2019年普通高等学校招生全国统一考试数学及详细解析(江西卷.文)
- 格式:doc
- 大小:1.21 MB
- 文档页数:7
2019年普通高等学校夏季招生全国统一考试数学理工农医类(江西卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019江西,理1)已知集合M ={1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( ).A .-2iB .2iC .-4iD .4i 答案:C解析:由M ∩N ={4},得z i =4,∴z =4i=-4i.故选C.2.(2019江西,理2)函数y -x )的定义域为( ).A .(0,1)B . [0,1)C .(0,1]D .[0,1] 答案:B解析:要使函数有意义,需0,10,x x ≥⎧⎨->⎩解得0≤x <1,即所求定义域为[0,1).故选B.3.(2019江西,理3)等比数列x,3x +3,6x +6,…的第四项等于( ).A .-24B .0C .12D .24 答案:A解析:由题意得:(3x +3)2=x (6x +6),解得x =-3或-1.当x =-1时,3x +3=0,不满足题意.当x =-3时,原数列是等比数列,前三项为-3,-6,-12,故第四项为-24.4.(2019江西,理4)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5A .08 答案:D解析:选出的5个个体的编号依次是08,02,14,07,01,故选D.5.(2019江西,理5)5232x x ⎛⎫- ⎪⎝⎭展开式中的常数项为( ).A .80B .-80C .40D .-40答案:C解析:展开式的通项为T r +1=5C rx 2(5-r )(-2)r x -3r =5C r(-2)r x 10-5r .令10-5r =0,得r =2,所以T 2+1=25C (-2)2=40.故选C. 6.(2019江西,理6)若2211d S x x =⎰,2211d S x x=⎰,231e d x S x =⎰,则S 1,S 2,S 3的大小关系为( ).A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案:B解析:2211d S x x =⎰=23117|33x =,2211d S x x=⎰=21ln |ln 2x =, 231e d x S x =⎰=2217e |e e=(e 1)>e>3x =--,所以S 2<S 1<S 3,故选B.7.(2019江西,理7)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( ).A .S =2*i -2B .S =2*i -1C .S =2*iD .S =2*i +4 答案:C解析:当i =2时,S =2×2+1=5;当i =3时,S =2×3+4=10不满足S <10,排除选项D ;当i =4时,S =2×4+1=9;当i =5时,选项A ,B 中的S 满足S <10,继续循环,选项C 中的S =10不满足S <10,退出循环,输出i =5,故选C.8.(2019江西,理8)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n =( ).A .8B .9C .10D .11 答案:A解析:由CE 与AB 共面,且与正方体的上底面平行,则与CE 相交的平面个数m =4.作FO ⊥底面CED ,一定有面EOF 平行于正方体的左、右侧面,即FE 平行于正方体的左、右侧面,所以n =4,m +n =8.故选A.9.(2019江西,理9)过点,0)引直线l 与曲线y A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ).A B . C .± D . 答案:B解析:曲线y若直线l 与曲线相交于A ,B 两点,则直线l 的斜率k <0,设l :y =(k x ,则点O 到l 的距离d =又S △AOB =12|AB |·d =22111222d d d -+⨯=≤=,当且仅当1-d 2=d 2,即d 2=12时,S △AOB 取得最大值.所以222112k k =+,∴213k =,∴3k =-.故选B.10.(2019江西,理10)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x (0<x <π),y =EB +BC+CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图像大致是( ).答案:D第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二、填空题:本大题共4小题,每小题5分,共20分.11.(2019江西,理11)函数y =sin 2x +2x 的最小正周期T 为________.答案:π解析:∵y =sin 2x -cos 2x )π=2sin 23x ⎛⎫-+ ⎪⎝⎭,∴2ππ2T ==.12.(2019江西,理12)设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的射影为________.答案:52解析:∵a ·b =(e 1+3e 2)·2e 1=212e +6e 1·e 2=2+6×12×πcos3=5,∴a 在b 上的射影为5||2⋅=a b b . 13.(2019江西,理13)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.答案:2解析:令e x =t ,则x =ln t ,∴f (t )=ln t +t ,∴f ′(t )=11t+,∴f ′(1)=2.14.(2019江西,理14)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线22=133x y -相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案:6解析:抛物线的准线方程为2py =-,设A ,B 的横坐标分别为x A ,x B ,则|x A |2=|x B |2=234p +,所以|AB |=|2x A |.又焦点到准线的距离为p ,由等边三角形的特点得||2p AB =,即2234344p p ⎛⎫=⨯⨯+ ⎪⎝⎭,所以p =6.三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分. 15.(2019江西,理15)(1)(坐标系与参数方程选做题)设曲线C 的参数方程为2,x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.答案:ρcos 2θ-sin θ=0解析:由参数方程2,x t y t =⎧⎨=⎩得曲线在直角坐标系下的方程为y =x 2.由公式cos ,sin x y ρθρθ=⎧⎨=⎩得曲线C 的极坐标方程为ρcos 2θ=sin θ.(2)(不等式选做题)在实数范围内,不等式211x --≤的解集为________. 答案:[0,4]解析:原不等式等价于-1≤|x -2|-1≤1,即0≤|x -2|≤2,解得0≤x ≤4.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(2019江西,理16)(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C+(cos A sin A )cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解:(1)由已知得-cos(A +B )+cos A cos B sin A cos B =0,即有sin A sin B A cos B =0,因为sin A ≠0,所以sin BB =0, 又cos B ≠0,所以tan B, 又0<B <π,所以π3B =. