山西省高考数学二轮复习专题08:复数、推理与证明C卷
- 格式:doc
- 大小:227.00 KB
- 文档页数:8
专题09 复数、推理与证明【训练目标】1、掌握复数的概念及复数的分类;2、掌握复数的四则运算,复平面问题;3、掌握共轭复数的概念,模长的计算;4、理解复数的几何意义;5、掌握归纳推理和类比推理的方法;6、掌握反证法,综合法,分析法,数学归纳法。
【温馨小提示】本专题高考有一道复数题,一般在选择题的第一或二题,属于送分题,主要考察复数的运算及复平面;推理与证明也是今年考试的热点,一半出现在选择题或者填空题,属于容易题。
【名校试题荟萃】1.若集合,,则等于()A. B. C. D.【答案】C【解析】因为,,所以。
2.设复数满足(为虚数单位),则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由题意,对应点为,在第四象限.故选D.3.若复数是纯虚数,则的值为()A. B. C. D.或【答案】A【解析】由题意可得因为复数z是纯虚数所以满足实部为零且虚部不为零.即.因为且,所以.所以.因为.故选A.4.设为虚数单位,如果复数满足,那么的虚部为()A. B. C. D.【答案】B5.设复数满足,则()A. B. C. D.【答案】A【解析】可得,则,则.6.是的共轭复数,若,(为虚数单位),则()A. B. C. D.【答案】D【解析】方法一:设(),则,,.又,,故.方法二:,,又,,,.7、已知为实数,若,则实数等于()A. B. C. D.【答案】B【解析】且复数不可比较大小,必为实数,,,.故选B.8、已知,,定义:.给出下列命题(1)对任意,都有;(2)若是复数z的共轭复数,则恒成立;(3)若,则;(4)对任意,结论恒成立.则其中真命题是()A.(1)(2)(3)(4)B.(2)(3)(4)C.(2)(4)D. (2)(3)【答案】C9、复数的共轭复数是()A. B. C. D.【答案】A【解析】,故选A.10、考察下列等式:,,,……,其中为虚数单位,均为实数.由归纳可得,的值为. 【答案】0【解析】通过归纳可得,,从而.11、是复平面内的平行四边形,三点对应的复数分别是,则点对应的复数为_______.【答案】12、下面四个命题中,①复数,则其实部、虚部分别是;②复数满足,则对应的点集合构成一条直线;③由,可得;④为虚数单位,则.正确命题的序号是.【答案】①②13、已知复数和复数,则的值_______.【答案】【解析】.14、若是实数,,则.【答案】【解析】,因为是实数,所以是实数,又,故.15、设,复数满足:且(其中为虚数单位),求的值为.【答案】16、下列说法中正确的序号是_______.①②若一个数是实数,则其虚部不存在③虚轴上的点表示的数都是纯虚数④设(为虚数单位),若复数在复平面内对应的向量为,则向量的模是⑤若,则对应的点在复平面内的第四象限.【答案】④⑤17、观察下列各式:,,,则的末两位数字为()A.01B.43C.07D.4【答案】B18、观察下列各式:,…,若,则()A. B. C. D.【答案】C【解析】.所以,所以,所以,故选C.19、一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人作了案”;丁说:“乙说的是事实”。
2021年高考数学二轮复习推理与证明、算法初步、复数专题训练(含解析)一、选择题1.(xx·安徽卷)如图所示,程序框图(算法流程图)的输出结果是( )A.34 B.55C.78 D.89解析由程序框图知依次为:x=1,y=1,z=2;x=1,y=2,z=3;x=2,y=3,z=5;x=3,y=5,z=8;x=5,y=8,z=13;x=8,y=13,z=21;x=13,y=21,z=34;x=21,y=34,z=55>50,故输出55.答案B2.(xx·北京卷)当m=7,n=3时,执行如图所示的程序框图,输出的S值为( )A.7 B.42C.210 D.840解析开始:m=7,n=3.计算:k=7,S=1.第一次循环,此时m-n+1=7-3+1=5,显然k<5不成立,所以S=1×7=7,k=7-1=6.第二次循环,6<5不成立,所以S=7×6=42,k=6-1=5.第三次循环,5<5不成立,所以S=42×5=210,k=5-1=4.显然4<5成立,输出S的值,即输出210,故选C.答案C3.若复数z满足i z=2+4i,则在复平面内,z对应的点的坐标是( ) A.(2,4) B.(2,-4)C.(4,-2) D.(4,2)解析由i z=2+4i得:z=2+4ii=2+4i i-1=4-2i,对应点为(4,-2),故选C.答案C4.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( )A .-4B .-45C .4D .45解析 |4+3i |=42+32=5,所以(3-4i )z =5,即z =53-4i =53+4i 3-4i 3+4i=35+45i ,所以z 的虚部为45,故选D .答案 D5.下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n ,由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f(x)=x cos x 满足f(-x)=-f(x)对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n解析 注意到,选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n 1+2n -12=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.答案 A6.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S (x )=a x -a -x ,C (x )=a x+a -x,其中a >0,且a ≠1,下面正确的运算公式是( )①S (x +y )=S (x )C (y )+C (x )S (y );②S (x -y )=S (x )C (y )-C (x )S (y );③2S (x +y )=S (x )C (y )+C (x )S (y );④2S (x -y )=S (x )C (y )-C (x )S (y ).A .①②B .③④C .①④D .②③解析 经验证易知①②错误.依题意,注意到2S (x +y )=2(a x +y-a-x -y),又S (x )C (y )+C (x )S (y )=2(ax +y-a-x -y),因此有2S (x +y )=S (x )C (y )+C (x )S (y );同理有2S (x -y )=S (x )C (y )-C (x )S (y ),综上所述,选B.答案 B 二、填空题7.(xx·江苏卷)下图是一个算法流程图,则输出的n 的值是________.解析 本题实质上是求不等式2n>20的最小整数解,2n>20的整数解为n ≥5,因此输出的n =5. 答案 58.已知复数z =1-i ,则z 2-2zz -1=________.解析 z 2-2z z -1=z -12-1z -1=z -1-1z -1=(-i)-1-i =-i -i -i·i=-2i.答案 -2i 9.观察下列等式: 13+23=1; 73+83+103+113=12; 163+173+193+203+223+233=39; ……则当m <n 且m ,n ∈N 时,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=________(最后结果用m ,n 表示). 解析 由13+23=1,知m =0,n =1,1=12-02;由73+83+103+113=12, 知m =2,n =4,12=42-22; 由163+173+193+203+223+233=39,知m =5,n =8,39=82-52; ……依此规律可归纳,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=n 2-m 2.答案 n 2-m 2三、解答题10.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2.解 ∵(z 1-2)(1+i)=1-i , ∴z 1=2-i.设z 2=a +2i ,a ∈R ,则z 1·z 2=(2-i)(a +2i)=(2a +2)+(4-a )i. ∵z 1·z 2∈R , ∴a =4. ∴z 2=4+2i.11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解 (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+(2q -p -r )2=0. ∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∵⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0,∴p =r .与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成等比数列.B 级——能力提高组1.若数列{a n }是等差数列,则数列 {b n }⎝⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n1+c n 2+…+c n nnD .d n =nc 1·c 2·…·c n 解析 若{a n }是等差数列, 则a 1+a 2+…+a n =na 1+n n -12d ,∴b n =a 1+n -12d =d 2n +a 1-d 2,即{b n }为等差数列; 若{c n }是等比数列, 则c 1·c 2·…·c n =c n1·q1+2+…+(n -1)=c n1·qn n -12,∴d n =n c 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D. 答案 D2.(xx·湖北卷)设a 是一个各位数字都不是0且没有重复数字的三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.解析不妨取a=815,则I(a)=158,D(a)=851,b=693;则取a=693,则I(a)=369,D(a)=963,b=594;则取a=594,则I(a)=459,D(a)=954,b=495;则取a=495,则I(a)=459,D(a)=954,b=495.故输出结果b=495.答案4953.根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,x k,…;y1,y2,…,y k,….(1)分别求数列{x k }和{y k }的通项公式;(2)令z k =x k y k ,求数列{z k }的前k 项和T k ,其中k ∈N *,k ≤2 007. 解 (1)由程序框图,知数列{x k }中,x 1=1,x k +1=x k +2, ∴x k =1+2(k -1)=2k -1(k ∈N *,k ≤2 007). 由程序框图,知数列{y k }中,y k +1=3y k +2, ∴y k +1+1=3(y k +1). ∴y k +1+1y k +1=3,y 1+1=3. ∴数列{y k +1}是以3为首项,3为公比的等比数列. ∴y k +1=3·3k -1=3k.∴y k =3k-1(k ∈N *,k ≤2 007).(2)T k =x 1y 1+x 2y 2+…+x k y k =1×(3-1)+3×(32-1)+…+(2k -1)(3k -1)=1×3+3×32+…+(2k -1)·3k-[1+3+…+(2k -1)].记S k =1×3+3×32+…+(2k -1)·3k,① 则3S k =1×32+3×33+…+(2k -1)·3k +1,②①-②,得-2S k =3+2·32+2·33+…+2·3k-(2k -1)·3k +1=2(3+32+…+3k )-3-(2k -1)·3k +1=2×3×1-3k1-3-3-(2k -1)·3k +1=3k +1-6-(2k -1)·3k +1=2(1-k )·3k +1-6,∴S k =(k -1)·3k +1+3.又∵1+3+…+(2k -1)=k 1+2k -12=k 2,∴T k =(k -1)·3k +1+3-k 2.27235 6A63 橣@qc24387 5F43 彃26788 68A4 梤24556 5FEC 忬25364 6314 挔36889 9019 這}29383 72C7 狇 23216 5AB0 媰34210 85A2薢。
