高考数学总复习 课时提升作业(二十三) 4.1平面向量的概念及其线性运算 文 新人教A版
- 格式:doc
- 大小:561.01 KB
- 文档页数:9
2021年高考数学 4.1平面向量的概念及其线性运算课时提升作业文新人教A版一、选择题1.(xx·广州模拟)给出下列命题:①两个具有公共起点的向量,一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③λa=0(λ为实数),则λ必为零.其中错误命题的个数为( )(A)0 (B)1 (C)2 (D)32.如图,在△ABC中,AD,BE,CF分别是BC,CA,AB上的中线,它们交于点G,则下列各等式中不正确的是( )(A)(B)(C)(D)3.在以下各命题中,假命题的个数为( )①“|a|=|b|”是“a=b”的必要不充分条件②任一非零向量的方向都是唯一的③“a∥b”是“a=b”的充分不必要条件④若|a|-|b|=|a|+|b|,则b=0(A)1 (B)2 (C)3 (D)44.设P是△ABC所在平面内的一点,则( )(A) (B)(C) (D)5.若O是A,B,P三点所在直线外一点且满足条件:其中{a n}为等差数列,则a2 011等于( )(A)-1 (B)1 (C) (D)6.设a,b是非零向量,则下列不等式中不恒成立的是( )(A)|a+b|≤|a|+|b| (B)|a|-|b|≤|a+b|(C)|a|-|b|≤|a|+|b| (D)|a|≤|a+b|7.(能力挑战题)已知O是平面上的一定点,在△ABC中,动点P满足条件AB ACOP OA()=+λ+,其中λ∈[0,+∞),则点P的轨迹一定通过|AB|sin B|AC|sin B△ABC的( )(A)内心(B)重心(C)垂心(D)外心8.在△ABC中,则的值为( )(A)2 (B) (C)3 (D)9.如图,在△ABC中,AD=2BD,AE=3EC,CD与BE交于F,设则(x,y)为( )(A) (B)(C) (D)10.设A1,A2,A3,A4是平面上给定的4个不同点,则使成立的点M的个数为( )(A)0 (B)1 (C)5 (D)10二、填空题11.如图,在正六边形ABCDEF中,已知则=________(用c与d表示).12.(xx·惠州模拟)在△ABC中,AB=1,M为BC边的中点,则=________.13.给出以下命题:①对于实数p和向量a,b,恒有p(a-b)=p a-p b;②对于实数p,q和向量a,恒有(p-q)a=p a-q a;③若p a=p b(p∈R),则a=b;④若p a=q a(p,q∈R,a≠0),则p=q.其中正确命题的序号为________.14.(xx·汕头模拟)在□OADB中,设AB与OD交于C点,又若则x+y=________.三、解答题15.(能力挑战题)已知G是△ABC的重心,直线EF过点G且与边AB,AC分别交于E,F,求的值.答案解析1.【解析】选C.①有公共起点的向量方向不一定相同或相反,错误.②正确.③a =0时,λ可不为零,③错误.2.【思路点拨】解题时注意三角形中线对应向量的性质及三角形重心的性质.【解析】选C .由题意知点G 为三角形的重心,故所以C 错误.3.【解析】选A.∵a ,b 方向不同⇒a ≠b ;∴仅有|a |=|b |a =b ;但反过来,有a =b ⇒|a |=|b |.故命题①是正确的.命题②正确.∵a ∥ba =b ,而a =b ⇒a ∥b ,故③不正确.∵|a |-|b |=|a |+|b |∴-|b |=|b |,∴2|b |=0,∴|b |=0,即b =0,故命题④正确.综上所述,4个命题中,只有③是错误的,故选A.4.【解析】选B .因为则即所以点P 为线段AC 的中点,所以应该选B .5.【解析】选D.因为A ,B ,P 三点共线,且所以a 1+a 4 021=1,故6.【解析】选D.由||a |-|b ||≤|a +b |≤|a |+|b |知A ,B ,C 恒成立,取a +b =0,则D 不成立.【误区警示】解答本题时容易忽视向量共线的情形.7.【解析】选A.由条件得因为分别是方向上的单位向量,故在∠A 的平分线上,从而向量也在∠A 的平分线上.故选A .8.【解析】选B.方法一:方法二:BD 2DC AD AB 2(AC AD).=∴--,=【变式备选】如图,平面内有三个向量其中的夹角为120°,与的夹角为30°,且若(λ,μ∈R),则λ+μ的值为( )(A)4 (B)5 (C)6 (D)8【解析】选C.过C 作与的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,得平行四边形的边长为2和4,故λ+μ=4+2=6. 9.【解析】选A.设则3AF AB BF AB BE AB (AC AB)4λλ=+=+=+-=同理,设则2AF AC CF AC CD AB (1)AC 3μμμ=+=+=+-,对应相等可得所以故选A. 10.【思路点拨】类比三角形的“重心”的性质解题.【解析】选B.在平面中我们知道“三角形ABC 的重心G 满足:”则此题就能很快地答出,点M 即为这4个点连线组成的平面图形的重心,即点M 只有一个.11.【解析】连接BE ,CF,设它们交于点O,则 由正六边形的性质得又 13AE AO OE ().22∴=+=+-=-d d c d c 答案: 12.【解析】由向量加减法运算知则2211AB AC AC AB (AC)(AB)1.22+-=-=()()[] 答案:113.【解析】根据实数与向量乘积的定义及其运算律可知①②④正确;③不一定成立,因为当p=0时,p a =p b =0,而不一定有a =b .答案:①②④ 14.【解析】依题意有y x 1y x 111MN 2226-++-=+=-,a b a b 有 答案:【方法技巧】向量在平面几何中的应用技巧平面向量的知识在解决平面几何中的问题时应用非常广泛:利用共线向量定理,可以证明点共线,两直线平行,并进而判定一些特殊图形;利用向量的模,可以说明线段间的长度关系,并进而求解图形的面积.在后续内容中,向量的应用将更广泛.要注意图形中的线段、向量是如何相互转化的. 15.【解析】如图,连结AG 并延长交BC 于D , ∵G 是△ABC 的重心,设AG AE AF AG 1AG AE AF 1111AB AC AB AC,331113111113 3.131.113∴-=λ-λλ∴=++λ+λαλβ∴+=++λ+λ⎧α⎧==⎪⎪α+λ⎪⎪+λ∴⇒∴+=⎨⎨λλβαβ⎪⎪==⎪β+λ⎪+λ⎩⎩,,,,, 【变式备选】如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM与BN 相交于点P ,求AP ∶PM 的值.【解析】设∵A ,P ,M 和B ,P ,N 分别共线,∴存在λ,μ∈R ,使故(λ+2μ)e 1+(3λ+μ)e 2,而2e 1+3e 2,4,22,5333541AP AM PM AM 55⎧λ⎪λμ⎧⎪∴∴⎨⎨λμ⎩⎪μ⎪⎩∴∴=+=+=,=,=,=, 即AP ∶PM =4.O23542 5BF6 寶28984 7138 焸37468 925C 鉜20416 4FC0 俀X33811 8413 萓_X19970 4E02 丂38638 96EE 雮= 37914 941A 鐚。
专题21平面向量的概念、线性运算及坐标表示【考点预测】 一.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB 的长度,记作||AB . (3)特殊向量:①零向量:长度为0的向量,其方向是任意的. ②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ④相等向量:长度相等且方向相同的向量. ⑤相反向量:长度相等且方向相反的向量. 二.向量的线性运算和向量共线定理 (1)向量的线性运算①交换律b b a =+②结合律 )a b c ++=(a b c ++a 与b 的相反向量b -的和的运算叫做a b 的差 ()a b a b -=+-求实数λ与a 的积的运算(|||||a a λ=(0λ>时,a λ与a 的方向相同;当λ<a λ与a 的方向相同;时,0a λ=()()a a λμλμ=)a a a λμλμ+=+(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -=,AM AN NM -=,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.三.平面向量基本定理和性质 1.共线向量基本定理如果()a b R λλ=∈,则//a b ;反之,如果//a b 且0b ≠,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).2.平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e eλλ+叫做向量a 关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a 都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==. 推论2:若11220a e e λλ=+=,则120λλ==. 3.线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB ACAD λλ+=+.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.4.三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=; ⇔存在唯一的实数λ,使得OC OA AB λ=+;DAC B⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+; ⇔存在1λμ+=,使得OC OA OB λμ=+.5.中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+)AC ,反之亦正确.四.平面向量的坐标表示及坐标运算 (1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j 作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a ,有且只有一对实数,x y 使a xi yj =+,我们把有序实数对(,)x y 叫做向量a 的坐标,记作(,)a x y =.(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有 向量(,)x y 一一对应向量OA一一对应点(,)A x y .(3)设11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y =,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.五.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,222121||()()AB x x y y =-+- ②已知11(,)a x y =,22(,)b x y =,则a b ±1212()x x y y =±±,,11(,)a x y λλλ=, =a b ⋅1212x x y y +,2211||a x y =+.a b ∥⇔12210x y x y -=,a b ⊥⇔12120x x y y +=【方法技巧与总结】(1)向量的三角形法则适用于任意两个向量的加法,并且可以推广到两个以上的非零向量相加,称为多边形法则.