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B .因为a +c =1,cos B =12,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有14≤b 2<1,即有12≤b <1.17.(2019江西,理17)(本小题满分12分)正项数列{a n }的前n 项和S n 满足:2n S -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令221(2)n n n b n a +=+,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n<564. (1)解:由2n S -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0. 由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项a n =2n . (2)证明:由于a n =2n ,221(2)n nn b n a +=+, 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435112n T n n n n ⎡⎤=-+-+-++-+-⎢⎥(-)(+)(+)⎣⎦ 22221111115111621216264n n ⎡⎤⎛⎫=+--<+= ⎪⎢⎥(+)(+)⎝⎭⎣⎦. 18.(2019江西,理18)(本小题满分12分)小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.解:(1)从8个点中任取两点为向量终点的不同取法共有28C =28种, X =0时,两向量夹角为直角共有8种情形, 所以小波参加学校合唱团的概率为P (X =0)=82287=. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为:EX=15223 (2)+(1)+0+114147714 -⨯-⨯⨯⨯=-.19.(2019江西,理19)(本小题满分12分)如图,四棱锥P ABCD中,P A⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,P A=32,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.解:(1)在△ABD中,因为E是BD中点,所以EA=EB=ED=AB=1,故∠BAD=π2,∠ABE=∠AEB=π3,因为△DAB≌△DCB,所以△EAB≌△ECB,从而有∠FED=∠BEC=∠AEB=π3,所以∠FED=∠FEA,故EF⊥AD,AF=FD,又因为PG=GD,所以FG∥P A. 又P A⊥平面ABCD,所以CF⊥AD,故AD⊥平面CFG.(2)以点A为坐标原点建立如图所示的坐标系,则A(0,0,0),B(1,0,0),C32⎛⎫⎪⎪⎝⎭,D(00),P30,0,2⎛⎫⎪⎝⎭,故12BC⎛⎫= ⎪⎪⎝⎭,33,22CP⎛⎫=-⎪⎪⎝⎭,32CD⎛⎫=-⎪⎪⎝⎭.设平面BCP的法向量n1=(1,y1,z1),则11110,2330,22yy z⎧+=⎪⎪⎨⎪-+=⎪⎩解得112,3yz⎧=⎪⎪⎨⎪=⎪⎩即n1=21,,33⎛⎫-⎪⎪⎝⎭.设平面DCP的法向量n2=(1,y2,z2),则22230,22330,22yy z⎧-+=⎪⎪⎨⎪--+=⎪⎩解得222.yz⎧=⎪⎨=⎪⎩即n2=(12).从而平面BCP与平面DCP的夹角的余弦值为cos θ=21124||||||4⋅==n nn n.20.(2019江西,理20)(本小题满分13分)如图,椭圆C:2222=1x ya b+(a>b>0)经过点P31,2⎛⎫⎪⎝⎭,离心率e=12,直线l的方程为x=4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解:(1)由P 31,2⎛⎫⎪⎝⎭在椭圆上得,2219=14a b +,① 依题设知a =2c ,则b 2=3c 2,② ②代入①解得c 2=1,a 2=4,b 2=3.故椭圆C 的方程为22=143x y +. (2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为y =k (x -1),③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=22843k k +,x 1x 2=224343k k (-)+,④ 在方程③中令x =4得,M 的坐标为(4,3k ).从而111321y k x -=-,222321y k x -=-,33312412k k k -==--. 注意到A ,F ,B 共线,则有k =k AF =k BF ,即有121211y y k x x ==--. 所以k 1+k 2=121212121233311221111211y y y y x x x x x x --⎛⎫+=+-+ ⎪------⎝⎭ 1212122322()1x x k x x x x +-=-⋅-++.⑤④代入⑤得k 1+k 2=222222823432438214343k k k k k k k -+-⋅(-)-+++=2k -1, 又k 3=12k -,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.(2)方法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为:00(1)1y y x x =--, 令x =4,求得M 0034,1y x ⎛⎫⎪-⎝⎭,从而直线PM 的斜率为00302121y x k x -+=(-).联立00221,11,43y y x x x y ⎧=(-)⎪-⎪⎨⎪+=⎪⎩得A 0000583,2525x y x x ⎛⎫- ⎪--⎝⎭,则直线P A 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以k 1+k 2=00000000225232121211y x y y x x x x -+--++=(-)(-)-=2k 3,故存在常数λ=2符合题意.21.(2019江西,理21)(本小题满分14分)已知函数f (x )=1122a x ⎛⎫--⎪⎝⎭,a 为常数且a >0. (1)证明:函数f (x )的图像关于直线12x =对称; (2)若x 0满足f (f (x 0))=x 0,但f (x 0)≠x 0,则称x 0为函数f (x )的二阶周期点.如果f (x )有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数f (f (x ))的最大值点,A (x 1,f (f (x 1))),B (x 2,f (f (x 2))),C (x 3,0).记△ABC 的面积为S (a ),讨论S (a )的单调性.(1)证明:因为12f x ⎛⎫+⎪⎝⎭=a (1-2|x |),12f x ⎛⎫- ⎪⎝⎭=a (1-2|x |), 有1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以函数f (x )的图像关于直线12x =对称.(2)解:当0<a <12时,有f (f (x ))=2214,,2141,.2a x x a x x ⎧≤⎪⎪⎨⎪(-)>⎪⎩所以f (f (x ))=x 只有一个解x =0,又f (0)=0,故0不是二阶周期点.