卜人入州八九几市潮王学校推理与证明、算法初步、复数一、选择题1.以下平面图形中与空间的平行六面体作为类比对象较适宜的是()A.三角形B.梯形C.平行四边形D.矩形解析:选C.因为平行六面体相对的两个面互相平行,类比平面图形,那么相对的两条边互相平行,应选C.2.(2021年质检)i为虚数单位,a为实数,复数z=(1-2i)(a+i)在复平面内对应的点为M,那么“a>〞是“点M在第四象限〞的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选C.z=(1-2i)(a+i)=(a+2)+(1-2a)i,假设其对应的点在第四象限,那么a+2>0,且1-2a<0,解得a>.即“a>〞是“点M在第四象限〞的充要条件.3.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S·(n+1)B.S=S·x n+1C.S=S·nD.S=S·x n解析:选D.分析循环变量,易知赋值框内应填入S=S·x n.4.设a,b是两个数字,给出以下条件:(1)a+b>1;(2)a+b=2;(3)a+b>2;(4)a2+b2>2;(5)ab>1.其中能推出:“a,b中至少有一个大于1”的条件是()A.(2)(3)B.(1)(2)(3)C.(3)D.(3)(4)(5)a=,b=,那么a+b>1,但a<1,b<1,故(1)推不出;假设a=b=1,那么a+b=2,故(2)推不出;假设a=-2,b=-3,那么a2+b2>2,ab>1,故(4)(5)推不出;对于(3),假设a+b>2,那么a,b中至少有一个大于1,用反证法证明,假设a≤1且b≤1,那么a+b≤2与a+b>2矛盾.5.用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程中,第二步假设当n=k时等式成立,那么当n=k+1时应得到()A.1+2+22+…+2k-2+2k-1=2k+1-1B.1+2+22+…+2k+2k+1=2k-1-1+2k+1C.1+2+22+…+2k-1+2k+1=2k+1-1D.1+2+22+…+2k-1+2k=2k-1+2k解析:选n=k+1代入1+2+22+…+2n-1=2n-1,得1+2+22+…+2k=2k-1+2k.二、填空题6.设z=1-i(i是虚数单位),那么复数(+z2)·=__________.解析:对于+z2=+(1-i)2=1+i-2i=1-i,故(+z2)·=(1-i)(1+i)=2.故填2.答案:27.i是虚数单位,m和n都是实数,且m(1+i)=1+n i,那么()2021等于__________.解析:由m(1+i)=1+n i,得m=n=1,∴()2021=()2021=i2021=-i.答案:-i8.(2021年调研)如框图所示,集合A={x|框图中输出的x值},集合B={y|框图中输出的y值},全集U=Z,Z为整数集.当x=-1时,(∁U A)∩B=__________.解析:当x=-1时,输出y=2×(-1)-1=-3,x=-1+1=0,且0>5不成立;当x=0时,输出y=2×0-1=-1,x=0+1=1,且1>5不成立;当x=1时,输出y=2×1-1=1,x=1+1=2,且2>5不成立;依次类推,可知A={0,1,2,3,4,5,6},B={-3,-1,1,3,5,7,9},故(∁U A)∩B={-3,-1,7,9}.答案:{-3,-1,7,9}三、解答题9.(2021年高考卷)复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.解:∵(z1-2)(1+i)=1-i,∴z1=2-i.设z2=a+2i,a∈R.z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4,∴z2=4+2i.10.为了让学生更多地理解“数学史〞知识,某总分值是为100分)进展统计.请你根据频率分布表,解答以下问题:(2)为鼓励更多的学生理解“数学史〞知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?(3)在上述统计数据的分析中有一项计算见如下列图的程序框图,求输出S的值.解:(1)①为6,②为0.4,③为12,④为12,⑤为0.24.(2)(×0.24+0.24)×800=288,即在参加的800名学生中大概有288名同学获奖.(3)由程序框图,知S=G1F1+G2F2+G3F3+G4F4=65×0.12+75×0.4+85×0.24+95×0.24=81.11.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律一样),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想〞,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求+++…+的值.解:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,…由上式规律,所以得出f(n+1)-f(n)=4n.因为f(n+1)-f(n)=4n⇒f(n+1)=f(n)+4n⇒f(n)=f(n-1)+4(n-1)=f(n-2)+4(n-1)+4(n-2)=f(n-3)+4(n-1)+4(n-2)+4(n-3)=…=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4=2n2-2n+1.(3)当n≥2时,==(-),∴+++…+=1+(1-+-+-+…+-)=1+(1-)=-.。
专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。
新高考数学《推理与证明》练习题一、选择题1.数列{}1212:1,(2)n n n n F F F F F F n --===+>,最初记载于意大利数学家斐波那契在1202年所著的《算盘全书》.若将数列{}n F 的每一项除以2所得的余数按原来项的顺序构成新的数列{}n a ,则数列{}n a 的前50项和为( )A .33B .34C .49D .50【答案】B【解析】【分析】根据{}n a 为{}n F 除以2的余数,依次写出{}n F 的各项,从而可得{}n a 是按1,1,0的周期排列规律,即可求出结论.【详解】依次写出{}n F 的各项1234561,1,2,3,5,8F F F F F F ======L , {}n a 为{}n F 除以2的余数,依次写出{}n a 各项为1234561,1,0,1,1,0a a a a a a ======L ,{}n a ∴各项是按1,1,0的周期规律排列,1234950162234a a a a a +++++=⨯+=L .故选:B.【点睛】本题考查归纳推理、猜想能力,考查分析问题、解决问题能力,属于中档题.2.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=;三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=.若四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ) A .42r πB .43r πC .44r πD .46r π 【答案】A【解析】分析:由题意结合所给的性质进行类比推理即可确定四维测度W .详解:结合所给的测度定义可得:在同维空间中,1n +维测度关于r 求导可得n 维测度, 结合“超球”的三维测度38V r π=,可得其四维测度42W r π=.本题选择A 选项.点睛:本题主要考查类比推理,导数的简单应用等知识,意在考查学生的转化能力和计算求解能力.3.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i(i=1,2,…,10)个人的水桶需T i分钟,假设T i各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少()A.从T i中最大的开始,按由大到小的顺序排队B.从T i中最小的开始,按由小到大的顺序排队C.从靠近T i平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D.任意顺序排队接水的总时间都不变【答案】B【解析】【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t)减去二者的和就是节省的时间;由此可推广到一般结论【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需要t分钟,并设拎大桶者开始接水时已等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者一共等候了(m+T+t)分钟,两人一共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了++ 2m+2t+Tm t T22分钟,共节省了T t- T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短.故选B.【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.4.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是()打碎了玻璃.A.甲B.乙C.丙D.丁【答案】D【解析】【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁.【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾,假设丙打碎了玻璃,丙、乙说了谎,矛盾,假设丁打碎了玻璃,只有丁说了谎,符合题意,所以是丁打碎了玻璃;故选:D【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.5.若数列{}n a 是等差数列,则数列12n n a a a b n++⋯+=也为等差数列.类比这一性质可知,若正项数列{}n c 是等比数列,且n d 也是等比数列,则n d 的表达式应为( ) A .12n n c c c d n ++⋯+=B .12n n c c c d n⋅⋅⋯⋅=C .n d =D .n d =【答案】D【解析】【分析】利用等差数列的求和公式,等比数列的通项公式,即可得到结论.【详解】解:Q 数列{}n a 是等差数列,则()12112n n n a a a a d n -++⋯++=,∴数列12112n n a a a n b a d n ++⋯+-==+也为等差数列 Q 正项数列{}n c 是等比数列,设首项为1c ,公比为q ,则()112121111n n n n n c c c c c q c q c q --⋅⋅⋯⋅⋅⋅⋯==⋅ ∴121n n d c q -= ∴n d =故选:D .【点睛】本题考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.6.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a +的值( ) A .至少有一个不小于2B .至少有一个不大于2C .至多有一个不小于2D .至多有一个不大于2【答案】A【解析】【分析】 根据基本不等式,利用反证法思想,即可得出答案【详解】因为a ,b ,c 都大于01111116a b c a b c b c a a b c +++++=+++++≥ 当且仅当1a b c ===时取得最小值 若12a b +<,12b c+<,12c a +< 则1116a b c b c a +++++<,与前面矛盾 所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.7.小赵、小钱、小孙、小李四位同学被问到谁去过北京时,小赵说:我没去过;小钱说:小李去过;小孙说;小钱去过;小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过北京的是( )A .小钱B .小李C .小孙D .小赵 【答案】A【解析】由题意的,如果小赵去过长城,则小赵说谎,小钱说谎,不满足题意;如果小钱去过长城,则小赵说真话,小钱说谎,小孙、小李说真话,满足题意,故选A.8.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个【答案】D【解析】【分析】【详解】试题分析:由图可知各月的平均最低气温都在0℃以上,A 正确;由图可知在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在10C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有7,8两个月,所以不正确.故选D .【考点】统计图【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .9.我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )A .2B .3C .4D .5【答案】B【解析】【分析】根据提示三分法,考虑将硬币分为3组,然后将有问题的一组再分为3组,再将其中有问题的一组分为3,此时每组仅为1枚硬币,即可分析出哪一个是假币.【详解】第一步将27枚硬币分为三组,每组9枚,取两组分别放于天平左右两侧测量,若天平平衡,则假币在第三组中;若天平不平衡,假币在较轻的那一组中;第二步把较轻的9枚金币再分成三组,每组3枚,任取2组,分别放于天平左右两侧测量,若天平平衡,则假币在第三组,若天平不平衡则假币在较轻的一组;第三步再将假币所在的一组分成三组,每组1枚,取其中两组放于天平左右两侧测量若天平平衡,则假币是剩下的一个;若天平不平衡,则较轻的盘中所放的为假币.因此,一定能找到假币最少需使用3次天平. 故选:B.【点睛】本题考查类比推理思想的应用,难度一般.处理该类问题的关键是找到题干中的提示信息,由此入手会方便很多.10.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( ) A .49B .43C .07D .01【答案】C【解析】【分析】先观察前5个式子的末两位数的特点,寻找规律,结合周期性进行判断即可.【详解】观察2749=,37343=,472401=,572401716807=⨯=,67168077117649=⨯=,…,可知末两位每4个式子一个循环,2749=到10097一共有1008个式子,且10084252÷=,则10097的末两位数字与57的末两位数字相同,为07. 故选:C.【点睛】本题主要考查归纳推理的应用,根据条件寻找周期性是解决本题的关键.11.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( )A .甲走桃花峪登山线路B .乙走红门盘道徒步线路C .丙走桃花峪登山线路D .甲走天烛峰登山线路【答案】D【解析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确. 综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.12.