构造向量解代数及几何问题
- 格式:pdf
- 大小:183.19 KB
- 文档页数:4
第五章向量代数与空间解析几何5。
1。
1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。
因为=-,所以(a+b)。
图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。
(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。
从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。
2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。
解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。
5.2。
2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。
解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。
向量在中学数学中的应用向量是中学数学的主要内容之一,巧妙地构造向量,利用向量的运算及性质,可以解决证明有关恒等式,不等式、求某些函数极值和有关几何问题。
1.在代数解题中的应用(1)求函数的最值(值域) 利用向量的模的不等式a b a b a b →→→→→→-≤+≤+, a b a b →→→→⋅≤,可以十分简单地求一些较为复杂的、运用常规方法又比较麻烦的最值(值域)问题.例1、求函数()32f x x =++分析:观察其结构特征,由3x +令(3,4),(p q x →→==,则()2f x p q →→=⋅+,且5,2p q →→==.故()212f x p q →→≤+=,当且仅当p →与q →同向,即30x =>时取等号,从而问题得到解决.(2)证明条件等式和不等式 条件等式和不等式的证明,常常要用一些特殊的变形技巧,不易证明.若利用向量来证 明条件等式和不等式,则思路清晰,易于操作,且解法简捷.例2、设22222()()()a b m n am bn ++=+,其中0mn ≠.求证:m a =nb . 分析:观察已知等式的结构特征,联想到向量的模及向量的数量积,令(,),p a b →= (,)q m n →=,则易知p →与q →的夹角为0或π,所以p →∥q →,0an bm -=,问题得证.(3)解方程(或方程组)有些方程(方程组)用常规方法求解,很难凑效,若用向量去解,思路巧妙,过程简洁. 例3、求实数,,x y z 使得它们同时满足方程: 2313x y z ++=和22249215382x y z x y z ++-++=.分析:将两方程相加并配方得222(2)(33)(2)108x y z ++++=,由此联想到向量模,令(2,33,2),(1,1,1)a x y z b →→=++=,则a b →→==(2)1(33)1a b x y →→⋅=⋅++⋅ (2)118z ++⋅=,又因为18a b a b →→→→⋅≤=,其中等式成立的条件即为方程组的解,即当且仅当12x =133+y =12+z 0>时等式成立,问题解决. (4)解复数问题因为复数可以用向量表示,所以复数问题都可以用向量来研究解决.例4、已知复平面内正方形ABCD 的两对角顶点A 和C 所对应的复数分别为23i +和 44i -,求另外两顶点B 和D 所对应的复数.分析:先求D ,为此得求OD --→.因OD O A A D -→-→-→=+,而AD --→是AC --→依逆时针方向旋转4π,同时将AC --→倍,因此先求AC --→.而AC OC OA --→--→--→=-,故AC --→对应的复数是 44(23)27i i i --+=-,于是AD --→对应的复数是95(27)cos sin4422i i ππ⎫-+=-⎪⎭ 又OD OA AD --→--→--→=+,所以OD --→可求.同理可求OB --→,问题解决.(5)求参变数的范围求参变数的范围是代数中的一个难点,常常要进行讨论,若用向量去解,会收到意想不到的效果.例5、设,,,a b c d R ∈,且22222(0),3k a b c d k k a b c d +++=>+++=,试讨论 ,,,a b c d 的范围.分析:由2222a b c d +++联想到向量的模,令(,,),(1,1,1)p a b c q →→==,则p q a b c k d →→⋅=++=-,p q →→==.由p q p q →→→→⋅≤得k d -≤102d ≤≤,由,,,a b c d 对称性便可得,,,a b c d 的范围. 2.在三角解题中的应用向量的数量积的定义,将向量与三角函数融为一体,体现了向量的模与三角函数之间的关系,为运用向量解决三角函数问题创造了有利的条件.(1)求值例6、已知3cos cos cos()2αβαβ+-+=,求锐角,αβ的值. 分析:由已知得3(1cos )cos sin sin cos 2βαβαβ-+=-,观察其结构特征,联想到向量的数量积,令(1cos ,sin ),(cos ,sin )a b ββαα→→=-=,则3cos 2a b β→→⋅=-,a b →→=.由a b a b →→→→⋅≤得3cos 2β-≤,所以1cos 2β=, 即3πβ=,代入已知等式便可求得α的值.(2)证明恒等式例7、求证:cos()cos cos sin sin αβαβαβ-=+分析:由等式右边联想到向量的数量积,令(cos ,sin ),(cos ,sin )a b ααββ→→==, 则1,1a b →→==,且易知a →与b →的夹角为βα-,则cos()a b a b βα→→→→⋅=-cos()βα=-, 又cos cos sin sin a b αβαβ→→⋅=+,则问题得证.3.