当12a =时,有f (f (x ))=1,,211,.2x x x x ⎧≤⎪⎪⎨⎪->⎪⎩所以f (f (x ))=x 有解集12x x ⎧⎫≤⎨⎬⎩⎭,又当12x ≤时,f (x )=x ,故12x x ⎧⎫≤⎨⎬⎩⎭中的所有点都不是二阶周期点.当12a >时,有f (f (x ))=2222214,41124,,421412(12)4,,244144.4a x x a a a x x a a a a a x x a a a a x x a ⎧≤⎪⎪⎪-<≤⎪⎨-⎪-+<≤⎪⎪-⎪>⎩,-,所以f (f (x ))=x 有四个解0,222224,,141214a a a a a a +++,又f (0)=0,22()1212a a f a a =++,22221414a a f a a ⎛⎫≠ ⎪++⎝⎭,2222441414a a f a a ⎛⎫≠ ⎪++⎝⎭,故只有22224,1414a a a a ++是f (x )的二阶周期点.综上所述,所求a 的取值范围为12a >. (3)由(2)得12214ax a=+,222414a x a =+, 因为x 3为函数f (f (x ))的最大值点,所以314x a =,或3414a x a-=. 当314x a=时,221()4(14)a S a a -=+,求导得:S ′(a )=22214a a a ⎛ ⎝⎭⎝⎭-(+),所以当a∈12⎛⎝⎭时,S (a )单调递增,当a∈⎫+∞⎪⎪⎝⎭时S (a )单调递减; 当3414a x a-=时,S (a )=22861414a a a -+(+),求导得: S ′(a )=2221243214a a a +-(+),因12a >,从而有S ′(a )=2221243214a a a +-(+)>0,所以当a ∈1,2⎛⎫-∞ ⎪⎝⎭时S (a )单调递增.。
2019年普通高等学校招生全国统一考试文数解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出得四个选项中,只有一项就 是符合题目要求得。
1、设z 色丄,则z =1 2iA 、2B 、」3C 、D 、 1A 、 abcB 、 a c bC 、 cabD 、 b c a【答案】B 【解析】【分析】运用中间量0比较a,c ,运用中间量1比较b,c 【详解】a log 20.2 log 2 10, b 20.2 20 1,0 0.20.3 0.20 1,则 0 c 1,a c b .故选 B.【点睛】本题考查指数与对数大小得比较 ,渗透了直观想象与数学运算素养 •采取中间变量法,利用转化与化归思想解题.4、古希腊时期,人们认为最美人体得头顶至肚脐得长度与肚脐至足底得长度之比就是 酝」(迟」-0 618,称为黄金分割比例),著名得“断臂维纳斯”便就是如此•此外,最美人体得头顶至2、已知集合U 1,2,3,4,5,6,7 ,A2,3,4,5 , B2,3,6,7 ,贝UBI C U A A 、1,6B 、1,7C 、6,7D 、1,6,7【答案】C【解析】【分析】先求e U A ,再求BQj A .【详解】由已知得 C U A 1,6,7,所以 B C U A {6,7},故选C.【点睛】本题主要考查交集、补集得运算 .渗透了直观想象素养.使用补集思想得出答案.3、已知 a log 20.2,b 20.2,c 0.20.3 ,则1 2i (1 2i)(1 2i) 5 【点睛】本题主要考查复数得乘法运算,复数模得计算勺,所以z心(5)2 '2,故选C. .本题也可以运用复数模得运算性质直接求解•【答案】C 【解析】 【分析】先由复数得除法运算(分母实数化),求得Z,再求z . 3 i (3 i)(1 2i) 1【详解】因为z ,所以z2 2J5 1咽喉得长度与咽喉至肚脐得长度之比也就是若某人满足上述两个黄金分割比例,且腿长为105cm,2头顶至脖子下端得长度为26 cm,则其身高可能就是、丿 厂7T x,得f(x)就是奇函数 sin( x) ( x) 2"cos( x) ( x)1f(2)炉【点睛】本题考查函数得性 用数形结合思想解题. 6、某学校为了解1 000 等距抽取100名学生进行 A 、 8号学生 【答案】C 【解析】 【分析】匚 1,f()-1,排si ,利用特殊值得正函数,其图数学运算素养.采1,2,…,1 000:46号学生被抽到,则下面4名学生中被抽到得C 、 616号学生D 、 815号学生 些学生编号为 A 、 165 cmB 、 175 cmC 、 185 cmD 、 190cm【答案】B【解析】【分析】理解黄金分割比例得含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根得长为x cm,肚脐至腿根得长为y cm,贝y 彳26 x 5 1,得xy 1052x 42.07cm, y 5.15cm .又其腿长为105cm,头顶至脖子下端得长度为26cm,所以其身高约为42. 07+5. 15+105+26=178.22,接近 175cm.故选 B. 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理与数学运算素养 .采取类比法,利用转化思想解题.sin x x 5、函数f(x)=2在[—兀n ]图像大致为cosx xB、-TT案【详解】由于原点对称.又f( x)cos42 0.故选D.2质法或赋值法,利 用系统抽样方法【答案】D 【解析】 分析】先判断函数得奇偶性 A 、22等差数列得性质•渗透了数据分析素养•使用统计思想,逐个选项判断得出答案•【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到 所以第一组抽到 6号,且每组抽到得学生号构成等差数列 {a n },公差d 10,所以a 与b 得夹角为一,故选B.3【点睛】对向量夹角得计算 ,先计算出向量得数量积及各个向量得摸 ,在利用向量夹角公式求出夹角得余弦值,再求出夹角,注意向量夹角范围为[0,].1 19、如图就是求2得程序框图,图中空白框中应填入1所以a n 6 10 n (n N ),10n ,则n !,不合题意;若200656 10n ,则n 60,符合题意;若81510n ,则n 19.4,不合题意; 若616【点睛】本题主要考查系统抽样、 7、tan255° = A 、 — 2 — -.:/3 【答案】D【解析】 【分析】本题首先应用诱导公式,将问题转化成锐角三角函数得计算 较易,注重了基础知识、基本计算能力得考查【详 B 、6 10n ,则n 80.9,不合题意.故选C.2—3D 、 2+ (3),进一步应用两角与得正切公式计算求解 .题目解:tan2550 tan(180° 75°) tan75° tan(45° 300) =tan 450 tan 30°1 tan 450 tan30°1辽-3= 2、、3.3【点睛】三角函数得诱导公式、两角与与差得三角函数、特殊角得三角函数值、运算求解能力a =2b ,且(a -b) b,则a 与b 得夹角为2_n 3n6 【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题数学素养.