新课程改革后,某校的甲、乙、丙三位同学都选了A 、B 、C 三门课中的两门,且任何两位同学选修的课程有且仅有一门相同.其中甲、乙共同选修的课不是B ,乙、丙共同选修的课不是A ,B 和C 两门课程有一个丙没有选,则甲选修的两门课程是( ) A .A 和BB .B 和C C .A 和CD .无法判断【答案】C【解析】【分析】根据题意可知丙一定选了A 课程,结合题意进行推理,可得出甲所选修的两门课程,由此可得出结论.【详解】 B 和C 两门课程有一个丙没有选,所以丙肯定选了A ,乙、丙共同选修的课不是A ,则乙选择了B 、C 两门课程,由于甲、乙共同选修的课不是B ,则甲、乙共同选修的是C ,但甲不能选择B 课程. 因此,甲选修是A 、C 两门课程.故选:C.【点睛】本题考查简单的合情推理问题,考查推理能力,属于中等题.13.已知{}n b 为等比数列,52b =,则91292b b b L ⋅=.若{}n a 为等差数列,52a =,则{}n a 的类似结论为( )A .912392a a a a =LB .912392a a a a ++++=LC .123929a a a a L =⨯D .123929a a a a ++++=⨯L【答案】D【分析】根据等差数列中等差中项性质推导可得.【详解】由等差数列性质,有19a a +=28a a +=…=25a .易知选项D 正确.【点睛】等差中项和等比中项的性质是出题的热点,经常与其它知识点综合出题.14.已知()()()212f x f x f x +=+, ()11f =(*x N ∈),猜想()f x 的表达式为( ) A .()21f x x =+ B .()422x f x =+ C .()11f x x =+ D .()221f x x =+ 【答案】A【解析】因为()()()212f x f x f x +=+,所以()()11112f x f x =++ ,因此()()()()()11112111221x x f x f x f x =+-=+⇒=+,选A.15.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974 【答案】D【解析】【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解. 【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)…则第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n nn n⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n=64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974,故选:D.【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n项和公式,属中档题.16.为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )A.7班、14班、15班B.14班、7班、15班C.14班、15班、7班D.15班、14班、7班【答案】C【解析】【分析】分别假设甲、乙、丙预测准确,分析三个人的预测结果,由此能求出一、二、三名的班级.【详解】假设甲预测准确,则乙和丙都预测错误,14∴班名次比15班靠后,7班没能赢15班,故甲预测错误;假设乙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠前,7班没能赢15班,则获得一、二、三名的班级依次为14班,15班,7班;假设丙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠后,7班能赢15班,不合题意.综上,得一、二、三名的班级依次为14班,15班,7班.故选:C.【点睛】本题考查获得一、二、三名的班级的判断,考查合情推理等基础知识,考查运算求解能力,是基础题.17.=,则0x y==,假设为()A.,x y都不为0 B.,x y不都为0C.,x y都不为0,且x y≠D.,x y至少有一个为0【答案】B【解析】【分析】根据反证法,假设要否定结论,根据且的否定为或,判断结果.【详解】x y==的否定为00x y≠≠或,即x,y不都为0,选B.【点睛】本题考查反证法以及命题的否定,考查基本应用能力.属基本题.18.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是()A.甲和丁B.乙和丁C.乙和丙D.甲和丙【答案】B【解析】【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁答案选B【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证19.用数学归纳法证明“1112n n++++…111()24n Nn n+≥∈+”时,由n k=到1n k=+时,不等试左边应添加的项是( )A.12(1)k+B.112122k k+++C .11121221k k k +-+++ D .1111212212k k k k +--++++ 【答案】C【解析】【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项。
专题08 全等三角形中的边角问题【类型】一、全等三角形中的边角问题-公共角模型一、解答题1.在ABC 中,∠BAC =90°,AB AC =,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为直角边在AD 右侧作等腰直角三角形ADE (90DAE ∠=︒,AD AE =),连接CE .(1)如图1,当点D 在线段BC 上时,猜想:BC 与CE 的位置关系,并说明理由;(2)如图2,当点D 在线段CB 的延长线上时,(1)题的结论是否仍然成立?说明理由;(3)如图3,当点D 在线段BC 的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.2.如图1,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),过点A 作AG ∠AH 且AG =AH ,连接GC ,HB .(1)证明:AHB ∠AGC ;(2)如图2,连接GF ,HG ,HG 交AF 于点Q .∠证明:在点H 的运动过程中,总有∠HFG =90°; ∠当AQG 为等腰三角形时,求∠AHE 的度数.3.已知,∠ABC 是边长为4cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度均为1cm/s .当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,∠PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,请直接写出∠CMQ度数.4.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.己知四边形ABCD中,AC∠BD.垂足为O,求证:AB2+CD2=AD2+BC2;(2)解决问题:已知AB=2.BC=2,分别以∠ABC的边BC和AB向外作等腰Rt∠BCE和等腰Rt∠ABD;∠如图2,当∠ACB=90°,连接DE,求DE的长;∠如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=6,则S△ABC=.5.在四边形ABCD中,∠DAB+∠DCB=180°,AC平分∠DAB.(1)如图1,求证:BC=CD;(2)如图2,连接BD交AC于点E,若∠ADB=90°,AE=2DE,求∠ABD的度数;(3)如图3,在(2)的条件下,过点C作CH∠AB于点H,∠BCH沿BC翻折,点H的对应点为点F,点G在线段AB上,连接FG,若∠CGF=30°,S△CHG=9,求线段CG的长.【类型】二、全等三角形中的边角问题-公共边模型一、单选题1.如图,∠ACB=90°,AC=BC,AD∠CE,BE∠CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.1.5B.2C.22D.102.如图,BN为∠MBC的平分线,P为BN上一点,且PD∠BC于点D,∠APC+∠ABC=180°,给出下列结论:∠∠MAP=∠BCP;∠P A=PC;∠AB+BC=2BD;∠四边形BAPC的面积是∠PBD面积的2倍,其中结论正确的个数有()A.4个B.3个C.2个D.1个3.如图,∠ABC的面积为9cm2,BP平分∠ABC,AP∠BP于P,连接PC,则∠PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm2二、解答题4.如图,在ABC中,BE是ABC∠=∠+∠.∠的平分线,AD BE⊥,垂足为D,求证:21C5.如图,在四边形ABCD 中,已知BD 平分∠ABC ,∠BAD +∠C =180°,求证:AD =CD .6.如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.7.已知,如图ABC ∆中,AB AC =,90A ∠=︒,ACB ∠的平分线CD 交AB 于点E ,90BDC ∠=︒, 求证:2CE BD =.8.如图,在∠ABC 中,点D 为边BC 的中点,点E 在∠ABC 内,AE 平分∠BAC ,CE∠AE 点F 在AB 上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论9.直线AB:y=x+b分别与x,y轴交于A,B两点,点A的坐标为(-3,0),过点B的直线交x轴正半轴于点C,且OB∠OC=3∠1.(1)求点B的坐标及直线BC的函数表达式;(2)在y轴上存在点P,使得以点B、C、P三点构成的三角形为等腰三角形,请直接写出点P的坐标:______________;(3)在坐标系平面内,存在点D,使以点A,B,D为顶点的三角形与∠ABC全等,画出∠ABD,并求出点D的坐标.【类型】三、全等三角形中的边角问题-边边角模型一、解答题1.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE 绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE+OD 与OC 的数量关系,并说明理由; (2)当∠DCE 绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由; (3)当∠DCE 绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD 、OE 与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.2.如图,OC 平分∠MON ,A 、B 分别为OM 、ON 上的点,且BO >AO ,AC =BC ,求证:∠OAC +∠OBC =180°.3.如图,在四边形ABCD 中,已知BD 平分∠ABC ,∠BAD +∠C =180°,求证:AD =CD .4.如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.【类型】四、全等三角形中的边角问题-X 模型一、填空题1.如图,已知AD 是ABC 的中线,E 是AC 上的一点,BE 交AD 于F ,AC BF =,24DAC ∠=︒,32EBC ∠=︒,∠__________.则ACB二、解答题2.问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC中,若AB=4,AC=3,求BC 边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE =AD,则得到∠ADC∠∠EDB,小明证明∠BED∠∠CAD用到的判定定理是:(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以∠ABC的边AB,AC为边向外作∠ABE和∠ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.3.如图,在∠ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.4.阅读下面材料【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图∠.在∠ABC中,若AB=8,AC=6,求BC边上的中线AD 取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明方法思考:(1)由已知和作图能得到∠ADC∠∠EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)由三角形三边的关系可求得AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【解后感悟】解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中.【灵活运用】如图∠,AD是∠ABC的中线,BE交AC于E,交AD于F,且AE=EF若EF=4,EC=3,求线段BF的长.5.阅读下面的题目及分析过程.已知:如图点E是BC的中点,点A在DE上,且AB DC=说明:BAE D∠=∠分析:说明两个角相等,常用的方法是应用全等三角形或等腰三角形的性质.观察本题中说明的两个角,它们既不在同一个三角形中,而且们所在两个三角形也不全等.因此,要说明BAE D∠=∠,必须添加适当的辅助线,构造全等三角形或等腰三角形,现在提供两种添加辅助线的方法如下:CF AB,交DE的延长线于点F.如图∠过点C作//如图∠延长DE至点M,使ME DE=,连接BM.