位、细致的考虑和措施。
变电站避雷器原理及参数一、氧化锌避雷器的定义:金属氧化锌避雷器(MOA)是一种过电压保护装置,它由封装在瓷套内的若干非线性电阻阀片串联组成。
其阀片以氧化锌为主要原料,并配以其它金属氧化物,所以又称为氧化锌(Zno)避雷器。
二、氧化锌避雷器的工作原理:在额定电压下,流过氧化锌避雷器阀片的电流仅为10-5A以下,相当于绝缘体。
因此,它可以不用火花间隙来隔离工作电压与阀片。
当作用在金属氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。
此后,当作用电压降到动作电压以下时,阀片自动终止“导通”状态,恢复绝缘状态,因此,整个过程不存在电弧燃烧与熄灭的问题。
三、结构:一般220kV等级的氧化锌避雷器采用2串、110kV采用1串。
氧化锌避雷器底部与底座绝缘*的是绝缘瓷套(有采用一个大瓷套或采用四各小瓷套)。
氧化锌避雷器内部有一导线从底部引出至大地,当中串联一只泄漏电流表,以监视避雷器阀片绝缘情况。
避雷器屏蔽线接于避雷器瓷套的最后一级裙边上,用一导线连接大地,作用是使瓷套表面电导电流不进入泄漏电流表,使泄漏电流表测量更加精确。
四、最常见异常分析及处理:1、泄漏电流表为零。
可能引起该现象的原因有:表计指示失灵;屏蔽线将电流表短接。
处理方法为:(1)用手轻拍表计看是否卡死,无法恢复时,应添报缺单,修理或更换。
(2)用令克棒将屏蔽线与避雷器导电部分相碰之处挑开,既可恢复正常。
2、泄漏电流表指示偏大:根据历史数据进行分析,如发现表计打足,应判断避雷器有问题,应立即汇报调度,将避雷器退出运行,请检修检查。
3、避雷器瓷套管破裂放电。
在工频情况下,避雷器的瓷套管用于保证避雷器必要的绝缘水平,如果瓷套管发生破裂放电,则将成为电力系统的事故隐患。
此种情况,应及时停用、更换。
4、避雷器内部有放电声。
在工频情况下,避雷器内部是没有电流通过的。
因此,不应有任何声音。
若运行中避雷器内有异常声音,则认为避雷器损坏失去作用,而且可能会引发单相接地。
这种情况,应立即汇报调度,将避雷器退出运行,予以调换。
五、氧化锌避雷器现场泄漏电流的意义:在现场我们见到的氧化锌避雷器的泄漏电流是全电流I,其主要由阻性电流IR和容性电流IC及外绝缘泄漏电流I0组成,在正常交流电压下,其大小一般为:IR:几十微安;IC:几百微安;主要为容性电流,阻性电流约为10%-20%。
1、当氧化锌避雷器受潮时,IR 、IC 、I0均上升,导致全电流I上升,因此全电流法对避雷器的受潮故障相当灵敏。
同时测试也很简单,我们通常通过避雷器上装设的全电流在线检测装置(泄露电流)测试避雷器正常运行时泄漏全电流。
2、当氧化锌避雷器出现内部老化或击穿故障的前兆时,其阻性电流IR上升,容性电流IC及外绝缘泄漏电流I0均不变,由于IR通常比容性电流IC小一个数量级,因此现场装设的全电流在线检测装置数值并不会有显著的提高,因此我们一般通过测试直流1mA(U1mA)电压及U1mA下的阻性泄漏电流,对其进行评估,但缺点是要停电进行。
3、当氧化锌避雷器出现内部接触不良故障时,其其阻性电流IR下降,同样由于其占全电流的比率很小,现场泄漏电流数值反映不灵敏。
4、避雷器带电测试能检测避雷器全电流、能更准确反映MOA运行状况,全电流的变化可以反映MOA的严重受潮、内部元件接触不良、阀片严重老化,而阻性电流的变化对阀片初期老化的反应较灵敏。
六、氧化锌避雷器的型号及其意义1、具体说明Y—表示瓷套式金属氧化物避雷器YH (HY )—表示复合外套金属氧化物避雷器结构特征2、W后的其他字母:表示保护对象:Z:电站型(大多不标)F: 用于保护GIS设备和SF6设备R:用于保护电容器组S:用于配电系统X:用于保护线路T:电气化铁路3、使用特征W—表示防污型G—表示高原型TH—表示湿热带地区用举例:YH10W-100/248W 标示复合外套金属氧化锌避雷器,无间隙、防污型、电站型。
额定电压为100kV 、标称放电电流下残压248kV 标称放电电流10 kA4 、避雷器常用参数说明①避雷器额定电压(有效值)(kV)灭弧电压):施加到避雷器端子间最大允许工频电压有限值。
它不等于系统的标称电压。
110kV主变中性点避雷器额定电压一般为电力行业标准DL/T620-1997中规定110kv有效接地系统,中性点无间隙金属氧化物的额定电压是,其中Um是最高运行线电压,110kV对应的是126kV。
110kV系统额定电压一般为100kV(小部分为102、108 kV)35kV系统额定电压一般为51kV(极少部分为54 kV)10kV系统额定电压一般为17kV②避雷器持续运行电压:加于避雷器两端允许持续运行的工频电压有效值。
一般相当于避雷器额定电压75%-80%110kV系统,额定电压为100kV持续电压为78 kV110kV主变中性点系统,额定电压为72kV持续电压为58 kV,额定电压为73kV持续电压为59 kV额定电压为55kV Y1W-55/125持续电压为41 kV 125持续电压为44 kV(西瓷)35kV系统,额定电压为51kV持续电压为kV(金冠为41kV)10kV系统,额定电压为17kV 大都持续电压为kV(西瓷金冠为③工频参考电压避雷器在工频参考参考电流下测出的峰值除√2。