先由(a b ) b 得出向量a,b 得数量积与其模得关系, 角.B 、,渗透了转化与化归、数学计算等 ,再利用向量夹角公式即可计算出向量夹【详解】因为(a b ) b,所以(a b ) b a b b 2 =0,所以ab b 2,所以 cosa b|b|2 1 2 — 2|b|2 2k=k+l1C 11,1 A 、 A=—B 、 A= 2—C 、 A=—D 、 A=1 -2 AA 1 2A2A【答案】A【解析】 【分析】本题主要考查算法中得程序框图 ,渗透阅读、分析与解决问题等素养 ,认真分析式子结构特征与程序框图结构,即可找出作出选择.11 A 、 2sin 40 °B 、 2cos40 °C 、D 、sin 50cos50【答案】D10、双曲线 1(a 0,b 0)得一条渐近线得倾斜角为 130 ,则C 得离心率为 O【解析】【分析】由双曲线渐近线定义可得—tan130 , a K —tan 50 a,再利用e 2 求双曲线得离心率• 【详解】由已知可得 tan 130 , tan 50a2 b .1 亦:50 ¥ cos 50sin 2 50 cos 2 50 V cos 2 50,故选D.cos501【详解】执行第1次,A -,k21 2就是,因为第一次应该计算L 1 1 = , k k 1=2,循环,执行第-2 A 22次,k 2 2,就是,因为第二次应该计算 2 -21=3,循环,执行第3次,k 2 2,否,输出,故循环体为A1,故选A.2 A【点睛】秒杀速解 认真观察计算式子得结构特点 ,可知循环体为2C :%a22 '2 2【点睛】对于双曲线:冷爲 1 a 0, b 0 ,有e -a b a 1b;对于椭圆$a a y2 1 a b 0 ,b 21 b ,防止记混. a . a 11、 1 b △ ABC 得内角 A, B, C 得对边分别为 a, b, c,已知 asinA — bsinB=4csinC, cosA= ------- ,则—= 4 3 B 、 5 C 、 4 A 、 【答案】A 【解析】 【分析】 利用余弦定理推论得出 a, b,c 关系,在结合正弦定理边角互换列出方程【详解】详解:由已知及正弦定理可得 a 2b d .222 2 .2 A1 b c a c 4c 1 cos A , 4 2bc 2bc 4【点睛】本题考查正弦定理及余弦定理推论得应用12、已知椭圆C 得焦点为Fi( 1,0) , F 2(1,0),过F 2得直线与 I AF2I 2| F2BI , |AB| 2 x 2 y 2 1 I BF1I ,则C 得方程为 2 y- 1 2 B 、 ,解出结果、4c 2,由余弦定理推论可得 3c 1 b 3一 八, 4 6,故选A.2b 4 c 2 C 交于A, B 两点、若C 、 2 y- 1 3 2y- 1 4【答案】 【解析】 【分析】 可以运用下面方法求解:如图,由已知可设 F 2B AB 2a 4n 22 n BF i BF 2 4n, 式消去cos .3 n 2 AF 1 2a AF 2 24 2 2n 2 cos AF 2F 1 4n , 2 4 2 n 2 cos BF 2F 1 9n AF 2F 1 , cos BF 2F 1,得 3n 2 2a 4n 2、. 3, a .3 2n n ,则 AF 2 2n , BF 1 .在△ AFF 与△BF 1F 2 中, AF 2F 1, BF 2F 1 互补,cos AF 2 F-I 211n 2,解得 a 2 c 23 12,所求椭圆方程为3n ,由椭圆得定义有由余弦定理得cos BF 2F 1 0 ,两【详解】 如图 ,由 2a BF 1 BF 24n, cos F 1AB4n 2 9n 22 2n :2a 4n 2履a已知可设F 2B AB 3n ,22x y 3 2由椭圆1,故选B.得定义有AF 19n 22a AF 2 2n .在△ AF |B 中,由余弦定理1 2 2 .在厶AF 1F 2中,由余弦定理得4n 4n 3 b 2a 2c 23 1 2,所求椭圆方程为12 2n 2n -4,解得 n32 2- —1 ,故选B. 3 2直观想象、逻辑推理等数学素养二、填空题:本题共4小题,每小题5分,共20分。
2019年江西高考试题(数学文)含祥解注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【一】选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的、 1、集合{}(1)0P x x x =-≥,101Q x x ⎧⎫=>⎨⎬-⎩⎭,那么P Q 等于〔 〕A、∅B、{}1x x ≥C、{}1x x >D、{}1x x x <0或≥2、函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭的最小正周期为〔 〕 A、π2B、πC、2πD、4π3、在各项均不为零的等差数列{}n a 中,假设2110(2)n n n a a a n +--+=≥,那么214n S n --=〔 〕A、2- B、0 C、1 D、24、以下四个条件中,p 是q 的必要不充分.....条件的是〔 〕 A、:p a b >,22:q a b > B、:p a b >,:22abq >C、22:p ax by c +=为双曲线,:0q ab <D、2:0p ax bx c ++>,2:0c bq a x x-+> 5、对于R 上可导的任意函数()f x ,假设满足(1)()0x f x '-≥,那么必有〔 〕 A、(0)(2)2(1)f f f +< B、(0)(2)2(1)f f f +≤ C、(0)(2)2(1)f f f +≥D、(0)(2)2(1)f f f +>6、假设不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,那么a 的最小值为〔 〕 A、0B、2-C、52-D、3-7、在2nx ⎫⎪⎭的二项展开式中,假设常数项为60,那么n 等于〔 〕A、3 B、6 C、9 D、128、袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,那么这个样本恰好是按分层抽样方法得到的概率为〔 〕A、12344812161040C C C C CB、21344812161040C C C C CC、23144812161040C C C C CD、13424812161040C C C C C 9、如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4A、等腰四棱锥的腰与底面所成的角都相等B、等腰四棱锥的侧面与底面所成的二面角都相等或互补 C、等腰四棱锥的底面四边形必存在外接圆 D、等腰四棱锥的各顶点必在同一球面上10、等差数列{}n a 的前n 项和为n S ,假设1200OB a OA a OC =+,且A B C ,,三点共线〔该直线不过点O 〕,那么200S 等于〔〕 A、100B、101C、200D、20111、P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,那么PM PN -的最大值为〔〕A、6B、7C、8D、9b 的最大值为14、设3()log (6)f x x =+的反函数为1()fx -,假设11[()6][()6]27f m f n --++=,那么()f m n +=、15、如图,正三棱柱111ABC A B C -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周..到达1A 点的最短路线的长为、16、12F F ,为双曲线22221(00)a b x y a b a b≠-=>>且,的两个焦点,P 为双曲线右支上异于顶点的任意一点,O 为坐标原点、下面四个命题〔〕A、12PF F △的内切圆的圆心必在直线x a =上; B、12PF F △的内切圆的圆心必在直线x b =上; C、12PF F △的内切圆的圆心必在直线OP 上; D、12PF F △的内切圆必通过点0a (),、其中真命题的代号是 〔写出所有真命题的代号〕、【三】解答题:本大题共6小题,共74分、解答应写出文字说明,证明过程或演算步骤、 17、〔本小题总分值12分〕 函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值、 〔1〕求a b ,的值及函数()f x 的单调区间;〔2〕假设对[12]x ∈-,,不等式2()f x c <恒成立,求c 的取值范围、18、〔本小题总分值12分〕某商场举行抽奖促销活动,抽奖规那么是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖、现有甲、乙两位顾客,规定:甲摸一次,乙摸两次、求 