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.即122311n n n A A A A A A A A -+++=.DACB(2)||||||||||||a b b a a b -≤±≤+,当且仅当,b a 至少有一个为0时,向量不等式的等号成立. (3)特别地:||||||||b b a a -≤±或||||||a a b b ±≤+当且仅当,b a 至少有一个为0时或者两向量共线时,向量不等式的等号成立.(4)减法公式:AB AC CB -=,常用于向量式的化简.(5)A 、P 、B 三点共线⇔(1)OP t OA tOB =-+()t R ∈,这是直线的向量式方程.【题型归纳目录】题型一:平面向量的基本概念 题型二:平面向量的线性表示 题型三:向量共线的运用 题型四:平面向量基本定理及应用 题型五:平面向量的直角坐标运算【典例例题】题型一:平面向量的基本概念例1.(2022·全国·高三专题练习)已知平面四边形ABCD 满足AB DC =,则四边形ABCD 是( ) A .正方形 B .平行四边形C .菱形D .梯形【答案】B 【解析】 【分析】根据平面向量相等的概念,即可证明AB DC =,且//AB DC ,由此即可得结论. 【详解】在四边形ABCD 中, AB DC =,所以AB DC =,且//AB DC , 所以四边形ABCD 为平行四边形. 故选:B例2.(2022·全国·高三专题练习)给出如下命题: ①向量AB 的长度与向量BA 的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个公共终点的向量,一定是共线向量;⑤向量AB 与向量CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上. 其中正确的命题个数是( ) A .1B .2C .3D .4【答案】B 【解析】 【分析】根据向量的基本概念,对每一个命题进行分析与判断,找出正确的命题即可. 【详解】对于①,向量AB 与向量BA ,长度相等,方向相反,故①正确;对于②,向量a 与b 平行时,a 或b 为零向量时,不满足条件,故②错误; 对于③,两个有共同起点且相等的向量,其终点也相同,故③正确; 对于④,两个有公共终点的向量,不一定是共线向量,故④错误;对于⑤,向量AB 与CD 是共线向量,点A ,B ,C ,D 不一定在同一条直线上,故⑤错误. 综上,正确的命题是①③. 故选:B .例3.(2022·全国·高三专题练习)下列说法:①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同;②若向量AB →,CD →满足AB CD →→>,且AB →与CD →同向,则AB CD →→>;③若两个非零向量AB →与CD →满足0AB CD →→→+=,则AB →,CD →为相反向量; ④AB CD →→=的充要条件是A 与C 重合,B 与D 重合. 其中错误的个数为( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】①错误. 两个空间向量相等,但与起点和终点的位置无关;②错误. 向量不能比较大小;③正确. AB →,CD →为相反向量;④错误. A 与C ,B 与D 不一定重合.【详解】①错误.两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关. ②错误.向量的模可以比较大小,但向量不能比较大小.③正确. 0AB CD →→→+=,得AB CD →→=-,且AB →,CD →为非零向量,所以AB →,CD →为相反向量.④错误. 由AB CD →→=,知AB CD →→=,且AB →与CD →同向,但A 与C ,B 与D 不一定重合.故选:C 【点睛】易错点睛:向量是一个既有大小,又有方向的矢量,考虑向量的问题时,一定要注意这一点. 例4.(2022·江苏江苏·一模)平面内三个单位向量a ,b ,c 满足230a b c ++=,则( ) A .a ,b 方向相同 B .a ,c 方向相同 C .b ,c 方向相同 D .a ,b ,c 两两互不共线【答案】A 【解析】 【分析】根据230a b c ++=,得32c a b =--,两边利用单位向量的平方等于1,即可求出a,b 0<>=,解得a ,b 方向相同.【详解】因为230a b c ++=, 所以32c a b =--, 所以22(3)(2)c a b =--, 所以222944?c a b a b =++, 所以9144cos ,a b a b =++<>, 所以4411cos ,a b =⨯⨯<>, 所以cos ,1a b <>= 所以a,b 0<>=, 所以a ,b 方向相同, 故选:A.例5.(2022·吉林吉林·模拟预测(文))已知向量()4,3a =,则与向量a 垂直的单位向量的坐标为( ) A .43,55⎛⎫ ⎪⎝⎭B .34,55⎛⎫- ⎪⎝⎭C .43,55⎛⎫-- ⎪⎝⎭或43,55⎛⎫ ⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭【答案】D 【解析】 【分析】先写出与之垂直的一个向量,然后再求得与此垂直向量平行的单位向量即得. 【详解】易知(3,4)b =-是与a 垂直的向量,5b =,所以与b 平行的单位向量为134(,)555b =-或134(,)555b -=-,故选:D .例6.(多选题)(2022·全国·高三专题练习)下列命题中正确的是( ) A .若a b =,则32a b > B .0BC BA DC AD ---=C .若向量,a b 是非零向量,则a b a b a +=+⇔与b 方向相同D .向量a 与()0b b ≠共线的充要条件是:存在唯一的实数λ,使λa b 【答案】CD 【解析】 【分析】利用向量的知识对选项逐一分析,由此确定正确选项. 【详解】向量不等比较大小,故A 选项错误.向量加法、减法的结果仍为向量,故B 选项错误. a b a b a +=+⇔与b 方向相同,C 选项正确.根据向量共线的知识可知D 选项正确. 故选:CD例7.(多选题)(2022·全国·高三专题练习)下列有关四边形ABCD 的形状,判断正确的有( ) A .若AD BC =,则四边形ABCD 为平行四边形 B .若13AD BC =,则四边形ABCD 为梯形C .若AB AD AB AD +=-,则四边形ABCD 为菱形 D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【答案】AB 【解析】 【分析】依据平行四边形判定定理判断选项A ;依据梯形判定定理判断选项B ;依据菱形判定定理判断选项C ;依据正方形判定定理判断选项D.【详解】选项A :若AD BC =,则//AD BC ,=AD BC ,则四边形ABCD 为平行四边形.判断正确; 选项B :若13AD BC =,则//AD BC ,AD BC ≠,则四边形ABCD 为梯形. 判断正确;选项C :若AB AD AB AD +=-,则2240AB AD AB AD AB AD -=+⋅=-,则AB AD ⊥,即90BAD ∠=.仅由90BAD ∠=不能判定四边形ABCD 为菱形.判断错误; 选项D :若AB DC =,则//AB DC ,=AB DC ,则四边形ABCD 为平行四边形, 又由AC BD ⊥,可得对角线AC BD ⊥,则平行四边形ABCD 为菱形. 判断错误. 故选:AB例8.(多选题)(2022·全国·高三专题练习)下列说法错误的是( ) A .若a b =,则a b =或a b =- B .若ma mb =,m R ∈,则a b = C .若//a b , //c b ,则//a cD .若0ma =,m R ∈,则0m =或0a = 【答案】ABCD 【解析】 【分析】对于A ,模长相等的两个向量方向任意,不一定平行;对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,无法推出这两点,故B 不正确;对于C ,当0b =时,选项不正确;对于D ,00ma m =⇒=或0a =,即可得到D 错误.【详解】对于A ,若a b =,则两个向量的方向可以是任意的,不一定是平行的,故A 不正确; 对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,满足0ma mb ==, a 和b 的方向可以是任意的,且两者的模长也不一定相同,故B 不正确;对于C ,若//a b , //c b ,当0b =时,满足//a b , //c b ,但是不满足//a c ,故C 错误; 对于D ,00ma m =⇒=或者||0a =,即0m =或0a =,故D 错误; 故选:ABCD.【方法技巧与总结】准确理解平面向量的基本概念是解决向量题目的关键.共线向量即为平行向量,非零向量平行具有传递性,两个向量方向相同或相反就是共线向量,与向量长度无关,两个向量方向相同且长度相等,就是相等向量.共线向量或相等向量均与向量起点无关.题型二:平面向量的线性表示例9.(2022·山东潍坊·模拟预测)在平行四边形ABCD 中,,M N 分别是,AD CD 的中点,BM a =,BN b =,则BD =( )A .3243a b +B .2233ab C .2334a b +D .3344a b +【答案】B 【解析】 【分析】设,AB m AD n ==,根据向量的线性运算,得到11()()22BD x y n x y m =+--,结合BD n m =-,列出方程组,求得,x y 的值,即可求解.【详解】如图所示,设,AB m AD n ==,且BD xa yb =+,则1111()()()()2222BD xa yb x n m y n m x y n x y m =+=⋅-+⋅-=+--,又因为BD n m =-,所以112112x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22,33x y ==,所以2233BD a b =+.故选:B.例10.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD-B .1566AB AD +C .5166AB AD -D .5166AB AD +【答案】C 【解析】 【分析】根据平面向量线性运算法则计算可得; 【详解】解:因为2EO AE =,所以()111366AE AO AC AB AD ===+, 所以()151666EB AB AE AB AB AD AB AD =-=-+=-. 故选:C.例11.(2022·吉林吉林·模拟预测(文))如图,ABCD 中,AB a =,AD b =,点E 是AC 的三等分点13⎛⎫= ⎪⎝⎭EC AC ,则DE =( )A .1233a b -B .2133a b -C .1233a b +D .2133ab 【答案】B 【解析】 【分析】根据向量的加法法则和减法法则进行运算即可. 【详解】 2221()3333DE AE AD AC AD AB AD AD a b =-=-=⋅+-=- 故选:B.例12.(2022·安徽·合肥市第八中学模拟预测(文))在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -【答案】B 【解析】 【分析】根据题意和平面向量的线性运算即可得出结果.