(1)请从以上两种辅助线中选择一种完成上题的说理过程.(2)在解决上述问题的过程中,你用到了哪种数学思想?请写出一个._______________.(3)反思应用:⊥于点B.如图,点B是AE的中点,BC BD+与CD之间的大小关系,并说请类比(1)中解决问题的思想方法,添加适当的辅助线,判断线段AC DE明理由.6.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到∠ADC∠∠EDB,依据是.A.SSS B.SAS C.AAS D.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.7.如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE 的中点,BN ∠AC ,BN 与AG 延长线交于点N .(1)若∠BAN =15°,求∠N ;(2)若AE =CF ,求证:2AG =AF .8.如图,等边三角形ABC 中,E 是线段AC 上一点,F 是BC 延长线上一点.连接BE ,AF .点G 是线段BE 的中点,BN AC ,BN 与AG 延长线交于点N .(1)若15BAN ∠=︒,求N ∠;(2)若AE CF =,求证:2AG AF =.9.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在ABC 中,AB 8=,AC 6=,D 是BC 的中点,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,请补充完整证明“ADC ∠EDB ”的推理过程.()1求证:ADC ∠EDB证明:延长AD 到点E ,使DE AD = 在ADC 和EDB 中AD ED(=已作),ADC EDB(∠∠=______),CD BD(=中点定义), ADC ∴∠EDB(______),()2探究得出AD 的取值范围是______;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】()3如图2,ABC 中,B 90∠=,AB 2=,AD 是ABC 的中线,CE BC ⊥,CE 4=,且ADE 90∠=,求AE 的长.10.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小明的方法思考:(1)由已知和作图能得到∠ADC∠∠EDB 的理由是_____.A .SSSB .SASC .AASD .HL(2)求得AD 的取值范围是______.A .6<AD <8B .6≤AD≤8C .1<AD <7 D .1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中. 【问题解决】(3)如图2,AD 是∠ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF.求证:AC =BF.11.P 为等边∠ABC 的边AB 上一点,Q 为BC 延长线上一点,且P A =CQ ,连PQ 交AC 边于D . (1)证明:PD =DQ .(2)如图2,过P 作PE ∠AC 于E ,若AB =6,求DE 的长.12.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【类型】五、全等三角形中的边角问题-一线三等角模型一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边∠DPE ,连结BE ,则∠BDE 的面积为( )A .43B .2C .4D .632.如图,在∠ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3B .2C .94D .923.如图,AC =CE ,∠ACE =90°,AB ∠BD ,ED ∠BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm二、填空题 4.如图,直线l 1∠l 3,l 2∠l 3,垂足分别为P 、Q ,一块含有45°的直角三角板的顶点A 、B 、C 分别在直线l 1、l 2、线段PQ 上,点O 是斜边AB 的中点,若PQ 72OQ 的长等于 _____.5.如图,一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°),若OA =50cm ,OB =28cm ,则点C 离地面的距离是____ cm .三、解答题6.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.∠求证:ABP PCD △△∽;∠当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.7.问题背景:(1)如图∠,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图∠,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图∠,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.8.(1)课本习题回放:“如图∠,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,2.5cm AD =,1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图∠,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图∠,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)9.(1)如图(1)在∠ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ∠直线m ,CE ∠直线m ,垂足分别为点D 、E .求证:DE =BD +CE ;(2)如图(2)将(1)中的条件改为:在∠ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请给出证明;若不成立,请说明理由.10.(1)如图1,在∠ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ∠直线m ,CE ∠直线m ,垂足分别为点D 、E .求证:∠ABD ∠∠CAE ;(2)如图2,将(1)中的条件改为:在∠ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论∠ABD ∠∠CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且∠ABF 和∠ACF 均为等边三角形,连接BD ,CE ,若∠BDA =∠AEC =∠BAC ,求证:∠DEF 是等边三角形.。
2021年高考数学二轮复习专题1.8推理与证明、复数教学案文一.考场传真1. 【xx课标1,文3】下列各式的运算结果为纯虚数的是A.i(1+i)2B.i2(1-i) C.(1+i)2D.i(1+i)【答案】C【解析】由为纯虚数知选C.2.【xx课标II,文2】A. B. C. D.【答案】B【解析】由题意2(1)(2)2313i i i i i++=++=+,故选B.3.【xx课标3,文2】复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C4.【xx课标1,文10】如图是为了求出满足的最小偶数n填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D 【解析】由题意选择,则判定框内填,因为选择偶数,所以矩形框内填,故选D .5.【xx 课标3,文8】执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2【答案】D【解析】若,第一次进入循环,成立,100100,1010S M ==-=-,成立,第二次进入循环,此时101001090,110S M -=-==-=,不成立,所以输出成立,所以输入的正整数的最小值是2,故选D. 6.【xx 课标II ,文9】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D7.【xx课标II,文10】执行右面的程序框图,如果输入的,则输出的A.2B.3C.4D.5【答案】B二.高考研究【考纲解读】1.考纲要求1.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想;②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环. (2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6.推理与证明(1)合情推理与演绎推理.①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明.①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点;②了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.7.数系的扩充与复数的引入(1)复数的概念,①理解复数的基本概念;②理解复数相等的充要条件;③了解复数的代数表示法及其几何意义.(2)复数的四则运算①会进行复数代数形式的四则运算;②了解复数代数形式的加、减运算的几何意义.8.框图(1)流程图:①了解程序框图;②了解工序流程图(即统筹图);③能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.(2)结构图①了解结构图;②会运用结构图梳理已学过的知识、梳理收集到的资料信息.2.命题规律:1.题量、题型稳定:复数、算法程序框图都是高考中的基础题型,一般地,复数与算法程序框图在高考试题中出现两个题目;推理证明、新定义的题,在高考题中也经常出现,以填空、选择题的形式出现,一般作为选择、填空的最后一题,一般这些题在高考中出现一题或两题.2.知识点分布均衡、重难点突出,对复数、算法、推理与证明等知识点的考查比较全面,更注重知识点有机结合以及重难点的分布,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度.算法是数学及其应用的重要组成部分,是计算科学的重要基础,也是新课标高考中新增加的内容,也是新课标高考中新增加的元素.高考十分注重逻辑思维的考查,以循环结构为主,有的也考查条件结构,注重知识点的有机整合,强调知识点在学科内的综合,在考查中也渗透数列、函数以及统计等方面的内容.推理与证明是新课标中的重要内容.高考中也十分注重逻辑思维能力的考查,在推理部分,主要考查归纳推理、类比推理以及新定义,在考查时结合数列、函数以及几何部分的内容,命题时注重了数学学科重点内容的考查以及新定义的理解,并保持必要的深度;在证明部分,加强了直接证明与间接证明法以及数学归纳法在综合中的应用,考查学生的推理论证能力.复数是高中数学的一个基本组成部分.高考中注重复数概念、运算以及几何意义的考查,以复数的四则运算为基石,综合考查复数的概念以及几何意义的理解.3.设计新颖、形式多样、难易适度,复数、算法都是高考中的基础知识,在高考中的考查一般以容易题出现,考查的形式以选择题、填空题出现,考查学生对于复数相关概念以及几何形式的理解以及分析问题的能力、逻辑思维能力;推理证明、新定义一般处于选择、填空题的最后一题,考查学生逻辑推理能力以及新定义的理解,属于较难题.3.学法导航1. 归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察—归纳—猜想—证明”,解题的关键在于正确的归纳猜想.2. 类比推理是合情推理中的一类重要推理,强调的是两类事物之间的相似性,有共同要素是产生类比迁移的客观因素,类比可以由概念性质上的相似性引起,如等差数列与等比数列的类比,也可以由解题方法上的类似引起.当然首先是在某些方面有一定的共性,才能有方法上的类比.3.复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.2.复数的代数运算多用于次数较低的运算,但应用i 、ω的性质可简化运算.注意下面结论的灵活运用:(1)(1±i)2=±2i;(2)1+i 1-i =i ,1-i 1+i =-i ;(3)ω2+ω+1=0,ω3=1,其中ω=-12±32i.(4)i n +i n +1+i n +2+i n +3=0(n ∈N).在进行复数的运算时,不能把实数集的运算法则和性质照搬到复数集中来,如下面的结论,当z ∈C 时,不是总成立的:(1)(z m )n =z mn (m ,n 为分数);(2)若z m =z n ,则m =n(z≠1);(3)若z 21+z 22=0,则z 1=z 2=0.注意利用共轭复数的性质,将zz 转化为||z 2,即复数的模的运算,常能使解题简捷.一.基础知识整合基础知识:1.算法:①自然语言就是人们日常使用的语言,可以是人之间来交流的语言、术语等,通过分步的方式来表达出来的解决问题的过程.其优点为:好理解,当算法的执行都是先后顺序时比较容易理解;缺点是:表达冗长,且不易表达清楚步骤间的重复操作、分情况处理现象、先后顺序等问题.②程序框图程序框图是用规定的图形符号来表达算法的具体过程.优点是:简捷形象、步骤的执行方向直观明了③程序语言程序语言是将自然语言和框图所表达的解决问题的步骤用特定的计算机所识别的低级和高级语言编写而成.特点:能在计算机上执行,但格式要求严格2.程序框图构成程序框的图形符号及其作用3.几种重要的结构(1)顺序结构(2)条件结构(3)循环结构4.