〔1〕甲、乙两人都没有中奖的概率;〔2〕甲、两人中至少有一人获二等奖的概率、 19、〔本小题总分值12分〕 在锐角ABC △中,角A B C ,,所对的边分别为a b c ,,,sin 3A =, 〔1〕求22tansin 22B C A++的值; 1C1B1AACB〔2〕假设2a =,ABC S =△b 的值、20、〔本小题总分值12分〕 如图,三棱锥O ABC -的侧棱OA OB OC ,,两两垂直,且1OA =,2OB OC ==,E 是OC 的中点、 〔1〕求O 点到面ABC 的距离;〔2〕求异面直线BE 与AC 所成的角; 〔3〕求二面角E AB C --的大小、 21、〔本小题总分值12分〕如图,椭圆22221(0)x y Q a b a b+=>>:的右焦点为(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,点、〔1〕求点P 的轨迹H 的方程;〔2〕假设在Q 的方程中,令21cos sin a θθ=++,2sin 0b θθπ⎛⎫=< ⎪2⎝⎭≤、设轨迹H 的最高点和最低点分别为M 和N 、当θ为何值时,MNF △为一个正三角形?22、〔本小题总分值14分〕 各项均为正数的数列{}n a ,满足:13a =,且11122n nn n n n a a a a a a +++-=-,*n N ∈、〔1〕求数列{}n a 的通项公式;〔2〕设22212n n S a a a =+++,22212111n nT aa a a =+++,求n n S T +,并确定最小正整数n ,使n n S T +为整数、2006年普通高等学校招生全国统一考试〔江西卷〕文科数学〔编辑:ahuazi 〕本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
2019年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 (A )1,1- (B )2.2- (C )1 (D )1-(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (A )21 (B )2 (C )4 (D )41 (5)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (6)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(7)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(A )1- (B )1 (C )5 (D )5-(8)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (9)10<<<<a y x ,则有(A )0)(log <xy a (B )1)(log 0<<xy a (C )2)(log 1<<xy a (D )2)(log >xy a (10)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (11)设)4,0(πθ∈,则二次曲线122=-θθtg y ctg x 的离心率取值范围(A ))21,0( (B ))22,21( (C ))2,22( (D )),2(+∞ (12)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)据新华社2002年3月12日电,1985年到2000年间。
2019年江西高考文科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
绝空★启用前2019年普通高等学校招生全国统一考试理科数学本试世共S页・23題(含选丙JS〉<全卷滿分150分.考试用时I2Q分钟.注意寧项:★祝考试顺利★1・答雄的・先将自己的姓名、准珈证兮填写在试卷和答舷斤仁井将准考证兮条形旳帖姑铉衿懸R上的捋定2.选畀题的作答:毎小理选出答衆后,用2B铅宅把答題口上对应題•的答案标仍涂丐在试卷、罕稿抵和答題E上的非芥畋区域均无效•3・IhiSWK的作答:用黑色签字笔H接答在答紘卡上对应的签魏区域内.可在试卷、哉播纸和答題卡•上的非答題区域均无效.4,选考题的作??:先把所选題口的理号在答題卡上指定的位址用2B钳屯涂熬.答案写在答題卡上对应的答題区域内.片在试卷、◎祸址和筈題E上的非答題区域均无效.5・考试站束后,谄将本试卷和»gp一井上交.一、选择K2:本題共12小Si.毎小題5分,共60分・在毎小鬆给出的四个选项中,只有一项是符合眩目要求的.1.已知集«// ={x|-4<x<2}. AT=(x|jr-x-6<0}»则A/HX =A. {x|-4<x<3}B. {x|-4<x<-2}C.何一2<«2}2.设复数二满足|r-i|-K二在复平曲内对应的点为(jr.y). MlD・ x3+(y+l)3 = l3・ B知a = 1og:0.2・“丹.c = 0.2°\ MA. a<b<cB. a<c<bC. c<a<bD.4.占希Bfl时期.人们认为处臾人体的头顶至肚筋的K搜与肚flff至足底的K:废之比是丢二1 ({也金0.618,称为黃金井割叱例人岔名的“断仰维纳斯”便处如此.此外.駁灸人体的头顶至臥枚的X 发9咽联至肚脐的长度Z比也韭竺二•若某人满足上述购个员金分割比例,MJtt怏A105cm.头顶至狞子下瑞的长灰为26cm.可徒她A. 165cmB. 175 cmC. 185cmD.b<c<a 190 cm5, 的敕/(町二竺上二在卜匚引的图像人致为6. ----------------------------------------------------------------------------------------------------------- 我国占代典箱(周易》用“扑”描述万物的变化.每一 “霓好”山从下 二二 到上并列的6个爻组成,爻分为用爻"和阴爻“--3右用就址 ---------------------------- 一讹此血斫有鉞』十中前机取一虫幷・则该虫甘恰奋3个阳爻的概率是 ---------7.己知菲零向娥—b 満足|a|・2|町恥-6)1*. 的夹如为A A~Z 7A9-记£为竽短数列血}的前打顶和.已知&吕0・WA, Q . = 2R -5 B” 孔=3打-10C ・ S … = 2n* -8/JD ・ S^ =-n* -2rr2A.5!6 II 322K•D.5兀T8•血图她求一的円序框图.图中空白框中应坝入B.卅 尸io. B 知橢関c 的你点为斤(—hon. st 斥的H 线与c 交y B 网虑•若ii. ①/V )是偶曲故②/(好在区何(?的玳调通增 ③/(X )在卜儿刃冇4个零点 ④f (x ) tfjAJAW 为2跌中所有正确结论的褊兮葩12.已知三檄HI 初C 的四个顶点在球。
2019年江西高考试题(文数,word 解析版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!数学〔文科〕本试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两部分,第I 卷第1至2页,第II 卷第3至第4页。
总分值150分,考试时间120分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I 卷每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式:锥体体积公式V=13Sh ,其中S 为底面积,h 为高。