【详解】 ()1111112111·2222323622DG DE DF DA AE DC AD AB AB AB AD ⎛⎫=+=++=-++=- ⎪⎝⎭. 故选:B.例13.(2022·湖南师大附中三模)艺术家们常用正多边形来设计漂亮的图案,我国国旗上五颗耀眼的正五角星就是源于正五边形,正五角星是将正五边形的任意两个不相邻的顶点用线段连接,并去掉正五边形的边后得到的图形,它的中心就是这个正五边形的中心.如图,设O 是正五边形ABCDE 的中心,则下列关系错误的是( )A .AD DB OB OA +=- B .0AO BE ⋅=C .3AC AD AO += D .AO AD BO BD ⋅=⋅【答案】C 【解析】 【分析】由平面向量的运算对选项逐一判断 【详解】对于A ,,AD DB AB OB OA AB +=-=,故A 正确,对于B :因为AB AE =,OB OE =,所以AO BE ⊥,故B 正确, 对于C :由题意O 是ACD △的外心,不是ACD △的重心设CD 中点为M ,则2||=||||||||cos36||2cos 18AM AO OM AO AO AO +=+︒=⋅︒,24cos 18AC AD AO +=︒,故C 错误,对于D :2211||||22AO AD AD BD BO BD ⋅===⋅,故D 正确. 故选:C例14.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AHAG +=D .23BO BHBG +=【答案】D 【解析】 【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误. 【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误;()112333AO AHAG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BHBG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.例15.(2022·全国·模拟预测)在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b+-B .23a b+-C .23a b--D .23a b--【答案】B 【解析】 【分析】 根据题意得()13AF AC AD =+,再分析求解即可. 【详解】如下图所示,连接AC 与BD 交于O ,则O 为AC 的中点,因为E 为AD 的中点,所以F 为三角形ACD 的重心,所以()()112333a bAF AC AD a b a +=+=---=-. 故选:B.例16.(2022·黑龙江·哈尔滨三中模拟预测(文))ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE =( )A .1133AB AC +B .1233AB AC +C .2133AB AC +D .2233AB AC +【答案】C 【解析】 【分析】利用向量的三角形法则以及线性运算法则进行运算,即可得出结论. 【详解】解:因为点E 是BC 边上靠近B 的三等分点,所以13BE BC =,所以1121()3333AE AB BE AB BC AB BA AC AB AC =+=+=++=+;故选:C.例17.(多选题)(2022·山东·烟台二中模拟预测)中华人民共和国的国旗图案是由五颗五角星组成,这些五角星的位置关系象征着中国共产党领导下的革命与人民大团结.如图,五角星是由五个全等且顶角为36°的等腰三角形和一个正五边形组成.已知当2AB =时,1BD =,则下列结论正确的为( )A .DE DH =B .0AF BJ ⋅=C .51AH AB +=D .CB CD JC JH +=-【答案】AB 【解析】 【分析】连接DH ,AF ,CH ,BH ,利用五角星的结构特征逐项分析判断作答. 【详解】对于A ,连接DH ,如图,由DF =FH ,108DFH ∠=得:36DHF E ∠==∠,DE DH =,A 正确;对于B ,连接AF ,由,AD AH FD FH ==得:AF 垂直平分DH ,而//BJ DH ,即AF BJ ⊥,则0AF BJ ⋅=,B 正确;对于C ,AH 与AB 不共线,C 不正确;对于D ,连接CH ,BH ,由选项A 知,DH DE BC ==,而//BC DH ,则四边形BCDH 是平行四边形, CB CD CH JH JC +==-,D 不正确.故选:AB【方法技巧与总结】(1)两向量共线问题用向量的加法和减法运算转化为需要选择的目标向量即可,而此类问题又以“爪子型”为几何背景命题居多,故熟练掌握“爪子型”公式更有利于快速解题.(2)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(3)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.题型三:向量共线的运用例18.(2022·陕西·西北工业大学附属中学模拟预测(文))设a 、b 都是非零向量,下列四个条件中,使a a bb =成立的充分条件是( )A .a b =且a b ∥B .a b =-C .a b ∥D .2a b =【答案】D 【解析】 【分析】根据充分条件的定义以及平面向量的有关概念即可解出. 【详解】对于A ,当a b =且a b ∥时,a a bb =或a b ab=-,A 错误;对于B ,当a b =-时,a b ab =-,B 错误; 对于C ,当a b ∥时,a a bb =或a b ab=-,C 错误;对于D ,当2a b =时,a abb =,D 正确.故选:D .例19.(2022·四川绵阳·二模(理))已知平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,则( )A .A ,B ,D 三点共线 B .A ,B ,C 三点共线 C .B ,C ,D 三点共线 D .A ,C ,D 三点共线【答案】D 【解析】 【分析】根据给定条件逐项计算对应三点确定的某两个向量,再判断是否共线作答. 【详解】平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+, 对于A ,3(3)6BD BC CD a b a b b =+=-+++=,与AB 不共线,A 不正确; 对于B ,因46AB a b =+,3BC a b =-+,则AB 与BC 不共线,B 不正确; 对于C ,因3BC a b =-+,3CD a b =+,则BC 与CD 不共线,C 不正确; 对于D ,46(3)393AC AB BC a b a b a b CD =+=++-+=+=,即//AC CD , 又线段AC 与CD 有公共点C ,则A ,C ,D 三点共线,D 正确. 故选:D例20.(2022·全国·高三专题练习)已知1e ,2e 是不共线向量,则下列各组向量中,是共线向量的有( ) ①15a e =,17b e =;②121123a e e =-,1232b e e =-; ③12a e e =+,1233b e e =-. A .①② B .①③ C .②③ D .①②③【答案】A 【解析】 【分析】根据平面向量共线定理得到,对于①57a b =,故两向量共线;对于②16a b =,故两向量共线;对于③不存在实数λ满足λa b ,故不共线.【详解】对于①15a e =,17b e =,57a b =,故两向量共线;对于②121123a e e =-,1232b e e =-,16a b =,故两向量共线; 对于③12a e e =+,1233b e e =-, 假设存在,a b λλ=⇒()121233e e e e λ=-+()()123131e e λλ⇒-=+,因为1e ,2e 是不共线向量,故得到3131λλ-=+无解. 故选:A.例21.(2022·内蒙古·包钢一中一模(文))已知向量1e ,2e 是两个不共线的向量,122a e e =-与12b e e λ=+共线,则λ=( )A .2B .2-C .12-D .12【答案】C 【解析】 【分析】根据向量共线的充要条件建立方程直接求解. 【详解】因为122a e e =-与12b e e λ=+共线,所以ka b =,0k ≠, 所以12121212()22=k k e e e e e e e e k λλ-+⇒-=+,因为向量1e ,2e 是两个不共线的向量,所以21k k λ=⎧⎨-=⎩,解得12λ=-,故选:C .例22.(2022·安徽·合肥市第六中学模拟预测(理))如图,在ABC 中,M ,N 分别是线段AB ,AC 上的点,且23AM AB =,13AN AC =,D ,E 是线段BC 上的两个动点,且(,)AD AE x AM y AN x y +=+∈R ,则12x y+的的最小值是( )A .4B .43C .94D .2【答案】B 【解析】 【分析】根据平面向量共线定理可设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,再结合AD AE x AM y AN +=+得26x y +=,最后运用基本不等式可求解.【详解】设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,则AD AE mAB nAC AB AC λμ+=+++=3()()()3()2m AB n AC m AM n ANλμλμ+++=+++x AM y AN =+,3()2m x λ+=,3()n y m μλ+=⇒+=23x ,13n y μ+=,21222633m n x y x y λμ+++=⇒+=⇒+=.所以12112(2)6x y x y x y ⎛⎫+=++= ⎪⎝⎭14142222663y x x y ⎛⎛⎫+++≥++= ⎪ ⎝⎭⎝, 当且仅当32x =,3y =时等号成立. 所以12x y +的的最小值是43.故选:B例23.(2022·全国·模拟预测)在ABC 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB yAC x y =+>>,则12x y+的最小值为( )A .9B .8C .4D .2【答案】A 【解析】 【分析】根据向量共线定理得推论得到21x y +=,再利用基本不等式“1”的妙用求解最小值. 【详解】因为点F 为线段BC 上任一点(不含端点), 所以21x y +=,故()12122221459y x x y x y x y x y ⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时等号成立, 故选:A例24.(2022·山东泰安·模拟预测)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B 三点共线,则x =( )A .53-B .53C .35 D .35【答案】A 【解析】 【分析】根据O ,A ,B 三点共线,则OA OB ∥,R λ∃∈,OB OA λ=,代入整理. 【详解】因为O ,A ,B 三点共线,则OA OB ∥所以R λ∃∈,OB OA λ=,即()53xm n m n λ+=- 整理得:()()531x m n λλ-=+又∵向量m ,n 不共线,则5310x λλ-=+=,则53x =-故选:A .