工频参考电压一般见试验报告,应≥避雷器的额定电压值。
④直流参考电压避雷器在直流参考电流下的电压,直流参考电流国内一般取1mA 。
直流1mA参考电压值一般不小于避雷器额定电压的峰值。
110kV系统,额定电压为100kV直流1mA参考电压值一般≥145 kV110kV主变中性点系统,对于额定电压为72kV,主变中性点避雷器直流1mA参考电压值一般≥103 kV额定电压为73kV,主变中性点避雷器直流1mA参考电压值一般≥105 kV额定电压为55kV,Y1W-55/125主变中性点避雷器直流1mA参考电压值一般≥78 kV 125直流1mA参考电压值一般≥85 kV(西瓷)35kV系统,额定电压为51kV直流1mA参考电压值一般≥73 kV10kV系统,YH5WS-17/50kV,直流1mA参考电压值一般≥25kVYH5W-17/45kV,直流1mA参考电压值一般≥24 kV,⑤、避雷器雷电冲击电流下残压雷电冲击残压≤标称放电电压(见避雷器铭牌)YH10W-100/248W 雷电冲击残压≤248 kV⑥操作冲击电流下残压110kV系统,YH10W-100/260 操作冲击电流下残压值一般≤221 kV,YH10W-100/248W 操作冲击电流下残压值一般≤211 kV110kV主变中性点系统,对于186kV,主变中性点避雷器操作冲击电流下残压值一般≤174 kV145 kV 主变中性点避雷器操作冲击电流下残压值一般≤136 kV125 kV 主变中性点避雷器操作冲击电流下残压值一般≤116 kVY1W-55/125 kV 主变中性点避雷器操作冲击电流下残压值一般≤119 kV35kV系统,对于YH5W-51/134kV,避雷器操作冲击电流下残压值一般≤114 kV10kV系统,对于YH5WS-17/50kV,避雷器操作冲击电流下残压值一般≤YH5W-17/45kV,避雷器操作冲击电流下残压值一般≤⑦陡波冲击电流下残压110kV系统,YH10W-100/260 陡波冲击电流下残压值一般≤291kV110kV系统,YH10W-100/245 陡波冲击电流下残压值一般≤285kV对于主变中性点、35 kV/110 kV 无陡波冲击电压⑧标称放电电流避雷器将袭入线路的雷电流限制在20KA或10KA甚至5KA以下,然后再让这些过滤下来的雷电流通过避雷器,这个电流就是避雷器的标称放电电流。
标称放电电流用来划分避雷器等级的波形为8/20 的雷电冲击电流峰值。
按照我国标准规定:避雷器的标称放电电流按不同的电压等级分别为20,10,5,,,1kA(现在很少使用)共6级对于系统标称电压为66~110 kV 系统标称放电电流一般选5kA,对雷电活动特别强烈地区,重要变电所、进线保护不完善或进线耐雷水平达不到规定时,标称放电电流可选10kA(现在一般选10kA)对变压器中性点一般选用kA(我司有几个变电站选用1W,须安排更换)⑨系统标称电压设备最高电压是指设备所能承受的电压(绝缘强度),系统标称电压指设备所在系统的电压等级吧设备最高电压要大于系统标称电压,一般为系统电压倍对于系统的标称电压为10 kV, 电气设备的最高电压为12 kV,系统的标称电压为66 kV, 电气设备的最高电压为kV,系统的标称电压为110 kV, 电气设备的最高电压为126Y10W-100/260 Y10W-100/260系统的标称电压为110 kVY5WZ-51/134 Y5WZ-52/134 系统的标称电压为35 kVY1W-55/125 Y1W-73/176 系统的标称电压为66kV( 现在有时标110 kV)Y5WR-17/45 YH5WS-17/50 系统的标称电压为10 kV⑩倍直流参考电压下泄电流值及方波通流容量倍直流参考电压下泄电流值不应大于50μA,不同厂家差别很大河南金冠YH10W-100/248 2ms方波通流容量1000A 西瓷600A,广州华盛600/800 145 2ms方波通流容量600A 西瓷400A5、避雷器其他参数①避雷器的放电电流避雷器动作时通过避雷器的冲击电流。
②避雷器的标称放电电流用来划分避雷器等级的、具有8/20μs波形的放电电流峰值。
③避雷器的操作冲击电流视在波前时间大于30μs而小于100μs、视在半峰值时间约为视在波前时间两倍的冲击电流。
避雷器操作冲击电流(30~100μs内)的最大残压,电压波形为250/2500μs时,避雷器操作冲击残压试验电流值见表3。
表3操作冲击残压试验电流值河南金冠YH10W-100/248 操作冲击电流500A 145 操作冲击电流500A广州华盛也是500A④避雷器的持续电流在持续运行电压下流过避雷器的电流。
对于110 kV系统≤300μA注:持续电流由阻性和容性分量组成,可随温度和杂散电容的影响而变化。
因此,试品的持续电流可不同于整只避雷器的持续电流。
持续电流可用有效值或峰值表示。
⑤避雷器的工频参考电流用于确定避雷器工频参考电压的工频电流阻性分量的峰值。
工频参考电流应足够大,使杂散电容对所测的避雷器和元件(包括设计的均压系统)的参考电压的影响可以忽略,该值由制造厂规定。
注:工频参考电流与避雷器的标称放电电流及(或)线路放电等级有关,对单柱避雷器,通常在1~20 mA范围内。
在工频电流波形因电压极性而不对称情况下,应以较大极性的电流来确定参考电流。