一、 选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的 1.假设复数z=1+i(i 为虚数单位)z -是z 的共轭复数,那么2z +z-²的虚部为A0B-1C1D-2 【答案】A【解析】考查复数的基本运算2假设全集U={x ∈R |x 2≤4}A={x ∈R ||x+1|≤1}的补集CuA 为 A|x ∈R |0<x <2|B|x ∈R |0≤x <2| C|x ∈R |0<x ≤2|D|x ∈R |0≤x ≤2| 【答案】C【解析】考查集合的基本运算{|22}U x x =-≤≤,{|20}A x x =-≤≤,那么{|02}U C A x x =<≤.3.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,那么f 〔f 〔3〕〕=A.15B.3C.23D.139【答案】D【解析】考查分段函数,f 〔3〕=23,f 〔f 〔3〕〕=f 〔23〕=1394.假设sin cos 1sin cos 2αααα+=-,那么tan2α= A.-34B.34C.-43D.43【答案】B【解析】主要考查三角函数的运算,分子分母同时除以cos α可得tan 3α=-,带入所求式可得结果.5.观察以下事实|x|+|y|=1的不同整数解〔x,y 〕的个数为4,|x|+|y|=2的不同整数解〔x,y 〕的个数为8,|x|+|y|=3的不同整数解〔x,y 〕的个数为12….那么|x|+|y|=20的不同整数解〔x ,y 〕的个数为 A.76B.80C.86D.92 【答案】B【解析】此题主要为数列的应用题,观察可得不同整数解的个数可以构成一个首先为4,公差为4的等差数列,那么所求为第20项,可计算得结果. 6.小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,那么小波一星期的鸡蛋开支占总开支的百分比为A.30%B.10%C.3%D.不能确定 【答案】C【解析】此题是一个读图题,图形看懂结果很容易计算. 7.假设一个几何体的三视图如下图,那么此几何体的体积为A 、112B.5C.4D.92【答案】C【解析】此题的主视图是一个六棱柱,由三视图可得地面为变长为1的正六边形,高为1,那么直接带公式可求. 8.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
2019年普通高等学校招生全国统一考试(江西卷)数学(文科)求的。
1. 若复数z 满足z(1 i) 2i ( i 为虚数单位),则|z|=()A.1B.2C.、2D.、、3【答案】C【解析】:设Z=a+bi则(a+bi)( 1+i)=2i |(a-b)( a+b)i=2i a-b=0 a+b=2解得a=1 b=1 Z=1+1iZ =1 1i ^22. 设全集为 R ,集合 A {x|x 2 90}, B {x| 1 x 5},则 AI (C R B)()A.( 3,0)B.( 3, 1)C.( 3, 1]D.( 3,3)【答案】C【解析】 A {x| 3 x 3}, B {x| 1 x 5},所以 AI (C R B) x 3 x 1【答案】B【答案】【解析】 f( 1)f(2) 4a ,所以 f[ f ( 1)] 4a 1解得5.在在 ABC内A,B,C 所对应的边分别为 a,b,c,,若3a2 22b ,则跖B 2Sin A的值为() sin 2 A•选择题:本大题共 10小题,每5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要3 •掷两颗均匀的骰子,则点数之和为5的概率等于( )A 丄 18B.19C.1D.丄 6 12【解析】点数之和为5的基本事件有:(1,4 ) (4,1 )(2,3 ) ( 3,2 ),所以概率为 %6 = ?94.已知函数f (x )a 2x ,x 2x ,x00(a R),若 f[f(1)] 1,则A.14 B.1 2C.1D.2【答案】D2 2 【解析】2sin B sin Asin2 A2 2 2b a2a6.下列叙述中正确的是(A.若a,b,c R,则"ax2bx c 0" 的充分条件是"b24ac 0"B.若a, b, c R,则"ab22cb "的充要条件是"a c"C.命题"对任意x 2R,有x 0 ”的否定是“存在R,有x2”D. l是一条直线, 是两个不同的平面,若I,l ,则//【答案】D【解析】当a 0时, A是正确的;当b 0时,B是错误的;命题“对任意x R,有X20 ”的否定是“存在x R,有x20 ”,所以C是错误的。
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文史类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅰ·文)设3i12iz -=+,则||z =( )A.2D.1【解析】因为3i (3i)(12i)17i12i (12i)(12i)5z ----===++-,所以||z =故选C.【答案】C2.(2019全国卷Ⅰ·文)已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A =I ð( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【解析】因为{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,所以{1,6,7}U A =ð. 又{2,3,6,7}B =,所以U B A =I ð{6,7}.故选C.【答案】C3.(2019全国卷Ⅰ·文)已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a <<【解析】由对数函数的单调性可得22log 0.2log 10a =<=,由指数函数的单调性可得0.20221b =>=,0.300.2100.2c <==<,所以a c b <<.故选B.【答案】B4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm【解析】设某人身高为m cm ,脖子下端至肚脐的长度为n cm , 则由腿长为105 cm,可得1050.618105m ->≈,解得169.890m >. 由头顶至脖子下端的长度为26 cm,可得260.618n >≈,解得42.071n <. 所以头顶到肚脐的长度小于2642.07168.071+=.68.072110.1470.618≈≈. 所以此人身高68.071110.147178.218m <+=. 综上,此人身高m 满足169.890178.218m <<. 所以其身高可能为175 cm.故选B. 【答案】B5.(2019全国卷Ⅰ·文)函数2sin ()cos x xf x x x +=+在[π,π]-的图象大致为( )A. B.C. D.【解析】因为22sin()sin ()()cos()()cos x x x xf x f x x x x x --+-==-=--+-+,所以()f x 为奇函数,排除选项A.令πx =,则22sin ()0cos 1f πππππππ+==>+-+,排除选项B ,C.故选D.【答案】D6.(2019全国卷Ⅰ·文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生 B.200号学生 C.616号学生 D.815号学生【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为100010100=. 因为46除以10余6,所以抽到的号码都是除以10余6的整数,结合选项知正确号码为616.故选C. 【答案】C7.(2019全国卷Ⅰ·文)tan255=o ( )A.2--B.2-+C.2D.2【解析】1tan 45tan 3075tan(tan255tan(4530)2180)tan 71tan 45tan 305+++=+===+=-=ooo o o o o o o o .故选D. 【答案】D.8.