第五章向量代数一解几习题
- 格式:ppt
- 大小:828.57 KB
- 文档页数:43
第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。
3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。
12.13.提示:由1 未定式结果可得。
14.提示:分子有理化,再同除以n即可。
15.提示:分子、分母利用等价无穷小代换处理即可。
16.17.提示:先指数对数化,再利用洛必达法则。
18.19.解因()2000122(1cos )22cos 2lim lim lim lim lim 1x x x x x x x xx f x x xxx -----→→→→→⋅---=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。
20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。
三、 解答题 21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。
(3)(4)(5)提示:先指数对数化,再用洛必达法则。
(6)提示:请参照“例1.2.14(3)”求解。
22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。
24.提示:先指数对数化,再由导数定义可得。
25.26.28.提示:利用皮亚诺型余项泰勒公式求解。
第五章向量代数与空间解析几何5。
1。
1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。
因为=-,所以(a+b)。
图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。
(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。
从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。
2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。
解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。
5.2。
2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。
解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。
《咼等代数与解析几何》课程教学大纲一、课程基本信息1、课程名称:高等代数与解析几何(上、下)2、课程编号:03030001/23、课程类别:学科基础课4、总学时/学分:160/105、适用专业:信息与计算科学6、开课学期:第一、二学期二、课程与人才培养标准实现矩阵说明掌握自然科学基础知识和数学专业所需的技术基础及专业知识,掌握分析问题、解决问题的科学方法;通过所学专业基础知识,获取数学专业知识的能力,更新知识和应用知识的能力。
三、课程的地位性质与目的本课程是数学与应用数学专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
高等代数与解析几何最突出的特点就是代数与几何在知识与理论上的有机结合,在思想和方法上的融会贯通。
主要目的是掌握本门课程的基本理论和基本方法;同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生分析问题和解决问题的能力,培养学生创新能力,提高学生的数学素养。
四、学时分配表五、课程教学内容和基本要求总的目标:通过本课程的学习要求学生对高等代数与解析几何的基本概念、基本定理有比较全面、系统认识,能把几何的观点与代数的方法结合起来,“代数为几何提供研究方法,几何为代数提供直观背景”,逐步培养学生运用几何与代数相结合的方法分析问题、解决问题的能力,培养学生抽象的思维能力及空间想象能力。
本课程各章的教学内容和基本要求如下:第一章向量代数【教学内容】1、向量的线性运算2、向量的共线与共面3、用坐标表示向量4、线性相关性与线性方程组5、n维向量空间6、几何空间向量的内积7、几何空间向量的外积8、几何空间向量的混合积【基本要求】理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
【教学重点及难点】重点:向量的概念,向量的线性运算、内积、外积、混合积运算;用坐标进行向量的运算。
难点:向量间垂直、共线、共面的条件。
第二章行列式【教学内容】1、映射与变换2、置换的奇偶性3、矩阵4、行列式的定义理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克拉默法则。