算法语句:输入语句输入语句的格式:INPUT “提示内容”;变量输出语句输出语句的一般格式:PRINT“提示内容”;表达式赋值语句赋值语句的一般格式:变量=表达式赋值语句中的“=”称作赋值号条件语句(1)“IF—THEN—ELSE”语句格式:IF 条件 THEN语句1ELSE语句2END IF(2)“IF—THEN”语句格式:IF 条件 THEN语句END IF循环语句(1)当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND(2)直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件【推理与证明】1.合情推理:前提为真时,结论可能为真的推理叫做合情推理.(1)归纳推理:根据一类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理叫做归纳推理,它是由部分到整体、由个别到一般的推理.(2)类比推理:根据两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,它是由特殊到特殊的推理.2.演绎推理:根据一般性的原理,推出某个特殊情况下的结论叫做演绎推理,它是由一般到特殊的推理. 基本形式是三段论:(1)大前提,已知的一般性原理;(2)小前提,所研究的特殊情况;(3)结论.3.直接证明:综合法、分析法(1)综合法:从已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.(2)分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为一个明显成立的条件为止的证明方法.4.反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.5.数学归纳法:(1)当取第一个值(例如)时,证明命题成立;(2)假设当时命题成立,并证明当时,命题也成立,于是命题对一切,,命题都成立,这种证明方法叫做数学归纳法.运用数学归纳法证明命题分为两步:第一步是递推的基础,第二是递推的依据,这两步缺一不可的.【复数】1.复数的相关概念:(1)形如的数叫复数,其中叫做复数的虚数单位,且,叫做复数的实部,叫做复数的虚部.复数集用集合C 表示.(2)复数的分类:对于复数①当时,是实数;②当时,是虚数;③当且时,是纯虚数.(3)复数相等:若,,则的充要条件是且.特别地:若的充要条件是.2.复数的几何意义:(1)复平面:轴叫做实轴,实轴上的点都表示实数;y轴叫做虚轴,除原点外,虚轴上的点都表示纯虚数.(2)复数与复平面内的点一一对应.(3)复数与复平面内所有以原点O为起点的向量一一对应.(4)复数的模:向量的模叫做复数的模,记作或,且.3.复数的四则运算:(1)共轭复数:实部相等,虚部互为相反数.若,则它的共轭复数.(2)复数的加法、减法、乘法、除法运算:除法法则:()()()()2222a bi c dia bi ac bd bc adic di c di c di cd c d+-++-==+++-++;4.重要性质:,,,.,,,.二.高频考点突破考点1程序框图的执行【例1】【xx四川德阳三校联考】执行如图所示的程序框图,若输入,输出的1.75,则空白判断框内应填的条件为()A. <1B.<0.5C.<0.2D.<0.1【答案】B【规律方法】此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.【举一反三】【xx江西宜春六校联考】按下列程序框图来计算:如果输入的,应该运算()次才停止A. 2B. 3C. 4D. 5【答案】C考点2 简单程序的运用【例2】如图所示,运行该程序,当输入分别为时,最后输出的的值是()A. B. C. D.【答案】B【解析】程序的作用是取中的最大值,故.【规律方法】输入、输出和赋值语句是任何一个算法必不可少的语句,一个语句可以输出多个表达式.在赋值语句中,一定要注意其格式的要求,如“=”的右侧必须是表达式,左侧必须是变量;一个语句只能给一个变量赋值;变量的值始终等于最近一次赋给它的值,先前的值将被替换;条件语句的主要功能是实现算法中的条件结构,解决像“判断一个数的正负”“比较两个数的大小”“对一组数进行排序”“求分段函数的函数值”等问题,计算时就需要用到条件语句.【举一反三】1.下面求的值得伪代码中,正整数的最大值为 .【答案】xx考点3 归纳推理【例3】【山东省淄博市xx 届12月考试】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术. 得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”: , 3344553344558815152424===,,,则按照以上规律,若具有 “穿墙术”,则n= A. 35 B. 48 C. 63 D. 80【答案】C【解析】根据规律得313,824,1535,2446,=⨯=⨯=⨯=⨯ ,所以 ,选C.【规律方法】归纳推理具有由特殊到一般,由具体到抽象的认知功能,所得的结论未必是正确的,但是对于数学家的发现、科学家的发明,归纳推理却是十分有用的,通过观察、实验对有限的资料作出归纳整理,提出带有规律性的猜想. 归纳推理也是数学研究的独特方法之一.【举一反三】【山东省、湖北省重点中学xx 届第二次联考】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第行,第列的数记为,比如3242549,15,23a a a ===,,,,若,则( )A. B. C. D.【答案】D考点4 类比推理【例4】已知是的三边,若满足,即,为直角三角形,类比此结论:若满足(,3)n n na b c n N n +=∈≥时,的形状为________.(填“锐角三角形”,“直角三角形”或“钝角三角形”).【答案】锐角三角形 【解析】易得最大,则角最大,(,3)1n n n n n a b a b c n N n c c ⎛⎫⎛⎫+=∈≥⇒+= ⎪ ⎪⎝⎭⎝⎭ 222222221cos 0022n n a b a b a b c a b c C C c c c c ab π+-⎛⎫⎛⎫⎛⎫⎛⎫⇒+>+=⇒+>⇒=>⇒<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故该三角形为锐角三角形.【规律方法】类比推理主要是找出两类事物的共性,一般的类比有以下几种:①线段的长度——平面几何中平面图形的面积——立体几何中立体图形的体积的类比;②等差数列与等比数列的类比,等差数列中两数相加类比到等比数列中两数相乘,等差数列中两数的差类比到等比数列中两数相除.在类比的时候还需注意,有些时候不能将式子的结构改变,只需将相应的量进行替换.【举一反三】已知36的所有正约数之和可按如下方法得到:因为,所以36的所有正约数之和为2222(133)(22323)(122)(133)91++++⨯+⨯=++++=参照上述方法,可求得200的所有正约数之和为 .【答案】【解析】因,故的所有正约数之和为465)551)(2221(232=+++++.故应填答案.考点5复数【例5】 【河南省中原名校xx 届第五次联考】已知,若是纯虚数,则在复平面内,复数所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B 【规律方法】处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理.(1)复数相等是一个重要概念,它是复数问题实数化的重要工具,通过复数的代数形式,借助两个复数相等,可以列出方程(组)来求未知数的值.(2)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.对于复数概念、几何意义等相关问题的求解,其核心就是要将复数化为一般形式,即,实部为,虚部为.(1)复数的概念:①为实数;②为纯虚数且;③为虚数.(2)复数的几何意义:①在复平面内对应的点在复平面对应向量;②复数的模.(3)共轭复数:复数与互为共轭复数.【举一反三】若复数的实部与虚部相等,则的值为( )A.-6B.-3C.3D.6【答案】B 【解析】因5)1225)2)(1(21i b b i bi i bi +--=--=+-,故由题设,即,应选B.1. 执行下列程序框图,如果输出的值为3,那么输入的取值范围是( ) 开始x 输入0i =2log x x =0?x <1i i =+i 输出结束是 否A.B.C.D.【答案】C押题依据算法框图是高考命题的热点题型.2. 已知,是虚数单位.若与互为共轭复数,则()A. B. C. D.3【答案】D【解析】()()212i212i555a a a a--+-+==-,()()()5i2i5i510i3i3i3i1i2i2i2i5+-+-=-=-=+--+,∵与互为共轭复数,∴,解得.故选D.押题依据复数是高考经常考的一个热点,难度不大.3. 观察下列各式:;;;;若按上述规律展开后,发现等式右边含有“xx”这个数,则的值为()A.43 B.44 C.45 D.46【答案】C押题依据数表(阵)是高考命题的常见类型,本题以三角形数表中对应的各组包含的正整数的和的计算为依托,围绕简单的计算、归纳猜想等,考查考生归纳猜想能力.4. “MN 是经过椭圆(a >b >0)的焦点的任一弦,若过椭圆中心O 的半弦,则2222111||||a MN OP a b +=+.”类比椭圆的性质,可得“MN 是经过双曲线(a >0,b >0)的焦点的任一弦(交于同支),若过双曲线中心O 的半弦,则 .”【答案】2222111||||a MN OP a b -=- 【解析】由于在椭圆中2222111||||a MN OP a b +=+,在双曲线中和变为差,所以类比结果应是2222111||||a MN OP a b-=-. 押题依据 本题考查类比推理等基础知识,类比推理也是高考考查的热点.5. 分别计算,,,,,…,并根据计算的结果,猜想的末位数字为 .【答案】8押题依据 根据n 个等式或不等式归纳猜想一般规律的式子是近几年的高考热点,相对而言,归纳推理在高考中出现的机率较大.。
回扣11 推理与证明、算法、复数1.复数的相关概念及运算法则 (1)复数z =a +b i(a ,b ∈R )的分类 ①z 是实数⇔b =0; ②z 是虚数⇔b ≠0; ③z 是纯虚数⇔a =0且b ≠0. (2)共轭复数复数z =a +b i 的共轭复数z =a -b i. (3)复数的模复数z =a +b i 的模|z |=a 2+b 2. (4)复数相等的充要条件a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).特殊地,a +b i =0⇔a =0且b =0(a ,b ∈R ). (5)复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; 乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ;除法:(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d2i.()其中a ,b ,c ,d ∈R .2.复数的几个常见结论 (1)(1±i)2=±2i. (2)1+i 1-i =i ,1-i1+i =-i. (3)i 4n=1,i4n +1=i ,i4n +2=-1,i4n +3=-i ,i 4n +i4n +1+i4n +2+i4n +3=0(n ∈Z ).(4)ω=-12±32i ,且ω0=1,ω2=ω,ω3=1,1+ω+ω2=0.3.程序框图的三种基本规律结构 (1)挨次结构:如图(1)所示. (2)条件结构:如图(2)和图(3)所示. (3)循环结构:如图(4)和图(5)所示.4.推理推理分为合情推理与演绎推理,合情推理包括归纳推理和类比推理;演绎推理的一般模式是三段论. 合情推理的思维过程 (1)归纳推理的思维过程试验、观看―→概括、推广→猜想一般性结论 (2)类比推理的思维过程试验、观看―→联想、类推→猜想新的结论 5.证明方法(1)分析法的特点:从未知看需知,逐步靠拢已知. 推理模式: 框图表示Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件(2)综合法的特点:从已知看可知,逐步推出未知. 推理模式框图表示:P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (其中P 表示已知条件、已有的定义、公理、定理等,Q 表示要证明的结论). (3)反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最终得出冲突,因此说明假设错误,从而证明白原命题成立,这样的证明方法叫做反证法.1.复数z 为纯虚数的充要条件是a =0且b ≠0(z =a +b i ,a ,b ∈R ).还要留意奇妙运用参数问题和合理消参的技巧.2.复数的运算与多项式运算类似,要留意利用i 2=-1化简合并同类项.3.在解决含有循环结构的框图时,要弄清停止循环的条件.留意理解循环条件中“≥”与“>”的区分. 4.解决程序框图问题时,要留意流程线的指向与其上文字“是”“否”的对应.5.类比推理易盲目机械类比,不要被表面的假象(某一点表面相像)迷惑,应从本质上类比.用数学归纳法证明时,易盲目以为n 0的起始值n 0=1,另外留意证明传递性时,必需用n =k 成立的归纳假设. 6.在循环结构中,易错误判定循环体结束的条件,导致错求输出的结果.1.复数z 满足z (2-i)=1+7i ,则复数z 的共轭复数为( ) A .-1-3iB .-1+3iC .1+3iD .1-3i 答案 A解析 ∵z (2-i)=1+7i ,∴z =1+7i 2-i =(1+7i )(2+i )(2-i )(2+i )=-5+15i 5=-1+3i ,共轭复数为-1-3i.2.复数z 1,z 2在复平面内对应的点关于直线y =x 对称,且z 1=3+2i ,则z 1·z 2等于( ) A .13iB .-13iC .13+12iD .12+13i答案 A解析 z 1=2+3i ,z 1·z 2=(2+3i)(3+2i)=13i.3.