在平面几何解题中的应用利用向量加法、减法、数乘和内积的几何意义,可以巧妙而简捷地进行几何证明和解决几何中有关夹角的问题.例8、试证明以三角形的三中线为边可以作成一个三角形.分析:如图,,,AD BE CF 分别为ABC ∆三边上的中线,若要证明,,AD BE CF 能作成一个三角形,只须证明AD BE CF --→--→--→++=0→.证明:设AB --→=c →, BC --→=a →, CA --→=b →,则0a b c →→→→++=,而AD AB BD --→--→--→=+ 12c a →→=+,BE BC CE --→--→--→=+12a b →→=+, 所以 CF CA AF --→--→--→=+12b c →→=+. 于是 AD BE CF --→--→--→++=1()02a b c a b c →→→→→→→+++++=,即以,,AD BE CF 为边可构成一个三角形.4.向量在解析几何中的应用平面向量作为一种有向线段,本身就是线段的一段,其坐标用起点和终点坐标表示,因此向量与平面解析几何有着密切联系.在解析几何中,它可使过去许多形式逻辑的证明转化为数值的计算,化复杂为简单,成为解决问题的一种重要手段和方法.例9、已知一个圆的直径两端点为1122(,),(,)A x y B x y ,求此圆方程.解:设(,)P x y 为圆上异于,A B 的点,由圆周角定理得AP --→⊥BP --→,若(,)P x y 是与点A 或B 重合的点,则AP --→=0→或BP --→=0→,故都有AP --→⋅BP --→=0成立,从而 1122()()()()0x x y y x x y y --+--=,此即为所求圆方程.例10、求过圆22(5)(6)10x y -+-=上的点(6,9)M 的切线方程.解:如图,设(,)N x y 是所求切线上的任意一点,则MN --→(6,9)x y =--, (1,3)O M --→'=,因为MN --→⊥O M --→',所以MN --→⋅O M --→'=0,即(6)3(9)0x y -+-=,此即为所求切线的方程(即使是,N M 重合时,仍有MN --→⋅O M --→'=0,因为此时MN --→=0→).5.在立体几何解题中的应用直线与平面所成的角、最小角定理,异面直线所成的角,二面角及其平面角概念、求法,两平面垂直的判定及性质定理,点面、直线与平行面、两平行面、异面直线等四种距离的概念及求法以及用向量解决有关直线、平面的垂直、平行、共面以及夹角与距离问题.例11、如图,在正方体1111ABCD A B C D -中,,E F 分别是棱1111,A D A B 的中点,求BC 和面EFBD 所成的角. 解:如图,建立空间直角坐标系D xyz -,设正方体棱长为2,则坐标为:(2,2,0),(0,0,0),B D 1(1,0,2),(2,1,2),(0,2,2)E F C , (2,2,0),(1,0D B DE --→--→∴== y1(2,0,2)BC --→=-.设n →(,,)x y z =是平面EFBD 的法向量,n →DB --→⋅0=,n →⋅DE --→0=, 得1,2y x z x =-=-,令2x =-,得(2,2,1)n →=-,设θ为1BC 和面EFBD 所成的角,则111sin cos ,6BC n BC n BC nθ⋅=<>==⋅arcsin 6θ= 综上所述,向量是一种有效的工具,在众多数学问题中有十分广泛的应用.因此,我们应该有意识地运用向量分析问题,借助向量的知识来解决问题.。
利用向量解几何问题如何利用向量解决几何问题在数学中,向量是一种重要的数学工具,能够用来描述和解决许多与几何相关的问题。
利用向量解决几何问题是一种简洁、直观且有效的方法。
本文将介绍如何利用向量解决几何问题,并提供一些例子来说明。
一、向量及其运算在开始讨论如何利用向量解决几何问题之前,先对向量及其运算进行简要介绍。
向量由大小和方向两个要素构成,通常用箭头表示。
向量的运算包括加法、减法、数量乘法和点乘。
向量的加法:将两个向量的对应分量相加,得到一个新的向量。
向量的减法:将第二个向量取负,再进行向量的加法。
数量乘法:将向量的每个分量乘以一个实数,得到一个新的向量。
点乘:将两个向量的对应分量相乘,并将乘积相加,得到一个实数。
二、向量解决几何问题的基本方法1. 向量共线与相关问题向量a、b共线的充要条件是它们与一个非零向量c的关系式ka+lb=c成立,其中k、l为实数。
利用这一性质,可以判断两个向量是否共线,并求解系数k、l。
例题1:已知向量a=(2,3)和向量b=(4,6),判断两个向量是否共线,并求解k、l的值。
解答:由向量共线的性质可知,两个向量共线时,它们满足ka+lb=c。
代入已知向量,得到2k+4l=2×2+4×3=16。
解这个方程组,可以得到k=2,l=3。
因此,向量a和b共线,并且k=2,l=3。
2. 向量的模和单位向量向量的模表示向量的长度,用数值表示,记作|a|。
单位向量是指模为1的向量,可以通过向量除以模得到。
例题2:已知向量a=(3,4),求向量a的模和单位向量。
解答:向量a的模可以通过求解平方和再开平方的方式得到,即|a|=√(3^2+4^2)=5。
单位向量可以通过将向量a除以模得到,即a/|a|=(3/5,4/5)。
3. 向量的投影和垂直向量的投影是指一个向量在另一个向量上的投影,可以通过向量的点乘计算得到。
两个向量垂直时,它们的点乘为零。
例题3:已知向量a=(3,4)和向量b=(4,3),求向量a在向量b上的投影和判断两个向量是否垂直。