<向量代数与空间解析几何>习题1. 求点),,(c b a 的关于(1)各坐标面;(2)各坐标轴的对称点的坐标.2. 设(3,,2)B(124)A x --与,,点间的距离为29,试求x .3. 在yoz 平面上,求与三个已知点(3,1,2)B(422)051A C --、,,和(,,)等距离的点.4. 求平行于向量}6,7,6{-的单位向量.5. 已知两点(1,3,3)B(421)A --与,,,求向量AB 的模与方向余弦.6. 已知||122||,10||βαβαβα⨯=⋅==,求,.7. 求与)1,0,1(M 110M )0,1,1(M 321)、,,(、三点所在平面垂直的单位向量.8. 求过点012-5z 7y -3x (3,0,-1)=+且与平面平行的平面方程.9. 一平面过点(2,-1,3)4,1,5),x 2y 3z 50+++=和(且垂直于平面,求此平面方程.10. 将平面的一般式方程012-3z y -2x =+化为截距式方程.11.指出下列各平面的特殊位置:(1)04-2y =(2)0z -2y 3x =+(3)4y -2x =(4)02z 3y =+12. 求平面0D Cz By Ax 1=+++与平面0D Cz By Ax 2=+++的距离.13. 一平面过z 轴且与平面07-z 5-y 2x =+成3π角,求此平面方程.14. 已知点,121-xA(5,1,4)zy L ==:及直线求: (1)求过A 且与L 平行的直线;(2)求过点A 且与L 及向量}1,4,3{--=AB 垂直的直线;(3)求过点A 且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩平行的直线.15.求直线123121-x -+=+=z y 与平面0z y 23x =++的交点.16.求直线3211-x zy ==在平面01-z y 4x =+-上的投影直线方程.17.求下列旋转曲面方程:(1)平面z x o 内抛物线x =2z 绕x 轴旋转;(2)平面y x o 内双曲线164x 22=-y 分别绕x 轴及y 轴旋转.18.判断11462x 222=-+-++z y x z y 是否表示球面方程,若是,求出球心坐标及球半径.19.指出下面方程所表示的曲面的名称,并作出草图:(1);1941x 222=++z y (2)04x 222=-+z y ;(3)22x 20y z -+=.20.指出下列方程所表示的曲线:(1)⎩⎨⎧==++325222x z y x (2)⎩⎨⎧==++13694222y z y x21.求曲线C :)0(,0,222222>⎩⎨⎧=-+=++a ax y x a z y x 在y x o 平面和z x o 平面上的投影曲线方程.<矩阵及其初等变换>习题1. 当。
高数书题目重点目录整理2015考研数学高等数学教材导学【注】1导学用书:同济大学《高等数学》(上、下册)(第6版)2 请各位学员认真研读课本内容及完成选择习题,打下一个牢固的基础。
无论是教材上的定理、例题,还是课后的习题,曾作为历年的考研真题出现过。
第1章函数、极限、连续1、映射与函数(一)复习内容P1-16(表示1至16页,下同),双曲函数开始之后的不复习。
(二)选做习题P21-22 第4-12题,第14-16题。
2、数列的极限(一)复习内容P23-30(二)选做习题P30-31 第1、5、6题。
3、函数的极限(一)复习内容P31-37(二)选做习题P37-39 第1-4题,第12题。
4、无穷小与无穷大(一)复习内容P39-41(二)选做习题P42 第4、5、6、7题。
5、极限运算法则(一)复习内容P43-49(二)选做习题P49 第1-5题。
6、极限存在准则两个重要极限(一)复习内容P50-55(除Cauchy极限存在准则)(二)选做习题P56-57 第1、2、4题。
7、无穷小的比较(一)复习内容P57-59(二)选做习题P59-60 第1-4题。
8、函数的连续性与间断点(一)复习内容P60-64(二)选做习题P64-65 第1-5题,第7-8题。
9、连续函数的运算与初等函数的连续性(一)复习内容P66-69(二)选做习题P69-70 习题1-9全做P74 总习题一第1-13题。
第2章函数、极限、连续1、导数概念(一)复习内容P77-86(二)选做习题P86-88 习题2-1全做。
2、函数的求导法则(一)复习内容P88-96(例17不学)(二)选做习题P97-99 第1、5题,第5-11题,第13、14题。
3、高阶导数(一)复习内容P99-102(二)选做习题P103 习题2-3除第5题全做。
4、隐函数及由参数方程所确定的函数的导数相关变化率(一)复习内容P104-111(二)选做习题P111-113 习题2-4除第9题全做。
82 第五章 向量代数与空间解析几何§5.1 向量代数(甲)内容要点内容要点一、空间直角坐标系一、空间直角坐标系 二、向量概念二、向量概念®a =®i x +®j y +®k z坐标()z y x ,,模®a =222z y x ++ 方向角g b a ,,方向余弦g b a cos ,cos ,cosa cos =222zy x x ++ ;b cos =222zy x y ++ ;g cos =222zy x z ++三、向量运算三、向量运算设®a ()11,1,z y x ;®b ()22,2,z y x ;®c ()33,3,z y x 1. 加(减)法加(减)法®a ±®b =()2121,21,z z y y x x ±±± 2. 数乘数乘 ()111,,z y x a l l l l =®3. 数量积(点乘)(ⅰ)定义®a ·®b =®a®b ÷øöçèæ®®Ðb a ,cos (ⅱ)坐标公式®a ·®b =21x x +21y y +21z z (ⅲ)重要应用®a ·®b =0Û®a ^®b4.向量积(叉乘)(ⅰ)定义®a ´®b =®®ba ÷øöçèæ®®Ðb a ,sin ®a ´®b 与®a 和®b 皆垂直,且®a ,®b ,®a ´®b 构成右手系构成右手系83(ⅱ)坐标公式®a ´®b =222111z y x z y x k j i®®®(ⅲ)重要应用®a ´®b =®0Û®a ,®b 共线共线5、混合积、混合积 (ⅰ)定义(ⅰ)定义(®a ,®b ,®c )=(®a ´®b )·®c (ⅱ)坐标公式(®a ,®b ,®c )=333222111z y x z y x z y x (ⅲ)÷øöçèæ®®®c b a ,,表示以®a ,®b ,®c 为棱的平行六面体的体积为棱的平行六面体的体积§5.2 平面与直线(甲)内容要点(甲)内容要点一、一、 空间解析几何空间解析几何1 空间解析几何研究的基本问题。