用反证法证明命题:三角形的内角至少有一个钝角.假设正确的是( ) A .假设至少有一个钝角 B .假设至少有两个钝角 C .假设没有一个钝角D .假设没有一个钝角或至少有两个钝角 答案 C解析 原命题的结论为至少有一个钝角.则反证法需假设结论的反面.“至少有一个”的反面为“没有一个”,即假设没有一个钝角.4.下面几种推理过程是演绎推理的是( ) A .由平面三角形的性质推想空间三棱锥的性质 B .全部的金属都能够导电,铀是金属,所以铀能够导电C .高一参与军训有12个班,1班51人,2班53人,3班52人,由此推想各班都超过50人D .在数列{a n }中,a 1=2,a n =2a n -1+1(n ≥2),由此归纳出{a n }的通项公式 答案 B解析 A .由平面三角形的性质推想空间三棱锥的性质为类比推理.B .全部的金属都能够导电,铀是金属,所以铀能够导电.由一般到特殊,为演绎推理.C .高一参与军训有12个班,1班51人,2班53人,3班52人,由此推想各班都超过50人为归纳推理.D .在数列{a n }中,a 1=2,a n =2a n -1+1(n ≥2),由此归纳出{a n }的通项公式为归纳推理.5.z =m +i1-i(m ∈R ,i 为虚数单位)在复平面上的点不行能位于( )A .第一象限B .其次象限C .第三象限D .第四象限 答案 D解析 z =(m +i )(1+i )(1-i )(1+i )=m -1+(m +1)i2,由于m -1<m +1,故不行能在第四象限.6.阅读如图所示的程序框图,运行相应的程序,若输出的S 为1112,则推断框中填写的内容可以是( ) A .n =6 B .n <6 C .n ≤6 D .n ≤8 答案 C解析 S =0,n =2,推断是,S =12,n =4,推断是,S =12+14=34,n =6,推断是,S =12+14+16=1112,n =8,推断否,输出S ,故n ≤6.7.以下是解决数学问题的思维过程的流程图:在此流程图中,①,②两条流程线与“推理与证明”中的思维方法匹配正确的是( ) A .①—综合法,②—分析法 B .①—分析法,②—综合法 C .①—综合法,②—反证法 D .①—分析法,②—反证法 答案 A解析 依据已知可得该结构图为证明方法的结构图.由已知到可知,进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,故①②两条流程线代表“推理与证明”中的思维方法是①—综合法,②—分析法.8.执行如图所示的程序框图,若输出的是n=6,则输入整数p的最小值为( )A.15 B.16 C.31 D.32答案 B解析列表分析如下:是否连续循环S n循环前 0 1第一圈是 1 2其次圈是 3 3第三圈是 7 4第四圈是 15 5第五圈是 31 6第六圈否故当S值不大于15时连续循环,大于15但不大于31时退出循环,故p的最小正整数值为16.9.小明用电脑软件进行数学解题力量测试,每答完一道题,软件都会自动计算并显示出当前的正确率(正确率=已答对题目数÷已答题目总数),小明依次共答了10道题,设正确率依次为a1,a2,a3,…,a10.现有三种说法:①若a1<a2<a3<…<a10,则必是第一道题答错,其余题均答对;②若a1>a2>a3>…>a10,则必是第一道题答对,其余题均答错;③有可能a5=2a10,其中正确的个数是( )A.0 B.1 C.2 D.3答案 D解析①②明显成立,③前5个全答对,后5个全答错,符合题意,故选D. 10.下列类比推理的结论不正确的是( )①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”;②类比“设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8成等差数列”,得到猜想“设等比数列{b n}的前n项积为T n,则T4,T8T4,T12T8成等比数列”;③类比“平面内,垂直于同一条直线的两直线相互平行”,得到猜想“空间中,垂直于同一条直线的两直线相互平行”;④类比“设AB为圆的直径,P为圆上任意一点,直线PA,PB的斜率存在,则k PA·k PB为常数”,得到猜想“设AB为椭圆的长轴,P为椭圆上任意一点,直线PA,PB的斜率存在,则k PA·k PB为常数”.A.①④B.①③C.②③ D.②④答案 B解析②等差数列中结论成立,而等比数列中T4=a41·q6,T8T4=a41·q22,T12T8=a41·q38也成立;④由圆中k PA·k PB为-1,而类比到椭圆:k PA·k PB=-a2b2或-b2a2,也成立;①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”不成立,即a·b·c≠a·(b·c),这由向量数量积的定义打算的.③类比“平面内,垂直于同一条直线的两直线相互平行”,得到猜想“空间中,垂直于同一条直线的两直线相互平行”不成立,空间中可能消灭相交,异面的状况.故选B.11.图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律连续下去,则a n=__________.答案3n2-n2解析由题观看所给的图形,对应的点分别为1,1+4,1+4+7,1+4+7+10,…,可得点的个数为首项为1,公差为3的等差数列的和,则a n=S n=n+3n(n-1)2=3n2-n2.12.在△ABC中,AD平分∠A的内角且与对边BC交于D点,则BDCD=ABAC,将命题类比到空间:在三棱锥A-BCD 中,平面ADE平分二面角B-AD-C且与对棱BC交于E点,则可得到的正确命题结论为________.答案 BE CE =S △ABDS △ACD解析 在△ABC 中,作DE ⊥AB ,DF ⊥AC ,则DE =DF ,所以AB AC =S △ABD S △ACD =BDCD,依据面积类比体积,长度类比面积可得V B -ADE V C -ADE =S △ABD S △ACD ,即BE CE =S △ABDS △ACD. 13.执行如图所示的程序框图,则输出的结果是________.答案 32解析 由题意得log 2n +1n +2=log 2(n +1)-log 2(n +2),由程序框图的计算公式,可得S =(log 22-log 23)+(log 23-log 24)+…+[log 2n -log 2(n +1)]=1-log 2(n +1),由S <-4,可得1-log 2(n +1)<-4⇒log 2(n +1)>5,解得n >31, 所以输出的n 为32.14.在平面上,假如用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有c 2=a 2+b 2.猜想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,假如用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.答案 S 21+S 22+S 23=S 24解析 将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.15.复数z =(m 2+3m -4)+(m 2-10m +9)i(m ∈R ), (1)当m =0时,求复数z 的模;(2)当实数m 为何值时,复数z 为纯虚数;(3)当实数m 为何值时,复数z 在复平面内对应的点在其次象限? 解 (1)当m =0时,z =-4+9i , ∴||z =(-4)2+92=97.(2)当⎩⎪⎨⎪⎧ m 2+3m -4=0,m 2-10m +9≠0,即⎩⎪⎨⎪⎧m =-4或m =1,m ≠9且m ≠1,即当m =-4时,复数z 为纯虚数.(3)当⎩⎪⎨⎪⎧m 2+3m -4<0,m 2-10m +9>0,即⎩⎪⎨⎪⎧-4<m <1,m <1或m >9,即当-4<m <1时,复数z 在复平面内对应的点在其次象限.16.(1)tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1;(2)tan 5°tan 10°+tan 10°tan 75°+tan 75°tan 5°=1. 由以上两式成立,推广到一般结论,写出你的推论.解 若α,β,γ都不是90°,且α+β+γ=90°,则tan αtan β+tan βtan γ+tan αtan γ=1.。
高考数学专题命题解读1.高考对排列组合的考查,重点是特殊元素与特殊位置、两元素相邻或不相邻、分组、分配等问题。
题型一般与生活实际联系紧密。
2.高考对二项式定理的考查,重点是二项展开基本定理考查特定项、系数、二项式系数等问题,同时会涉及到赋值法的应用。
命题分析2024年高考新高考Ⅰ卷的排列组确定所有可能结果,其实Ⅰ卷的题目也其中逻辑推理能力比较重要,而且都是试题精讲一、填空题1.(2024新高考Ⅱ卷·14)在如图的则共有种选法,在所有符合上述要求的考数学真题题型分类解析08排列组合与二项式定理考向 点是特殊或不相一般与生重点是二特定项的时会涉及排列组合202202202202二项式定理 202排列组合是体现在概率中的,后续专题会体现出来。
题目也可以采用列举法,这两题考查的方向偏向于与实且都是压轴题。
预计2025年高考还是主要考查排列组合图的4×4方格表中选4个方格,要求每行和每列均恰要求的选法中,选中方格中的4个数之和的最大值是解析解析 式定理式定理考查统计2023·新高考Ⅰ卷,13 2022·新高考Ⅱ卷,5 2023·新高考Ⅱ卷,3 2024·新高考Ⅱ卷,14 2022·新高考Ⅰ卷,13 。
Ⅱ卷考查了通过列举来于与实际生活联系在一起;列组合的应用,题型多变。
列均恰有一个方格被选中,大值是.【答案答案】】 24 112【分析分析】】由题意可知第一由题意可知第一、、二、三、四列分别有4、3、2、1个方格可选个方格可选;;利用列举法写出所有的可能结果利用列举法写出所有的可能结果,,即可求解.【详解详解】】由题意知由题意知,,选4个方格个方格,,每行和每列均恰有一个方格被选中每行和每列均恰有一个方格被选中,, 则第一列有4个方格可选个方格可选,,第二列有3个方格可选个方格可选,, 第三列有2个方格可选个方格可选,,第四列有1个方格可选个方格可选,, 所以共有432124×××=种选法种选法;;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一分别表示第一、、二、三、四列的数四列的数字字, 则所有的可能结果为则所有的可能结果为:: (11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中所以选中的方格中,,(15,21,33,43)的4个数之和最大个数之和最大,,为152********+++=. 故答案为故答案为::24;112 【点睛点睛】】关键点点睛关键点点睛::解决本题的关键是确定第一解决本题的关键是确定第一、、二、三、四列分别有4、3、2、1个方格可选个方格可选,,利用列举法写出所有的可能结果.一、单选题1.(2022新高考Ⅱ卷·5)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种【答案答案】】B【分析分析】】利用捆绑法处理丙丁利用捆绑法处理丙丁,,用插空法安排甲用插空法安排甲,,利用排列组合与计数原理即可得解【详解详解】】因为丙丁要在一起因为丙丁要在一起,,先把丙丁捆绑先把丙丁捆绑,,看做一个元素看做一个元素,,连同乙连同乙,,戊看成三个元素排列,有3!种排列方式;为使甲不在两端为使甲不在两端,,必须且只需甲在此三个元素的中间两个位置任选一个位置插入必须且只需甲在此三个元素的中间两个位置任选一个位置插入,,有2种插空方式种插空方式;;注意到丙丁两人的顺序可交换注意到丙丁两人的顺序可交换,,有2种排列方式种排列方式,,故安排这5名同学共有名同学共有::3!2224××=种不同的排列方式种不同的排列方式,,故选故选::B 2.(2023新高考Ⅱ卷·3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种二、填空题3.(2022新高考Ⅰ卷·13)81()y x y x −+的展开式中26x y 的系数为(用数字作答).修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答). 【答案答案】】64【分析分析】】分类讨论选修2门或3门课门课,,对选修3门,再讨论具体选修课的分配再讨论具体选修课的分配,,结合组合数运算求解.【详解详解】(】(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种; ②若体育类若体育类选修课选修课2门,则不同的选课方案共有2144C C 24=种;综上所述综上所述::不同的选课方案共有16242464++=种. 故答案为故答案为::64.一、排列与排列数1、定义:从n 个不同元素中取出()m m n ≤个元素排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.从n 个不同元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号mn A 表示.2、排列数的公式:()()()()!121!mnn A n n n n m n m =−−−+=− . 特例:当m n =时,()()!12321m n A n n n n ==−−⋅⋅ ;规定:0!1=. 3、排列数的性质:①11m m n n A nA −−=;②111mm m n n n n A A A n m n m+−==−−;③111m m m n n n A mA A −−−=+.二、组合与组合数1、定义:从n 个不同元素中取出()m m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.