(2019全国卷Ⅰ·文)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为( )A.π6B.π3C.2π3 5π6【解析】设a ,b 的夹角为θ,因为()-⊥a b b ,所以()0-=g a b b ,即2||0-=g a b b .又||||cos ,||2||θ==g g a b a b a b , 所以222||cos ||0θ-=b b ,所以1cos 2θ=. 又因为0θπ≤≤,所以3πθ=.故选B.【答案】B9.(2019全国卷Ⅰ·文)如图是求112122++的程序框图,图中空白框中应填入( )A.12A A=+ B.12A A =+C.112A A=+ D.112A A=+【解析】对于选项A ,第一次循环,1122A =+;第二次循环,112122A =++,此时3k =,不满足2k ≤,输出112122A =++的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.【答案】A10.(2019全国卷Ⅰ·文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130o ,则C 的离心率为( )A.2sin40oB.2cos40oC.1sin50oD.1cos50o【解析】由题意可得tan130ba-=︒,所以11|cos130|cos50e ====︒︒.故选D.【答案】D11.(2019全国卷Ⅰ·文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D.3【解析】因为sin sin 4sin a A b B c C -=,所以由正弦定理得2224a b c -=,即2224a c b =+.由余弦定理得222222222(4)31cos 2224b c a b c c b c A bc bc bc +-+-+-====-,所以6bc=.故选A. 【答案】A12.(2019全国卷Ⅰ·文)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y += D.22154x y += 【解析】设椭圆的标准方程为22221(0)bx y a b a +=>>,由椭圆定义可得11||||||4AF AB BF a ++=. 因为1||||AB BF =, 所以1||2||4AF AB a +=. 又22||2||AF F B =, 所以23||||2AB AF =,所以12||3||4AF AF a +=. 又因为12||||2AF AF a +=,所以2||AF a =. 所以A 为椭圆的短轴端点.如图,不妨设(0,)A b ,又2(1,0)F ,222AF F B =u u u u r u u u u r ,所以3,22b B ⎛⎫- ⎪⎝⎭.将B 点坐标代入椭圆方程22221(0)b x y a b a +=>>,得2229144b ba +=,所以22223,2a b a c ==-=.所以椭圆C 的方程为22132x y +=.故选B.【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。
2019年普通高等学校招生全国统一考试数学(含解析)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A I A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .a b c <<a c b <<c a b <<b c a <<C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试 数学(江西文科卷)试题精析详解一、选择题(5分⨯12=60分)1.设集合{|||3,},{1,2},{2,1,2}I x x x Z A B =<∈==--,则()I A C B =( )A .{1}B .{1,2}C .{2}D .{0,1,2}见理科卷1 2.已知==ααcos ,32tan 则( )A .54 B .-54 C .154 D .-53 【思路点拨】本题涉及三角函数的有关公式.【正确解答】由二倍角公式可知,221tan 42cos 51tan 2ααα-==-+,选B 【解后反思】教材已经给我们提供了一个好的问题情境,并通过“会话”、“协作”初步建构了二倍角公式的概念.我们完全有可能通过进一步的“会话”、协作”,深化对二倍角公式的意义建构,引导学生用学到的“活的思想”去诠释新教材中的新问题.如此去领会、贯彻新教材的构思.3.123)(x x +的展开式中,含x 的正整数次幂的项共有( )A .4项B .3项C .2项D .1项见理科卷4 4.函数)34(log 1)(22-+-=x x x f 的定义域为( )A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3)D .[1,3]【思路点拨】本题涉及求函数定义域的若干知识.在本题中,求定义域要注意两个方面(1)因式有分母,注意分母不能为零,(2)因式有对数,要对数有意义.【正确解答】由题意可知,222log (43)0213430x x x x x x ⎧-+-≠≠⎧⎪⇒⎨⎨<<-+->⎪⎩⎩,选A【解后反思】本题是求定义域的一道常规题目, 函数的定义域(或变量的允许取值范围)看似非常简单,然而在解决问题中若不加以注意,常常会误入歧途,导致失误.此外在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响. 5.设函数)(|,3sin |3sin )(x f x x x f 则+=为 ( )A .周期函数,最小正周期为32πB .周期函数,最小正周期为3πC .周期函数,数小正周期为π2D .非周期函数见理科卷56.已知向量与则若,25)(,5||),4,2(),2,1(=⋅+=--= ( )A .30°B .60°C .120°D .150°见理科卷67.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( )A .70B .140C .280D .840【思路点拨】本题涉及组合的平均分组问题.【正确解答】要使甲、乙分在同一组,即将剩下的7人分成三组,其中两组有三个人,一组只有一个人,所以要求的概率为132763/270P C C C =⋅⋅=,选A【解后反思】对于平均分组问题,由于各组地位均等,所以平均分成几组,就一定要除以nn A 8.在△ABC 中,设命题,sin sin sin :AcC b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【思路点拨】本题主要考查三角形形状的判断及充要条件.【正确解答】q p ⇒,由△ABC 是等边三角形,则,a b c A B C ====,显然成立.p q ⇒:由三角形的性质可知:sin sin sin b c a B C A ==,又已知,sin sin sin a b cB C A==两式相除得:b c a a b c ==,令b c at a b c===,则,,a ct b at c bt ===, 所以,3abc abct =,得1t =,因此a b c ==,即△ABC 是等边三角形. 因此p 是q 的充分必要条件,选C【解后反思】判断三角形形状,主要根据正弦定理,余弦定理及三角形内角和为π,化简有两个方向,(1) 角化边,(2)边化角.9.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为 ( )A .π12125 B .π9125C .π6125D .π3125见理科卷9.10.已知实数a 、b 满足等式,)31()21(ba=下列五个关系式:①0<b <a ②a <b <0 ③0<a <b ④b <a <0 ⑤a =b其中不可能成立的关系式有 ( )A .1个B .2个C .3个D .4个见理科卷10.11.