例25.(2022·云南·昆明一中高三阶段练习(文))已知向量a ,b ,且2AB a b =+,BC 56a b =-+,72CD a b =-,则一定共线的三点是( )A .A ,B ,D B .A ,B ,CC .B ,C ,DD .A ,C ,D【答案】A 【解析】 【分析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解. 【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,选项A ,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B ,D 三点共线,则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确;选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得λ不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,C ,D 三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,解得λ不存在,故该选项错误;选项D ,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,即48(72)a b a b λ-+=-,解得λ不存在,故该选项错误;故选:A.例26.(2022·全国·高三专题练习)给出下列命题:①若||||a b =,则a b =;②若A B C D 、、、是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③若a b =,b c =,则a c =;④a b =的充要条件是||a ||b =且//a b ;⑤若//a b ,//b c ,则//a c .其中正确命题的序号是________ .【答案】②③##③② 【解析】 【分析】根据向量相等的概念及向量共线的概念即可判断. 【详解】对于①,两个向量的长度相等,不能推出两个向量的方向的关系,故①错误;对于②,因为A ,B ,C ,D 是不共线的四点,且AB DC = 等价于//AB DC 且AB DC =,即等价于四边形ABCD 为平行四边形,故②正确;对于③,若a b =,b c =,则a c =,显然正确,故③正确;对于④,由a b =可以推出||||a b =且//a b ,但是由||||a b =且//a b 可能推出a b =-,故“||||a b =且//a b ”是“a b =”的必要不充分条件,故④不正确,对于⑤,当0b =时,//a b ,//b c ,但推不出//a c ,故⑤不正确. 故答案为:②③例27.(2022·全国·高三专题练习)如图,在ABC 中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1+【解析】 【分析】先利用条件找到12133λμ+=,则12()33λμλμλμ⎛⎫+=+⋅+ ⎪⎝⎭,利用基本不等式求最小值即可. 【详解】BP BA AP =+,PC PA AC =+,又2BP PC =,∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()113333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即λμ==时取等,∴λμ+的最小值为13+.故答案为:1+例28.(2022·全国·高三专题练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________.【答案】3 【解析】 【分析】以,AN AM 为基底,由G 是ABC ∆的重心和M ,G ,N 三点共线,可得11=133x y+,即求. 【详解】 根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线, 11=133x y ∴+,即113x y+=. 故答案为:3.例29.(2022·全国·高三专题练习)如图,ABC 中点,D E 是线段BC 上两个动点,且AD AE x AB y AC +=+,则9x yxy+的最小值为______.【答案】8 【解析】【分析】设AD mAB nAC =+,AE AB AC λμ=+,由B ,D ,E ,C 共线可得2x y +=, 再利用乘“1”法求解最值. 【详解】设AD mAB nAC =+,AE AB AC λμ=+, B ,D ,E ,C 共线,1m n ∴+=,1λμ+=. AD AE x AB y AC +=+,则2x y +=,点D ,E 是线段BC 上两个动点,0x ∴>,0y >. ∴991191191()()(10)(10)8222x y y x y xx y xy x y x y x y y+=+=++=+++= 则9x yxy+的最小值为8. 故答案为:8. 【点睛】由向量共线定理的推论得到2x y +=是解题关键,乘“1”法求解最值是基本不等式求最值的常用方法.. 例30.(2022·全国·高三专题练习)已知向量1223a e e =-,1223b e e =+,其中1e ,2e 不共线,向量1229c e e =-,问是否存在这样的实数λ,μ,使向量d a b λμ=+与c 共线?【答案】存在 【解析】 【分析】由已知得12(22)(33)d e e λμλμ=++-+,所以要使d 与c 共线,则应有实数k ,使d kc =,即()1212(22)(33)29e e k e e λμλμ++-+=-,从而得222339k k λμλμ+=⎧⎨-+=-⎩,进而可求得结果【详解】因为向量1223a e e =-,1223b e e =+, 所以1212(23)(23)d a b e e e e λμλμ=+=-++12(22)(33)e e λμλμ=++-+要使d 与c 共线,则应有实数k ,使d kc =, 即()1212(22)(33)29e e k e e λμλμ++-+=-,即222339kk λμλμ+=⎧⎨-+=-⎩得2λμ=-.故存在这样的实数λ,μ,只要2λμ=-,就能使d 与c 共线.【方法技巧与总结】要证明A ,B ,C 三点共线,只需证明AB 与BC 共线,即证AB =λBC (R λ∈).若已知A ,B ,C 三点共线,则必有AB 与BC 共线,从而存在实数λ,使得AB =λBC .题型四:平面向量基本定理及应用例31.(2022·重庆八中模拟预测)如图,在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O .若2AD =,(32)7AO AD AB ⋅-=-,则AB 的长为( )A .2B .3C .4D .5【答案】C 【解析】 【分析】先以AB AD 、为基底表示AO ,再利用向量的数量积把(32)7AO AD AB ⋅-=-转化为关于AB 的方程,即可求得AB 的长【详解】在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O . 设(01)DO DE λλ=<<, (01)BO BF μμ=<<则11++122AD DO AD DE AD AB AD AD AB λλλλ⎛⎫⎛⎫+==-=-+ ⎪ ⎪⎝⎭⎝⎭22(1)33AB BO AB BF AB AD AB AB AD μμμμ⎛⎫+=+=+-=-+ ⎪⎝⎭由AO AD DO AB BO =+=+,可得2(1)3AB AD μμ-+112AD AB λλ⎛⎫=-+ ⎪⎝⎭则112213λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩,解之得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,则3142AO AD DO AD AB =+=+则22(32)(33194242)7AO AD AB AD AB AD A AD AB B ⎛⎫+⋅-= ⎪⎝⋅-=⎭-=-又2AD =,则279AB -=-,解之得4AB ,即AB 的长为4故选:C例32.(2022·全国·高三专题练习)在等边ABC 中,O 为重心,D 是OB 的中点,则AD =( ) A .AB AC + B .2132AB AC +C .1124AB AC +D .2136AB AC +【答案】D 【解析】 【分析】根据给定条件,利用平面向量的线性运算计算作答. 【详解】O 为ABC 的重心,延长AO 交BC 于E ,如图,E 为BC 中点,则有2211()()3323AO AE AB AC AB AC ==⋅+=+,而D 是OB 的中点, 所以111121()222636AD AB AO AB AB AC AB AC =+=++=+. 故选:D例33.(2022·河南郑州·三模(理))在ABC 中,D 是BC 上一点,2BD DC =,M 是线段AD 上一点,14BM tBA BC =+,则t =( )A .12B .23C .34D .58【答案】D 【解析】 【分析】 求得1233AD AB AC =+,设1233AM AD AB AC λλλ==+,其中01λ≤≤,利用平面向量的线性运算可得出3144AM AB BM t AB AC ⎛⎫=+=-+ ⎪⎝⎭,根据平面向量的基本定理可得出关于λ、t 的方程组,即可解得t的值.【详解】因为2BD DC =,则()2AD AB AC AD -=-,所以,1233AD AB AC =+, ()131444AM AB BM AB t AB AC AB t AB AC ⎛⎫=+=-+-=-+ ⎪⎝⎭,因为M 是线段AD 上一点,设1233AM AD AB AC λλλ==+,其中01λ≤≤,所以,13342134t λλ⎧=-⎪⎪⎨⎪=⎪⎩,解得3858t λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D.例34.(2022·河南·模拟预测(理))如图,在ABCD 中,M 为BC 的中点,AC mAM nBD =+,则m +n =( )A .1B .43C .53D .2【答案】C 【解析】 【分析】利用向量的线性运算可求,m n 的值. 【详解】1122AM AB BC AB AD =+=+,而BD AD AB =-,故()12AC m AB AD n AD AB ⎛⎫=++- ⎪⎝⎭()2m m n AB n AD ⎛⎫=-++ ⎪⎝⎭,而AC AB AD =+且,AB AD 不共线,故4153{13123m n m m n mn n ⎧-==⎪⎪⇒⇒+=⎨+=⎪=⎪⎩, 故选:C.例35.(2022·河南商丘·三模(理))如图,在ABC 中,点D ,E 分别在边AB ,BC 上,且均为靠近B 的四等分点,CD 与AE 交于点F ,若BF xAB yAC =+,则3x y +=( )A .1-B .34-C .12-D .14-【解析】 【分析】由题意推出DE AC ∥,可得14DF DE FC AC ==,推出15DF DC =,根据向量的加减运算,用基底,AB AC 表示出BF ,和BF xAB yAC =+比较,可得,x y ,即得答案.