从n 个不同元素中取出()m m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号mn C 表示.2、组合数公式及其推导求从n 个不同元素中取出m 个元素的排列数m n A ,可以按以下两步来考虑: 第一步,先求出从这n 个不同元素中取出m 个元素的组合数m n C ; 第二步,求每一个组合中m 个元素的全排列数m n A ; 根据分步计数原理,得到m m m n n m A C A =⋅;因此()()()121!m mn nm m n n n n m A C A m −−−+== .这里n ,m N +∈,且m n ≤,这个公式叫做组合数公式.因为()!!m n n A n m =−,所以组合数公式还可表示为:()!!!m n n C m n m =−.特例:01n n n C C ==.注意:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题.公式(1)(2)(1)C !m n n n n n m m −−⋅⋅⋅−+=常用于具体数字计算,!C !()!m n n m nm =−常用于含字母算式的化简或证明.3、组合数的主要性质:①m n m n n C C −=;②11m m mn n n C C C −++=.4、组合应用题的常见题型:①“含有”或“不含有”某些元素的组合题型 ②“至少”或“最多”含有几个元素的题型三、排列和组合的区别组合:取出的元素地位平等,没有不同去向和分工. 排列:取出的元素地位不同,去向、分工或职位不同.注意:排列、组合都是研究事物在某种给定的模式下所有可能的配置数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题.排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合综合问题的基本思维是“先组合,后排列”.四、二项式展开式的特定项二项式展开式的特定项、、特定项的系数问题1、二项式定理一般地,对于任意正整数,都有:011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N −−∗+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b −+=, 其中的系数r n C (r =0,1,2,…,n )叫做二项式系数,2、二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次 数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).3、两个常用的二项展开式:①()②4、二项展开式的通项公式二项展开式的通项:1r n r r r n T C a b −+=()0,1,2,3,,r n =…公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是;②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n .n n b a )(+011()(1)(1)n n n r r n r r n n n n n n n a b C a C a b C a b C b −−−=−++−⋅++−⋅ *N n ∈122(1)1n r r n n n n x C x C x C x x +=++++++ r n C注意:①二项式()n a b +的二项展开式的第r +1项和()n b a +的二项展开式的第r +1项是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b −的二项展开式的通项是(只需把b −看成b 代入二项式定理).五、二项式展开式中的最值问题1、二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m mn n n C C C −+=+. ②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n m n n C C −=.③二项式系数和令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++= ,变形式1221r n n n n n n C C C C +++++=− .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==−,,则0123(1)(11)0n n n n n n n n C C C C C −+−++−=−= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +−++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= . ⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T +的二项式系数12n nC−,12n nC+相等且最大.2、系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r r r r A A A A +++≥ ≥ ,从而解出r 来.六、二项式展开式中系数和有关问题常用赋值举例:1、设, 二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令,可得:②令11a b ==,,可得:,即:(假设为偶数),再结合①可得:.r n r rnC a b −r n r r n C b a −1(1)r r n r rr nT C a b −+=−()011222nn n n r n r r n nn nn n n a b C a C a b C a b C a b C b −−−+=++++++ 1a b ==012n nn n n C C C =+++ ()012301nnn n n n n C C C C C =−+−+− 02131n n n n n n n n C C C C C C −+++=+++ n 0213112n n n n n n n n n C C C C C C −−+++=+++=2、若121210()n n n n n n f x a x a x a x a x a −−−−=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a −=+++++ . ③奇数项的系数和与偶数项的系数和(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +−+++= ;偶数项的系数和为135(1)(1)2f f a a a −−+++=. (可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配) (ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a −−+++= ;偶数项的系数和为135(1)(1)2f f a a a +−+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配) 若1210121()n n n n f x a a x a x a x a x −−=+++++ ,同理可得.注意:常见的赋值为令0x =,1x =或1x =−,然后通过加减运算即可得到相应的结果. 【排列组合常用结论排列组合常用结论】】一、解决排列组合综合问题的一般过程1、认真审题,确定要做什么事;2、确定怎样做才能完成这件事,即采取分步还是分类或是分步与分类同时进行,弄清楚分多少类及多少步;3、确定每一步或每一类是排列(有序)问题还是组合(无序)问题,元素总数是多少及取出多少个元素;4、解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略.二、常见排列组合类型及解法1、如图,在圆中,将圆分n 等份得到n 个区域1M ,2M ,3M , ,(2)n M n …,现取(2)k k …种颜色对这n个区域涂色,要求每相邻的两个区域涂不同的两种颜色,则涂色的方案有(1)(1)(1)n n k k −−+−种.2、错位排列公式1(1)(1)!!inn i D n n =−=+⋅∑ 3、数字排列问题的解题原则、常用方法及注意事项(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论. 4、定位、定元的排列问题,一般都是对某个或某些元素加以限制,被限制的元素通常称为特殊元素,被限制的位置称为特殊位置.这一类问题通常以三种途径考虑:(1)以元素为主考虑,这时,一般先解决特殊元素的排法问题,即先满足特殊元素,再安排其他元素; (2)以位置为主考虑,这时,一般先解决特殊位置的排法问题,即先满足特殊位置,再考虑其他位置; (3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.5、解决相邻问题的方法是“捆绑法”,其模型为将n 个不同元素排成一排,其中某k 个元素排在相邻位置上,求不同排法种数的方法是:先将这k 个元素“捆绑在一起”,看成一个整体,当作一个元素同其他元素一起排列,共有11n k n k A −+−+种排法;然后再将“捆绑”在一起的元素“内部”进行排列,共有k k A 种排法.根据分步乘法计数原理可知,符合条件的排法共有11n k nk kk A A −+−+⋅种. 6、解决不相邻问题的方法为“插空法”,其模型为将n 个不同元素排成一排,其中某k 个元素互不相邻(1k n k ≤−+),求不同排法种数的方法是:先将(n k −)个元素排成一排,共有n kn k A −−种排法;然后把k 个元素插入1n k −+个空隙中,共有1k n k A −+种排法.根据分步乘法计数原理可知,符合条件的排法共有n k n k A −−·1k n k A −+种.一、单选题1.(2024·重庆·三模)重庆某高校去年招收学生来自成渝地区2400人,除成渝外的西部地区2000人,中部地区1400人,东部地区1800人,港澳台地区400人.学校为了解学生的饮食习惯,拟选取40人作样本调研,为保证调研结果的代表性,则从该校去年招收的成渝地区学生中不同的抽样结果种数为( )A .402400CB .242400C C .122400CD .102400C2.(2024·北京·三模)已知x的二项式系数之和为64,则其展开式的常数项为( )A .240−B .240C .60D .60−的票价分别对应球场三个不同的区域,五位球迷相约看球赛,则五人中恰有三人在同一区域的不同座位方式共有( )A .30种B .60种C .120种D .240种【答案答案】】C【分析分析】】依题意依题意,,先将在同一区域的三个先将在同一区域的三个人选出并选定区域人选出并选定区域人选出并选定区域,,再对余下的两人分别在其它两个区域进行选择,由分步乘法计数原理即得.【详解详解】】要使五人中恰有三人在同一区域要使五人中恰有三人在同一区域,,可以分成三步完成可以分成三步完成:: 第一步第一步,,先从五人中任选三人先从五人中任选三人,,有35C 种方法种方法;; 第二步再选这三人所在的区域第二步再选这三人所在的区域,,有13C 种方法种方法;;第三步第三步,,将另外两人从余下的两个区域里任选将另外两人从余下的两个区域里任选,,有1122C C ⋅种方法.由分步乘法计数原理由分步乘法计数原理,,共有31115322C C C C 120⋅⋅⋅=种方法.故选:C.4.(2024·四川成都·三模)成实外教育集团自2000年成立以来,一直行走在民办教育的前端,致力于学生的全面发展,对学生的教育视为终身己任,在教育事业上砥砺前行,永不止步.截至目前,集团已开办29所K-12学校和两所大学,其中高中教育学校有11所.集团拟召开综合考评会.经考评后,11所学校得分互不相同,现从中任选3所学校的代表交流发言,则排名为第一名或第五名的学校代表去交流发言的概率为( ) A .2455B .2855C .811D .2755 【答案答案】】D【分析分析】】利用古典概率结合组合数的计算求解即可. 【详解详解】】从11所学校中任选3所学校共有种311C 165=选法. 其中排名为第一名或第五名的学校其中排名为第一名或第五名的学校,,可以分为三种情况可以分为三种情况::第一类第一类::只含有排名为第一名的学校的有29C 36=种选法种选法;;邻的条件下,数字2,4,6也相邻的概率为( ) A .310B .35C .110D .156.(2024·新疆喀什·三模)21x x ++展开式中,3x 的系数为( )A .20B .30C .25D .40【答案答案】】B【分析分析】】分不含2x 项和含有一个2x 项两种情况求解项两种情况求解..【详解详解】】25(1)++x x 展开式中展开式中,,3x 的项为33212133554C 1C C 130x x x x ⋅+⋅⋅=,则3x 的系数为30. 故选故选::B .7.(2024·新疆·三模)西安、洛阳、北京、南京和开封并称中国的五大古都.某旅游博主为领略五大古都之美,决定用两个月的时间游览完五大古都,且每个月只游览五大古都中的两个或三个(五大古都只游览一次),则恰好在同一个月游览西安和洛阳的概率为( )A .15B .25C .12D .35【答案答案】】B【分析分析】】求出事件的总数以及目标事件的数量求出事件的总数以及目标事件的数量,,再用古典再用古典概型计算即可概型计算即可..【详解详解】】将古都分成2个、3个两组个两组,,再在两个月安排旅游顺序再在两个月安排旅游顺序,,故事件总数为2252C A 20⋅=,分2个古都组中含西安个古都组中含西安、、洛阳洛阳,,或3个古都组中含西安个古都组中含西安、、洛阳洛阳,,故恰好在同一个月游览西安和洛阳的事件8.(2024·北京·三模)在2221x x −−的展开式中,5x 项的系数为( ) A .144−B .16−C .16D .144【答案答案】】C【分析分析】】写出()()552112x x −=−−的展开式通项,即可列式求解.