在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ( )A .6π B .4π C .3π D .2π 见理科卷1112.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为( )A .0,27,78B .0,27,83C .2.7,78D .2.7,83【思路点拨】本题涉及数理统计的若干知识.【正确解答】由图象可知,前4组的公比为3,最大频率40.130.10.27a =⨯⨯=,设后六组公差为d ,则560.010.030.090.27612d ⨯+++⨯+=,解得:0.05d =-, 后四组公差为-0.05, 所以,视力在4.6到5.0之间的学生数为(0.27+0.22+0.17+0.12)×100=78(人).选A.【解后反思】本题是一道数理统计图象题,关于统计一般可分为三步,第一步抽样,第二步根据抽样所得结果,画成图形,第三步根据图形,分析结论.本题是统计的第二步,在此类问题中,可画成两种图形,一个是频率分布直方图,另一个是频率分布条形图,两者有很大的不同,前者是以面积表示频数,频率分布条形图是以高度表示频数.二、填空题(4分⨯4=16分) 13.若函数)2(log )(22a x x x f a ++=是奇函数,则a = .见理科卷1314.设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- .见理科卷1415.如图,在三棱锥P —ABC 中,PA=PB=PC=BC ,且2π=∠BAC ,则PA 与底面ABC 所成角为.【思路点拨】本题主要考查直线与平面所成的角的求法,关键是 确定点P 在底面的射影O 的位置.【正确解答】过P 作PO ABC ⊥底面,交底面于O ,连结AO 并延长交BC 于D ,连结PD ,则PD 、AD 均垂直于BC ,所以AB =AC ,PA 与底面ABC 所成角为PAD ∠,设AC =1,则PA=PB=PC=BC ,2PD =,2AD =, 2221cos 22PA AD PD PAD PA AD +-∠==⨯,所以3PAD π∠=.【解后反思】熟练掌握三角形的“四心”是快速解该题的关键.外心:三角形三条中垂线的交点,性质外心到三角顶点距离相等,内心:内角平分线的交点,性质是内心到三边距离相等,垂心:三条高线的交点,重心:三条中线的交点,另外记住一些结论也是大有裨益的,比如在三棱锥P-ABC 中(1)若P 到三个顶点的距离相等,则P 在底面的射影是ABC 的外心,(2)若P 到三边的距离相等,则P 在底面的射影是ABC ∆的内心,(3)若PA BC ⊥,PB AC ⊥则PC AB ⊥且P 在底面的射影是ABC ∆的垂心.16.以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号)见理科卷16.三、解答题(本大题共6小题,共74分) 17.(本小题满分12分)已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(.见理科卷17.18.(本小题满分12分)已知向量b a x f x x b x x a ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ. 求函数f (x )的最大值,最小正周期,并写出f (x )在[0,π]上的单调区间.【思路点拨】本题主要考查向量与三角函数的综合题,正确求出f (x )是解该题的关键. 【正确解答】)42tan()42tan()42sin(2cos 22)(πππ--++=⋅=x x x x x f 12cos 22cos 2sin 22tan112tan 2tan 12tan1)2cos 222sin 22(2cos 222-+=+-⋅-+++=x x x x xx x x x xx x cos sin +==)4sin(2π+x .所以2)(的最大值为x f ,最小正周期为]4,0[)(,2ππ在x f 上单调增加,]4,0[π上单调减少. 【解后反思】这是一道向量与三角函数的综合题,向量虽然是近年高中数学出现的新知识,但向量知识却很重要.因为向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在学习过程中,同学将会了解向量丰富的实际背景,逐渐理解平面向量及其运算的意义,一定能要用向量语言和方法表述和解决数学和物理中的一些问题,发展数学运算能力和解决数学实际问题的能力. 19.(本小题满分12分)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.【思路点拨】本题涉及随机事件的有关概率. 【正确解答】设ξ表示游戏终止时掷硬币的次数,设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-715||ξξn m n m ,可得:.7,5:;7,6,11,6;5,5,00,5的取值为所以时或当时或当ξξξ==========n m n m n m n m.649645322)21(2)21(2)7()5()7(7155=+=+⨯==+==≤C P P P ξξξ【解后反思】这是一道比较复杂的概率题目,首先我们应理解随机变量及其概率分布的概念,掌握分布函数F(x)= P{X≤x}的概念及性质;才能会计算与随机变量相关的事件的概率.同时我们在解决的过程中,也适当对此类解题的流程也要有一个清晰的了解,这样才能保证此类题目得高分和全分. 20.(本小题满分12分)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC -D 的大小为4π. 见理科卷20.21.(本小题满分12分)如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB.(1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹方程.【思路点拨】本题涉及抛物线与直线相交的有关知识. 【正确解答】(1)设M (y 20,y 0),直线ME 的斜率为k(l>0) 则直线MF 的斜率为-k ,).(200y x k y y ME -=-∴的方程为直线⎪⎩⎪⎨⎧=-=-∴xy y x k y y 2200)(由消0)1(002=-+-ky y y ky x 得 2200)1(,1kky x k ky y F F -=∴-=解得).(2142)1()1(1102022022000定值y k ky k k ky k ky k ky k ky x x y y k F E F E EF-=-=+---+--=--=∴ 所以直线EF 的斜率为定值(2),1,45,90==∠=∠k MAB EMF 所以时当).(200y x k y y ME -=-∴的方程为直线).1,)1((,0202200y y E xy y x y y --⎪⎩⎪⎨⎧=-=-得由 同理可得)).1(,)1((020y y F +-+设重心G (x , y ),则有⎪⎪⎩⎪⎪⎨⎧-=+--+=++=+=++-+=++=33)1()1(33323)1()1(3000020202020y y y y x x x x y y y y x x x x F E M F E M).32(2729120>-=x x y y 得消去参数【解后反思】这是一道重要的数学问题,它属于解析几何范畴,几乎是高考数学每年的必考内容之一,此类问题一定要”大胆假设,细心求解”,根据题目要求先将题目所涉及的未知量都可以设出来,然后根据题目把所有的条件都变成等式,一定可以求出来,当然求的过程中,采取适当的小技巧,例如化简或适当分类讨论,可以大为简化过程,而且会尽量多多得分,同时这一类题目也需要很强的计算能力.。