【详解】 连结DE ,由题意可知,14BD BE BA BC ==, 所以DE AC ∥,则14DE BD AC BA ==, 所以14DF DE FC AC ==,所以14BD AB =-,34DC AC AD AC AB =-=-,则1135520DF DC AC AB ==-, 故11321452055BF BD DF AB AC AB AB AC =+=-+-=-+, 又BF xAB yAC =+,所以25x =-,15y =,则31x y +=-,故选:A例36.(2022·山东济宁·三模)在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP =________.【解析】 【分析】根据题意得34AP mAC AD =+,求出14m =,所以1142AP AC AB =+,即21142AP AC AB ⎛⎫=+ ⎪,求解即可.因为23AD AB =,所以32AB AD =,又12AP mAC AB =+,即1324AP mAC AB mAC AD =+=+,因为点P 在线段CD 上, 所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形, 所以222211111cos60421644AP AC AB AC AC AB AB ⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故7AP =例37.(2022·湖南·模拟预测)在三角形ABC 中,点D 在边BC 上,若2BD DC =,AD AB ACλμ=+(),λμ∈R ,则λμ-=______.【答案】13-【解析】 【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD DC =,得()2233BD BC AC AB ==-, 所以()212333A A C AB D AB BD AB A A BC -+===++, 因为(),AD AB AC λμλμ=+∈R ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-【方法技巧与总结】应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止.(2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.(3)三点共线定理: A ,B ,P 三点共线的充要条件是:存在实数,λμ,使OP OA OB λμ=+,其中1λμ+=,O 为AB 外一点.题型五:平面向量的直角坐标运算例38.(2022·江苏·高三专题练习)在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为( )A .43B .53C .158D .2【答案】B 【解析】 【分析】建立平面直角坐标系,利用向量的坐标运算求解作答. 【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+,因AC AM BD λμ=+,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B例39.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】。
课时作业24 平面向量的概念及其线性运算 [基础达标]一、选择题1.若m ∥n ,n ∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向 D .不一定共线解析:可举特例,当n =0时,满足m ∥n ,n ∥k ,故A ,B ,C 选项都不正确,故D 正确.答案:D2.[2020·通州模拟]已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( )A.AB →+AC →=BC →B.AB →=12BC →+DA →C.AD →-DC →=AC → D .2CD →+BA →=CA →解析:A 错,应为AB →+AC →=2AD →;B 错,应为12BC →+DA →=BD →+DA →=BA →;C 错,应为AC →=AD →+DC →;D 正确,2CD →+BA →=CB →+BA →=CA →,故选D.答案:D3.如图,e 1,e 2为互相垂直的单位向量,向量a -b 可表示为( ) A .3e 2-e 1 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 2解析:向量a -b 是以b 的终点为始点,a 的终点为终点的向量.由图形知,a -b =e 1-3e 2. 答案:C又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB →∥DC →且|AB →|=|DC →|,因此,AB →=DC →.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②.答案:①②7.[2020·广西南宁联考]设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:∵向量λa +b 与a +2b 平行,∴λa +b =μ(a +2b )(μ∈R ),∴⎩⎨⎧λ=μ,1=2μ,∴λ=μ=12.答案:128.已知平面上不共线的四点O ,A ,B ,C .若OA →-3OB →+2OC →=0.则|AB →||BC →|等于________.解析:由已知得,OA →-OB →=2(OB →-OC →),∴AB →=2BC →,∴|AB →||BC →|=2.答案:2 三、解答题9.在△ABC 中,D ,E 分别是BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.C .互相垂直D .既不平行也不垂直解析:由题意得AD →=AB →+BD →=AB →+13BC →, BE →=BA →+AE →=BA →+13AC →, CF →=CB →+BF →=CB →+13BA →,因此AD →+BE →+CF →=CB →+13(BC →+AC →-AB →) =CB →+23BC →=-13BC →, 故AD →+BE →+CF →与BC →反向平行. 答案:A12.[2020·清华大学自主招生能力测试]O 为△ABC 内一点,且OA →+OB →+2OC →=0,则△OBC 和△ABC 的面积比S △OBC S △ABC=________.解析:如图所示,设AB 的中点为M ,连接OM ,则OA →+OB →=2OM →,∴OA →+OB →+2OC →=2OM →+2OC →=0,即OM →+OC →=0,∴点O为线段MC 的中点,则S △OBC =12S △MBC =14S △ABC ,所以S △OBC S △ABC =14.答案:1413.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.解析:OB →+OC →-2OA →=(OB →-OA →)+(OC →-OA →)=AB →+AC →,OB →-OC →=CB →=AB →-AC →,所以|AB →+AC →|=|AB →-AC →|.即AB →·AC →=0,故AB →⊥AC →,所以△ABC 为直角三角形.答案:直角三角形。
2019版高考数学一轮复习第4章平面向量4.1 平面向量的概念及线性运算课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第4章平面向量4.1 平面向量的概念及线性运算课后作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第4章平面向量4.1 平面向量的概念及线性运算课后作业理的全部内容。
4.1 平面向量的概念及线性运算[基础送分 提速狂刷练]一、选择题1.(2018·武汉调研测试)如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+错误!=( )A.OH ,→B 。
错误!C 。
错误!D.错误!答案 D解析 在方格纸上作出错误!+错误!,如图所示,则容易看出错误!+错误!=错误!,故选D.2.已知A,B,C三点不共线,且点O满足错误!+错误!+错误!=0,则下列结论正确的是()A。
错误!=错误!错误!+错误!错误! B.错误!=错误!错误!+错误!错误!C.错误!=错误!错误!-错误!错误!D.错误!=-错误!错误!-错误!错误!答案D解析∵错误!+错误!+错误!=0,∴O为△ABC的重心,∴错误!=-错误!×错误!(错误!+错误!)=-错误!(错误!+错误!)=-错误!(错误!+错误!+错误!)=-错误!(2错误!+错误!)=-错误!错误!-错误!错误!。
故选D.3.(2017·衡水中学三调)在△ABC中,错误!=错误!错误!,P是直线BN上的一点,且满足错误!=m错误!+错误!错误!,则实数m的值为( )A.-4 B.-1 C.1 D.4答案B解析根据题意设错误!=n错误!(n∈R),则错误!=错误!+错误!=错误!+n 错误!=错误!+n(错误!-错误!)=错误!+n错误!=(1-n)错误!+错误!错误!,又错误!=m错误!+错误!错误!,∴错误!解得错误!故选B。
平面向量的概念及线性运算考试要求 1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,也叫做共线向量,规定:零向量与任意向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法a-b=a+(-b)数乘|λa|=|λ||a|,当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.向量共线定理向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使得b=λa. 常用结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—→+A 2A 3—→+A 3A 4—→+…+A n -1A n ———→=A 1A n —→,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12(OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB →+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1. 5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)|a |与|b |是否相等,与a ,b 的方向无关.( √ ) (2)若向量a 与b 同向,且|a |>|b |,则a >b .( × )(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (4)起点不同,但方向相同且模相等的向量是相等向量.( √ ) 教材改编题1.(多选)下列命题中,正确的是( ) A .若a 与b 都是单位向量,则a =b B .直角坐标平面上的x 轴、y 轴都是向量C .若用有向线段表示的向量AM →与AN →不相等,则点M 与N 不重合 D .海拔、温度、角度都不是向量 答案 CD解析 A 错误,由于单位向量长度相等,但是方向不确定;B 错误,由于只有方向,没有大小,故x 轴、y 轴不是向量;C 正确,由于向量起点相同,但长度不相等,所以终点不同;D 正确,海拔、温度、角度只有大小,没有方向,故不是向量.2.