【详解详解】】()()552112x x −=−−,其展开式通项公式为()15C 2rr r T x +=−−,0,1,2,3,4,5r =,所以所求5x 项的系数为()()353555C 22C 2806416−−+−=−=,故选故选:: C . 9.(2024·河北秦皇岛·三模)三人被邀请参加同一个时间段的两个晚会,若两个晚会都必须有人去,去几人自行决定,且每人最多参加一个晚会,则不同的去法有( ) A .8种B .12种C .16种D .24种【答案答案】】B【分析分析】】根据参加晚会的人数分类讨论根据参加晚会的人数分类讨论,,利用排列组合数求解即可.【详解详解】】第一种情况第一种情况,,只有两人参加晚会只有两人参加晚会,,有23A 6=种去法种去法;; 第二种情况第二种情况,,三人参加晚会三人参加晚会,,有2232C A 6=种去法种去法,,共12种去法.故选故选::B10.(2024·安徽芜湖·三模)已知A 、B 、C 、D 、E 、F 六个人站成一排,要求A 和B 不相邻,C 不站两端,则不同的排法共有( )种A .186B .264C .284D .336【答案答案】】D【分析分析】】先考虑A 和B 不相邻的排法不相邻的排法,,再考虑A 和B 不相邻不相邻,,且C 站两端的情况站两端的情况,,相减后得到答案. 【详解详解】】先考虑A 和B 不相邻的排法不相邻的排法,,将C 、D 、E 、F 四个人进行全排列四个人进行全排列,,有44A 种情况种情况,,C 、D 、E 、F 四个人之间共有5个空个空,,选择2个排A 和B ,有25A 种情况种情况,,故有4245480A A =种选择种选择,,再考虑A 和B 不相邻不相邻,,且C 站两端的情况站两端的情况,, 先从两端选择一个位置安排C ,有12C 种情况种情况,, 再将D 、E 、F 三个人进行全排列三个人进行全排列,,有33A 种情况最后D 、E 、F 三个人之间共有4个空个空,,选择2个排A 和B ,有24A 种情况种情况,,故有132234C A A 144=种情况种情况,,则要求A 和B 不相邻不相邻,,C 不站两端不站两端,,则不同的安排有480144336−=种情况. 故选故选::D 11.(2024·浙江绍兴·三模)在()()()()()123x x x x a x b +++++的展开式中,含4x 项的系数是10,则()2log a b +=( )A .0B .1C .2D .4【答案答案】】C【分析分析】】在()()()()()123x x x x a x b +++++的展开式中含4x 的项即从5个因式中取4个x ,1个常数项即可写出含4x 的项的项,,则可得出答案.【详解详解】】根据二项展开式可知含4x 项即从5个因式中取4个x ,1个常数项即可写出含4x 的项;所以含4x 的项是()4412310a b x x ++++=,可得4a b +=;即可得()22log log 42a b +==. 故选故选::C 12.(2024·湖北荆州·三模)已知()202422024012202431a a x a x a x x =+++−+L ,则122024a a a +++L 被3除的余数为( )A .3B .2C .1D .0【答案答案】】D【分析分析】】先对二项展开式中的x 进行赋值进行赋值,,得出101212202441a a a +++=− ,再将10124看作()101231+进行展开,再利用二项展开式特点分析即得.【详解详解】】令0x =,得01a =,令1x =,得202401220242a a a a ++++= , 两式相减两式相减,,202410121220242141a a a +++=−=− ,因为()101210120101211011101110121012101210121012431C 3C 3C 3C =+=++++ ,其中01012110111011101210121012C 3C 3C 3+++L 被3整除整除,,所以10124被3除的余数为1, 综上综上,,122024a a a +++L 能被3整除整除.. 故选故选::D.二、多选题13.(2024·山西临汾·三模)在82x 的展开式中( ) A .所有奇数项的二项式系数的和为128 B .二项式系数最大的项为第5项 C .有理项共有两项D .所有项的系数的和为8314.(2024·江西南昌·三模)已知12x x − 的展开式中二项式系数的最大值与+a x x的展开式中1x 的系数相等,则实数a 的值可能为( )A B .D .15.(2024·山西·三模)已知函数2120121241f x x a a x a x a x =−=+++⋅⋅⋅+,则( )A .333124C a =×B .()f x 展开式中,二项式系数的最大值为612CC .12123123a a a a +++⋅⋅⋅+=D .()5f 的个位数字是1【答案答案】】BD【分析分析】】对于A :根据二项展开式分析求解根据二项展开式分析求解;;对于B :根据二项式系数的性质分析求解根据二项式系数的性质分析求解;;对于C :利用赋值法值法,,令0x =、1x =即可得结果即可得结果;;对于D :因为()()125201f =−,结合二项展开式分析求解.【详解详解】】对于选项A :()1241x −的展开式的通项为()()()12121211212C 4114C ,0,1,2,,12rr rr r rr r T x x r −−−+=⋅−=−⋅⋅⋅=⋅⋅⋅,令9r =,可得()93933334121214C 4C T x x =−⋅⋅⋅=−×⋅, 所以333124C a =−×,故A 错误错误;;对于选项B :因为12n =为偶数为偶数,,可知二项式系数的最大值为612C ,故B 正确正确;; 对于选项C :令0x =,可得01a =;令1x =,可得12012123a a a a +++⋅⋅⋅+=; 所以121231231a a a a +++⋅⋅⋅+=−,故C 错误错误;;对于选项D :因为()()125201f =−,且()12201−的展开式的通项为()12112C 201,0,1,2,,12kkk k T k −+=⋅⋅−=⋅⋅⋅, 可知当0,1,2,,11k =⋅⋅⋅,1k T +均为20的倍数的倍数,,即个位数为0, 当12k =时,131T =,所以()5f 的个位数字是1,故D 正确正确;; 故选故选::BD.三、填空题16.(2024·山东烟台·三模)614x展开式的中间一项的系数为.胜杰,江新林3人)顺利打开“家门”,欢迎远道而来的神舟十八号航天员乘组(叶光富、李聪、李广苏3人)入驻“天宫”.随后,两个航天员乘组拍下“全家福”,共同向全国人民报平安.若这6名航天员站成一排合影留念,叶光富不站最左边,汤洪波不站最右边,则不同的排法有. 【答案答案】】504【分析分析】】本题考查排列中分类加法计数原理和分步乘法计数原理.根据题目要求根据题目要求,,分两类进行讨论分两类进行讨论,,第一类叶光富在最右侧叶光富在最右侧,,第二类叶光富不在最右侧.然后根据分类加法计数原理相加即可得到答案. 【详解详解】】根据叶光富不站最左边根据叶光富不站最左边,,可以分为两种情况可以分为两种情况::第一种情况第一种情况::叶光富站在最右边叶光富站在最右边,,此时剩余的5人可以进行全排列人可以进行全排列,,共有55A 120=种排法.第二种情况第二种情况::叶光富不站在最右边叶光富不站在最右边,,根据题目条件叶光富不站最左边根据题目条件叶光富不站最左边,,此时叶光富有4种站法.根据题目条件汤洪波不站在最右边件汤洪波不站在最右边,,可知杨洪波只有4种站法.剩余的4人进行全排列,共有4444A 384××=种排法种排法,,由分类加法计数原理可知由分类加法计数原理可知,,总共有120384504+=种排法种排法.. 故答案为故答案为::504 18.(2024·福建福州·三模)421x x +−的展开式中常数项为.4,1,5,9进行某种排列得到密码.若排列时要求相同数字不相邻,且相同数字之间一个数字,则小明可以设置的不同密码种数为. 【答案答案】】96【分析分析】】利用捆绑法即可求解.【详解详解】】从3,4,5,9中选择一个数字放入两个1之间之间,,将其与两个1看作一个整体看作一个整体,,与剩下元素全排列与剩下元素全排列,,故不同的密码个数为1444C A 96=,故答案为故答案为::96 20.(2024·河北衡水·三模)()()7222x y x y +−的展开式中46x y 的系数为(用数字作答)【答案答案】】35−【分析分析】】根据题意根据题意,,结合二项式的展开式的性质结合二项式的展开式的性质,,准确计算准确计算,,即可求解.【详解详解】】由题意由题意,,多项式()()7222x y x y +−的展开式中含有46x y 的项为的项为::()()()265262524677C 2C 35x x y y xy x y ⋅⋅−+⋅−=−,所以46x y 的系数为35−. 故答案为故答案为::35−.21.(2024·河南·三模)若()*nn∈N 的展开式中存在常数项,则n 的值可以是(写出一个值即可)场为女双,一场为男女混双),每名选手只参加1场表演赛,则所有不同的安排方法有种. 【答案答案】】4050【分析分析】】先考虑两对混双的组合先考虑两对混双的组合,,再从余下4名男选手和4名女选手各有3种不同的配对方法组成两对男双组合双组合,,两对女双组合双组合,,利用分步乘法原理可求得结果. 【详解详解】】先考虑两对混双的组合有22662C C ⋅种不同的方法种不同的方法,,余下4名男选手和4名女选手各有3种不同的配对方法组成两对男双组合对方法组成两对男双组合,,两对女双组合双组合,,故共有22662C C 334050⋅××=.故答案为故答案为::4050。
山西省高考数学二轮复习专题08:复数、推理与证明C卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共11题;共22分)
1. (2分) (2017高二下·双鸭山期末) 观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102 ,根据上述规律,13+23+33+43+53+63=()
A . 192
B . 202
C . 212
D . 222
2. (2分)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:
①垂直于同一条直线的两条直线互相平行
②垂直于同一个平面的两条直线互相平行
③垂直于同一条直线的两个平面互相平行
④垂直于同一个平面的两个平面互相平行,则正确的结论是()
A . ①②
B . ②③
C . ③④
D . ①④
3. (2分)(2020·江西模拟) 若复数满足,则()
A .
B .
C .
D .
4. (2分)如果复数在复平面内的对应点在第二象限,则()
A .
B .
C .
D .
5. (2分)设为虚数单位,则复数()
A .
B .
C .
D .
6. (2分)(2020·南昌模拟) 已知i为虚数单位,,则关于复数z的说法正确的是()
A .
B . z对应复平面内的点在第三象限
C . z的虚部为
D .
7. (2分)有一段演绎推理:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线∥平面,则∥ ”的结论显然是错误的,这是因为()
A . 大前提错误
B . 小前提错误
C . 推理形式错误
D . 非以上错误
8. (2分)设,是虚数单位,则当是纯虚数时,实数a为()
A .
B . -1
C . -
D . 1
9. (2分) (2018高二下·巨鹿期末) 复数的模为()
A .
B .
C .
D .
10. (2分) (2017高二下·怀仁期末) 已知复数,则复数在复平面内对应的点位于()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
11. (2分)(2017·聊城模拟) 设i是虚数单位,若 = ,则复数z的虚部为()
A . ﹣2
B . 2
C . ﹣1
D . 1
二、填空题 (共6题;共7分)
12. (1分) (2017高二下·曲周期中) 下面是按照一定规律画出的一列“树型”图:
设第n个图有an个树枝,则an+1与an(n≥2)之间的关系是________.
13. (1分)观察下列式子:13=12 , 13+23=32 , 13+23+33=62 , 13+23+33+43=102 ,…,根据以上式子可猜想:13+23+33+…+n3=________.
14. (1分)观察下面的数阵,容易看出,第n行最右边的数是n2 ,那么第8行中间数
是________.
15. (2分)对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:
甲:中国非第一名,也非第二名;
乙:中国非第一名,而是第三名;
丙:中国非第三名,而是第一名.
竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.
16. (1分)用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,当第二步假设n=2k-1(k∈N
+)命题为真时,进而需证n=________时,命题亦真.
17. (1分) (2017高二下·高淳期末) 已知i是虚数单位,则复数的实部为________.
三、解答题 (共3题;共25分)
18. (5分) (2019高二下·宁夏月考)
(1)当时,试用分析法证明:;
(2)已知, .求证:中至少有一个不小于0.
19. (10分) (2018高二下·邗江期中)
(1)求证:;
(2)已知且,求证:中至少有一个小于2.
20. (10分)用数学归纳法证明不等式 + +…+ ≥ 对一切正整数n都成立.
参考答案一、单选题 (共11题;共22分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
二、填空题 (共6题;共7分)
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共3题;共25分) 18-1、
18-2、
19-1、
19-2、20-1、。