第三章 向量§1 向量的概念及运算一、n 维向量的概念定义1:n 个数n a a a ,,,21 组成的有序数组称为n 维向量,其中),2,1(n i a i =称为n 维向量的第i 个分量。
分量是实数的向量称为n 维实向量,分量是复数的向量称为n 维复向量。
n 维向量可写成一行,称为行向量;即),,,(21n T a a a =α.也可写成一列,称为列向量,即⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α.用小写的黑体希腊字母 ,,,γβα来代表向量。
每一个分量都是0的向量称为n 维零向量。
记为O ,即)0,,0,0( =O向量),,,(21n a a a --- 称为向量),,,(21n a a a ---= α的负向量,记为-α。
在n 维向量中,两个向量),,,(21n a a a =α,),,,(21n b b b =β相等,是指它们的各个分量对应相等,即),2,1(n i b a i i ==这时,记为βα=.如干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组.二、n 维向量的线性运算定义2:设向量组),,,(21n a a a =α,),,,(21n b b b =β,则βα+=),,,(2211n n b a b a b a +++ 称为向量βα,的和,记为βαγ+=.加法满足下列运算规律: 1)交换律:αββα+=+2)结合律:γβαγβα++=++)()(3)存在零向量O ,对一切向量α,使ααα=+=+O O 4)对第一向量α,存在-α,使O =-+)(αα 向量减法:)(βαβα-+=- 定义3:向量),,,(21n a a a =α与数k 的数量乘积为向量),,,(21n k k k ααα ,记为αk .数量乘法满足的运算规律。
1)结合律:αα)()(kl l k = 2)分配律:βαβαk k k +=+)( 3)分配律:αααl k l k +=+)( 4)对任何向量α,恒有αα=⋅1§2向量组的线性关系一、线性表示出定义1:若m ααα ,,21是m 个n 维向量,m k k k ,,,21 是一组数,则向量αααm k k k +++ 2211称为这m 个向量的线性组合.对于n 维向量m ααα ,,21及β,若存在一组数m k k k ,,,21 使得m m k k k αααβ+++= 2211那么β称为m ααα ,,21的线性组合,或称β可由m ααα ,,21线性表示.定理1:如果有两个向量组Ⅰ: m ααα ,,21、Ⅱ: n βββ ,,21,向量组Ⅰ中的每个向量均可由向量组Ⅱ线性表示,向量组Ⅱ中的每个向量也均可由向量组Ⅰ线性表示,则称两个向量组等价. 二、线性相关与线性无关定义2:设m ααα ,,21是m 个n 维向量,如果存在不全为零的数m k k k ,,,21 使得O k k k m m =+++ααα 2211那么m ααα ,,21称为线性相关,否则称为线性无关.所谓线性无关,即只有021====m k k k 时,才有O k k k m m =+++ααα 2211.三、向量组线性关系的判定1).仅含一个零向量的向量总是线性相关的,与此相反,任意一个非零向量总是线性无关的.任何含有零向量的向量组线性相关.2).向量组m ααα ,,21线性相关的充分必要条件是它构成的矩阵),,(21m A ααα =的秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)((n 个n 维向量线性无关的充分必要条件是以n 个向量作为行的n 阶行列式0||≠A ).例 研究下列向量组是线性相关还是线性无关(1) ⎪⎪⎭⎫ ⎝⎛-=3211α,⎪⎪⎭⎫ ⎝⎛-=5202α,⎪⎪⎭⎫⎝⎛-=2013α(2) (),1,1,1,21T--=β(),0,2,3,02T -=β()T 1,3,4,23--=β分析 给出一个n 维向量组m ααα ,,21,就有一个相应的矩阵),,(21m A ααα =,首先求出)(A R ,若m A R =)(,则m ααα ,,21线性无关,若m A R <)(,则m ααα ,,21线性相关.解(1) 因为⎪⎪⎭⎫ ⎝⎛-=3211α,⎪⎪⎭⎫ ⎝⎛-=5202α,⎪⎪⎭⎫⎝⎛-=2013α得到矩阵 ⎪⎪⎭⎫ ⎝⎛---==253022101),,(321αααA 因为⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=000220101~253022101A 所以32)(<=A R故向量组321,,ααα线性相关. (2) 因为(),1,1,1,21T--=β(),0,2,3,02T -=β()T 1,3,4,23--=β得到矩阵⎪⎪⎪⎭⎫⎝⎛-----==101321431202),,(321βββB 因为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----=000000110202~101321431202B 所以32)(<=B R故向量组321,,βββ线性相关. 推论1:n 个n 维向量),,,(112111n a a a =α;),,,(222212n a a a =α;……),,,(21nn n n n a a a =α线性相关⇔行列式n m ij a A ⨯=)det(||=0.证:必要性:设m ααα ,,21线性相关,当n=1时,结论显然成立。