下列各式化简结果正确的是( ) A.AB →+AC →=BC → B.AM →+MB →+BO →+OM →=AM → C.AB →+BC →-AC →=0 D.AB →-AD →-DC →=BC →3.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由题意知存在k ∈R , 使得a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.题型一 向量的基本概念例1 (1)(多选)给出下列命题,不正确的有( ) A .若两个向量相等,则它们的起点相同,终点相同B .若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形 C .a =b 的充要条件是|a |=|b |且a ∥bD .已知λ,μ为实数,若λa =μb ,则a 与b 共线 答案 ACD解析 A 错误,两个向量起点相同,终点相同,则两个向量相等,但两个向量相等,不一定有相同的起点和终点;B 正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;C 错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;D 错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. (2)如图,在等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →教师备选(多选)下列命题为真命题的是( )A .若a 与b 为非零向量,且a ∥b ,则a +b 必与a 或b 平行B .若e 为单位向量,且a ∥e ,则a =|a |eC .两个非零向量a ,b ,若|a -b |=|a |+|b |,则a 与b 共线且反向D .“两个向量平行”是“这两个向量相等”的必要不充分条件 答案 ACD思维升华 平行向量有关概念的四个关注点 (1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量. (4)a|a |是与a 同方向的单位向量. 跟踪训练1 (1)(多选)下列命题正确的是( ) A .零向量是唯一没有方向的向量 B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a =b ,b =c ,则a =c 答案 BCD解析 A 项,零向量是有方向的,其方向是任意的,故A 错误; B 项,由零向量的定义知,零向量的长度为0,故B 正确;C 项,因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 是反向共线时才成立,故C 正确;D 项,由向量相等的定义知D 正确.(2)对于非零向量a ,b ,“a +b =0”是“a∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a +b =0,则a =-b ,则a ∥b ,即充分性成立;若a ∥b ,则a =-b 不一定成立,即必要性不成立,即“a +b =0”是“a ∥b ”的充分不必要条件. 题型二 平面向量的线性运算 命题点1 向量加、减法的几何意义例 2 (2022·济南模拟)已知单位向量e 1,e 2,…,e 2023,则|e 1+e 2+…+e 2023|的最大值是________,最小值是________. 答案 2023 0解析 当单位向量e 1,e 2,…,e 2023方向相同时, |e 1+e 2+…+e 2023|取得最大值,|e 1+e 2+…+e 2023|=|e 1|+|e 2|+…+|e 2023|=2023; 当单位向量e 1,e 2,…,e 2023首尾相连时,e 1+e 2+…+e 2023=0,所以|e 1+e 2+…+e 2023|的最小值为0. 命题点2 向量的线性运算例3 (多选)如图,在四边形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2AD =2CD ,E 是BC 边上一点,且BC →=3EC →,F 是AE 的中点,则下列关系式正确的是( )A.BC →=-12AB →+AD →B.AF →=13AB →+13AD →C.BF →=-13AB →+23AD →D.CF →=-16AB →-23AD →答案 ABD解析 因为BC →=BA →+AD →+DC →=-AB →+AD →+12AB →=-12AB →+AD →,所以选项A 正确; 因为AF →=12AE →=12(AB →+BE →)=12⎝⎛⎭⎪⎫AB →+23BC →,而BC →=-12AB →+AD →,代入可得AF →=13AB →+13AD →,所以选项B 正确; 因为BF →=AF →-AB →, 而AF →=13AB →+13AD →,代入得BF →=-23AB →+13AD →,所以选项C 不正确; 因为CF →=CD →+DA →+AF →=-12AB →-AD →+AF →,而AF →=13AB →+13AD →,代入得CF →=-16AB →-23AD →,所以选项D 正确.命题点3 根据向量线性运算求参数例4 (2022·青岛模拟)已知平面四边形ABCD 满足AD →=14BC →,平面内点E 满足BE →=3CE →,CD与AE 交于点M ,若BM →=xAB →+yAD →,则x +y 等于( ) A.52 B .-52C.43 D .-43答案 C解析 如图所示,易知BC =4AD ,CE =2AD ,BM →=AM →-AB → =13AE →-AB →=13(AB →+BE →)-AB → =13(AB →+6AD →)-AB → =-23AB →+2AD →,∴x +y =43.教师备选1.(2022·太原模拟)在△ABC 中,AD 为BC 边上的中线,若点O 满足AO →=2OD →,则OC →等于( ) A.-13AB →+23AC →B.23AB →-13AC →C.13AB →-23AC →D.-23AB →+13AC →答案 A解析 如图所示,∵D 为BC 的中点, ∴AD →=12(AB →+AC →),∵AO →=2OD →,∴AO →=23AD →=13AB →+13AC →,∴OC →=AC →-AO →=AC →-⎝ ⎛⎭⎪⎫13AB →+13AC →=-13AB →+23AC →.2.(2022·长春调研)在△ABC 中,延长BC 至点M 使得BC =2CM ,连接AM ,点N 为AM 上一点且AN →=13AM →,若AN →=λAB →+μAC →,则λ+μ等于( )A.13B.12 C .-12D .-13答案 A解析 由题意,知AN →=13AM →=13(AB →+BM →)=13AB →+13×32BC →=13AB →+12(AC →-AB →) =-16AB →+12AC →,又AN →=λAB →+μAC →,所以λ=-16,μ=12,则λ+μ=13.思维升华 平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义. (2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值. 跟踪训练2 (1)点G 为△ABC 的重心,设BG →=a ,GC →=b ,则AB →等于( ) A .b -2a B.32a -12b C.32a +12b D .2a +b答案 A解析 如图所示,由题意可知 12AB →+BG →=12GC →, 故AB →=GC →-2BG →=b -2a .(2)(2022·大连模拟)在△ABC 中,AD →=2DB →,AE →=2EC →,P 为线段DE 上的动点,若AP →=λAB →+μAC →,λ,μ∈R ,则λ+μ等于( )A .1B.23C.32D .2答案 B解析 如图所示,由题意知, AE →=23AC →,AD →=23AB →,设DP →=xDE →,所以AP →=AD →+DP →=AD →+xDE → =AD →+x (AE →-AD →) =xAE →+(1-x )AD → =23xAC →+23(1-x )AB →, 所以μ=23x ,λ=23(1-x ),所以λ+μ=23x +23(1-x )=23.题型三 共线定理及其应用 例5 设两向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b , CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线, 又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b . ∵a ,b 是不共线的两个向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1. 教师备选1.已知P 是△ABC 所在平面内一点,且满足PA →+PB →+PC →=2AB →,若S △ABC =6,则△PAB 的面积为( )A .2B .3C .4D .8答案 A解析 ∵PA →+PB →+PC →=2AB →=2(PB →-PA →), ∴3PA →=PB →-PC →=CB →,∴PA →∥CB →,且两向量方向相同,∴S △ABC S △PAB =BC AP =|CB →||PA →|=3, 又S △ABC =6,∴S △PAB =63=2.2.设两个非零向量a 与b 不共线,若a 与b 的起点相同,且a ,t b ,13(a +b )的终点在同一条直线上,则实数t 的值为________. 答案 12解析 ∵a ,t b ,13(a +b )的终点在同一条直线上,且a 与b 的起点相同,∴a -t b 与a -13(a +b )共线,即a -t b 与23a -13b 共线,∴存在实数λ,使a -t b =λ⎝ ⎛⎭⎪⎫23a -13b ,又a ,b 为两个不共线的非零向量, ∴⎩⎪⎨⎪⎧ 1=23λ,t =13λ,解得⎩⎪⎨⎪⎧λ=32,t =12.思维升华 利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据. (2)若a 与b 不共线且λa =μb ,则λ=μ=0.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.跟踪训练3 (1)若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k 等于( ) A .-1B .1C.32D .2答案 B解析 由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,故存在实数λ, 使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.(2)如图,已知A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)答案 B解析 因为线段CO 与线段AB 交于点D , 所以O ,C ,D 三点共线, 所以OC →与OD →共线, 设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 可得OD →=λm OA →+μmOB →,因为A ,B ,D 三点共线, 所以λm +μm=1,可得λ+μ=m >1, 所以λ+μ的取值范围是(1,+∞).课时精练1.(多选)下列选项中的式子,结果为零向量的是( ) A.AB →+BC →+CA → B.AB →+MB →+BO →+OM → C.OA →+OB →+BO →+CO → D.AB →-AC →+BD →-CD → 答案 AD解析 利用向量运算,易知A ,D 中的式子结果为零向量. 2.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B 解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b |b |,则有a ,b 共线,而a ,b 共线,则a|a |,b|b |是相等向量或相反向量,所以“a|a |=b|b |”是“a ,b 共线”的充分不必要条件.3.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是( ) A .a ∥b B .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案 B解析 由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b 成立,所以A 正确;由a +b =b ,所以B 不正确,C 正确;由|a +b |=|b |,|a |+|b |=|b |, 所以|a +b |=|a |+|b |,所以D 正确.4.(2022·汕头模拟)下列命题中正确的是( ) A .若a ∥b ,则存在唯一的实数λ使得a =λbB .若a∥b ,b∥c ,则a∥cC .若a·b =0,则a =0或b =0D .|a |-|b |≤|a +b |≤|a |+|b | 答案 D解析 若a ∥b ,且b =0,则可有无数个实数λ使得a =λb ,故A 错误; 若a ∥b ,b ∥c (b ≠0),则a ∥c ,若b =0, 则a ,c 不一定平行,故B 错误; 若a·b =0,也可以为a ⊥b ,故C 错误;根据向量加法的三角形法则和向量减法的几何意义知, |a |-|b |≤|a +b |≤|a |+|b |成立,故D 正确.5.在平行四边形ABCD 中,AC →与BD →交于点O ,E 是线段OD 的中点.若AC →=a ,BD →=b ,则AE →等于( ) A.14a +12b B.23a +13b C.12a +14b D.13a +23b 答案 C解析 如图所示,∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12a +12b , ∴AE →=AD →-ED →=12a +12b -14b =12a +14b .6.下列说法正确的是( ) A .向量AB →与向量BA →的长度相等B .两个有共同起点,且长度相等的向量,它们的终点相同C .向量a 与b 平行,则a 与b 的方向相同或相反D .向量的模是一个正实数 答案 A解析 A 项,AB →与BA →的长度相等,方向相反,正确;B 项,两个有共同起点且长度相等的向量,若方向也相同,则它们的终点相同,故错误;C 项,向量a 与b 平行时,若a 或b 为零向量,不满足条件,故错误;D 项,向量的模是一个非负实数,故错误.7.如图,在平行四边形ABCD 中,E 为BC 的中点,F 为DE 的中点,若AF →=xAB →+34AD →,则x 等于( )A.34B.23C.12D.14答案 C解析 连接AE (图略),因为F 为DE 的中点, 所以AF →=12(AD →+AE →),而AE →=AB →+BE →=AB →+12BC →=AB →+12AD →,所以AF →=12(AD →+AE →)=12⎝⎛⎭⎪⎫AD →+AB →+12AD →=12AB →+34AD →, 又AF →=xAB →+34AD →,所以x =12.8.(多选)已知4AB →-3AD →=AC →,则下列结论正确的是( ) A .A ,B ,C ,D 四点共线 B .C ,B ,D 三点共线 C .|AC →|=|DB →| D .|BC →|=3|DB →| 答案 BD解析 因为4AB →-3AD →=AC →,所以3DB →=BC →,因为DB →,BC →有公共端点B ,所以C ,B ,D 三点共线,且|BC →|=3|DB →|, 所以B ,D 正确,A 错误; 由4AB →-3AD →=AC →,得AC →=3AB →-3AD →+AB →=3DB →+AB →, 所以|AC →|≠|DB →|,所以C 错误.9.(2022·太原模拟)已知不共线向量a ,b ,AB →=t a -b (t ∈R ),AC →=2a +3b ,若A ,B ,C 三点共线,则实数t =__________. 答案 -23解析 因为A ,B ,C 三点共线,所以存在实数k ,使得AB →=kAC →, 所以t a -b =k (2a +3b )=2k a +3k b , 即(t -2k )a =(3k +1)b .因为a ,b 不共线,所以⎩⎪⎨⎪⎧t -2k =0,3k +1=0,解得⎩⎪⎨⎪⎧k =-13,t =-23.10.已知△ABC 的重心为G ,经过点G 的直线交AB 于D ,交AC 于E ,若AD →=λAB →,AE →=μAC →,则1λ+1μ=________.答案 3解析 如图,设F 为BC 的中点,则AG →=23AF →=13(AB →+AC →),λμ∴AG →=13λAD →+13μAE →,又G ,D ,E 三点共线, ∴13λ+13μ=1,即1λ+1μ=3. 11.若正六边形ABCDEF 的边长为2,中心为O ,则|EB →+OD →+CA →|=________. 答案 2 3解析 正六边形ABCDEF 中,EB →+OD →+CA →=EO →+DC →+OD →+CA →=ED →+DA →=EA →, 在△AEF 中,∠AFE =120°,AF =EF =2, ∴|EA →|=22+22-2×2×2×cos120°=23, 即|EB →+OD →+CA →|=2 3.12.在平行四边形ABCD 中,点M 为BC 边的中点,AC →=λAM →+μBD →,则λ+μ=________. 答案 53解析 AC →=λ⎝ ⎛⎭⎪⎫AB →+12AD →+μ(AD →-AB →)=(λ-μ)AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又因为AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=43,μ=13,所以λ+μ=53.13.(多选)点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是( ) A .钝角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 AD解析 因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0, 所以|CB →|-|(PB →-PA →)+(PC →-PA →)|=0, 即|CB →|=|AB →+AC →|, 所以|AB →-AC →|=|AC →+AB →|, 等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.14.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD →=14AC →+λAB →(λ∈R ),则λ=________,AD 的长为________. 答案 343 3解析 ∵B ,D ,C 三点共线, ∴14+λ=1,解得λ=34. 如图,过D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N , 则AN →=14AC →,AM →=34AB →,∵在△ABC 中,∠A =60°,∠A 的平分线交BC 于D , ∴四边形AMDN 是菱形, ∵AB =4,∴AN =AM =3, ∴AD =3 3.15.(2022·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为( ) A. 3 B .2 3 C .3 3 D .4 3答案 B解析 设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →. 由AB →+PB →+PC →=0, 得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点, 所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点, 又D 为BC 的中点,所以四边形CPBM 为平行四边形. 又|AB →|=|PB →|=|PC →|=2, 所以|MC →|=|BP →|=2,则|AC →|=4, 且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°, 则S △ABC =12×2×4×32=2 3.16.若2OA →+OB →+3OC →=0,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC ∶S △ABC =________. 答案 1∶6解析 若2OA →+OB →+3OC →=0, 设OA ′——→=2OA →,OC ′——→=3OC →, 可得O 为△A ′BC ′的重心,如图,设S △AOB =x ,S △BOC =y ,S △AOC =z , 则S △A ′OB =2x ,S △BOC ′=3y ,S △A ′OC ′=6z , 由2x =3y =6z ,可得S△AOC∶S△ABC=z∶(x+y+z)=1∶6.。
2019版高考数学一轮复习第4章平面向量4.1 平面向量的概念及线性运算学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第4章平面向量4.1 平面向量的概念及线性运算学案理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第4章平面向量4.1 平面向量的概念及线性运算学案理的全部内容。
4.1 平面向量的概念及线性运算[知识梳理]1.向量的有关概念2.向量的线性运算3.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一的一个实数λ,使得b =λa . 特别提醒:(1)限定a ≠0的目的是保证实数λ的存在性和唯一性.(2)零向量与任何向量共线.(3)平行向量与起点无关.(4)若存在非零实数λ,使得错误!=λ错误!或错误!=λ错误!或错误!=λBC →,则A ,B ,C 三点共线.[诊断自测]1.概念思辨(1)△ABC 中,D 是BC 中点,E 是AD 的中点,则错误!=错误!(错误!+错误!).( )(2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量错误!与向量错误!是共线向量,则A ,B ,C ,D 四点在一条直线上.( )(4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) 答案 (1)√ (2)× (3)× (4)√2.教材衍化(1)(必修A4P 78A 组T 5)设D 为△ABC 所在平面内一点,错误!=3错误!,则( )A 。
AD →=-错误!错误!+错误!错误!B 。
错误!=错误!错误!-错误!错误!C 。
【题组设计】2014届高考数学(人教版)总复习“提高分”课时作业 4.1平面向量的基本概念及线性运算(含2013年模拟题)【考点排查表】考查考点及角度 难度及题号 错题记录基础 中档 稍难 平面向量的有关概念 196平面向量的线性运算 4 5,7,10 13平面向量的共线问题2,3 8 11,121.下列四个命题,其中正确的个数有( ) ①对于实数m 和向量a ,b ,恒有m (a -b )=m a -m b ; ②对于实数m ,n 和向量a ,恒有(m -n )a =m a -n a ; ③若m a =m b (m ∈R ),则有a =b ; ④若m a =n a (m ,n ∈R ,a ≠0),则有m =n . A .1个 B .2个 C .3个 D .4个【解析】 只有③不正确,∵a ≠b ,m =0时,m a =m b 也成立,其余①②④均成立. 【答案】 C2.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对【解析】 由已知AD →=AB →+BC →+CD →=-8a -2b = 2(-4a -b )=2BC →.∴AD →∥BC →,又AB →与CD →不平行, ∴四边形ABCD 是梯形. 【答案】 C3.已知a 、b 是两个不共线的向量,A B →=λa +b ,A C →=a +μb (λ,μ∈R ),那么A 、B 、C 三点共线的充要条件是( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1【解析】 由A B →=λa +b ,A C →=a +μb (λ,μ∈R )及A 、B 、C 三点共线得A B →=t A C→(t ∈R ),所以λa +b =t (a +μb )=t a +tμb ,所以⎩⎪⎨⎪⎧λ=t ,1=tμ,即λμ=1.【答案】 D4.(2013·淄博模拟)如图,△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.13 B.19 C .1D .3【解析】 设BP →=λBN →,则AP →=AB →+BP →=AB →+λBN →=AB →+λ(AN →-AB →)=(1-λ)AB →+λAN →=(1-λ)AB →+14λAC →,故⎩⎪⎨⎪⎧1-λ=m 14λ=29,解得m =19.【答案】 B5.(2013·陕西汉中模拟)已知点O 、N 、P 在△ABC 所在平面内,且|OA |→=|OB →|=|OC →|,NA →+NB →+NC →=0,PA →·PB →=PB →·PC →=PC →·PA →,则点O 、N 、P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 |OA |→=|OB →|=|OC →|,即点O 到A 、B 、C 三点的距离相等,∴点O 为△ABC 的外心.如图,设D 为BC 边的中点,则NB →+NC →=2ND →.∵NA →+NB →+NC →=0,∴NA →+2 ND →=0,∴NA →=2 DN →,∴A 、D 、N 三点共线,∴点N 在BC 边的中线上,同理点N 也在AB 、AC 边的中线上,∴点N 是重心.∵PA →·PB →=PB →·PC →,∴PA →·PB →-PB →·PC →=0,∴PB ·(PA →-PC →)=0,∴PB →·CA →=0,∴PB →⊥CA →.同理,PA →⊥BC →,PC →⊥AB →,∴点P 是△ABC 的垂心.【答案】 C6.(2011·山东高考)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上【解析】 由题意得AC →=λAB →,AD →=μAB →,且1λ+1μ=2,若C ,D 都在线段AB 的延长线上,则λ>1,μ>1,1λ+1μ<2与1λ+1μ=2矛盾,故选D.【答案】 D 二、填空题7.设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△AOB 与△AOC 的面积之比为________. 【解析】 设D 为AC 的中点,连接OD ,则OA →+OC →=2OD →.又OA →+OC →=-2OB →,所以OD →=-OB →,即O 为BD 的中点,从而容易得△AOB 与△AOC 的面积之比为12.【答案】 128.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若A C →=λ A E →+μ A F →,其中,λ,μ∈R ,则λ+μ=________.【解析】 如图,∵ABCD 为平行四边形,且E 、F 分别为CD 、BC 中点.∴A C →=A D →+A B →=(A E →-D E →)+(A F →-B F →)=(A E →+A F →)-12(D C →+B C →)=(A E →+A F →)-12A C →,∴A C →=23(A E →+A F →),∴λ=μ=23,∴λ+μ=43.【答案】 439.(2013·湖州模拟)给出下列命题: ①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,一定是共线向量;⑤向量AB →与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上. 其中不正确的个数为________.【解析】 ①中,∵向量AB →与BA →为相反向量, ∴它们的长度相等,此命题正确.②中若a 或b 为零向量,则满足a 与b 平行,但a 与b 的方向不一定相同或相反,∴此命题错误.③由相等向量的定义知,若两向量为相等向量,且起点相同,则其终点也必定相同,∴该命题正确.④由共线向量知,若两个向量仅有相同的终点,则不一定共线,∴该命题错误. ⑤∵共线向量是方向相同或相反的向量,∴若AB →与CD →是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,∴该命题错误.【答案】 3 三、解答题 10.如图,以向量OA →=a ,OB →=b 为边作▱OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.【解】 ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b .又OD →=a +b .∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23(a +b ).∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .即OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .11.设i 、j 分别是平面直角坐标系Ox ,Oy 正方向上的单位向量,且OA →=-2i +m j ,OB →=n i +j ,OC →=5i -j ,若点A 、B 、C 在同一条直线上,且m =2n ,求实数m 、n 的值.【解】 AB →=OB →-OA →=(n +2)i +(1-m )j , BC →=OC →-OB →=(5-n )i -2j .∵点A 、B 、C 在同一条直线上, ∴AB →∥BC →,即AB →=λBC →,∴(n +2)i +(1-m )j =λ[(5-n )i -2j ],∴⎩⎪⎨⎪⎧n +2=λ5-n ,1-m =-2λ,m =2n ,解得⎩⎪⎨⎪⎧m =6,n =3,或⎩⎪⎨⎪⎧m =3,n =32.12.(文)如右图所示,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD ,求证:M ,N ,C 三点共线.【证明】 设AB →=e 1,AD →=e 2,则 BD →=BA →+AD →=-e 1+e 2, BN →=13BD →=-13e 1+13e 2, MB →=12e 1,BC →=AD →=e 2, MC →=MB →+BC →=12e 1+e 2, MN →=MB →+BN →=12e 1-13e 1+13e 2=16e 1+13e 2=13(12e 1+e 2). 故MN →=13MC →,故M ,N ,C 三点共线.(理)如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,AE →=23AD →,AB →=a ,AC →=b .(1)用a 、b 表示向量AD →、AE →、AF →、BE →、BF →; (2)求证:B 、E 、F 三点共线. 【解】(1)延长AD 到G ,使AD →=12AG →,连接BG 、CG ,得到▱ABGC ,所以AG →=a +b ,AD →=12AG →=12(a +b ),AE →=23AD →=13(a +b ), AF →=12AC →=12b ,BE →=AE →-AB →=13(a +b )-a =13(b -2a ). BF →=AF →-AB →=12b -a =12(b -2a ).(2)证明:由(1)可知BE →=23BF →.所以B 、E 、F 三点共线. 四、选做题13.如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点,若A M →=x A B →,A N →=y A C →,求1x +1y的值.【解】 设A B →=a ,A C →=b ,则A M →=x a ,A N →=y b ,A G →=12A D →=14(A B →+A C →)=14(a +b ).∴M G →=A G →-A M →=14(a +b )-x a =(14-x )a +14b .M N →=A N →-A M →=y b -x a =-x a +y b .∵M G →与M N →共线,∴存在实数λ,使M G →=λ M N →. ∴(14-x )a +14b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧14-x =-λx ,14=λy .消去λ,得1x +1y=4.。
课时提升作业(二十三) 平面向量的概念及其线性运算一、选择题(每小题5分,共35分)1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且错误!未找到引用源。
=a ,错误!未找到引用源。
=b ,则错误!未找到引用源。
= ( ) A.b -错误!未找到引用源。
aB.b +错误!未找到引用源。
aC.a +错误!未找到引用源。
bD.a -错误!未找到引用源。
b【解析】选A.错误!未找到引用源。
=错误!未找到引用源。
-错误!未找到引用源。
=错误!未找到引用源。
+错误!未找到引用源。
-错误!未找到引用源。
=错误!未找到引用源。
+错误!未找到引用源。
-错误!未找到引用源。
=错误!未找到引用源。
-错误!未找到引用源。
=b -错误!未找到引用源。
a .2.(2015·石家庄模拟)已知a ,b 是两个非零向量,且|a +b |=|a |+|b |,则下列说法正确的是( )A.a +b =0B.a =bC.a 与b 共线反向D.存在正实数λ,使a =λb【解析】选D.因为a ,b 是两个非零向量,且|a +b |=|a |+|b |.则a 与b 共线同向,故D 正确. 【误区警示】解答本题易误选B,若a =b ,则|a +b |=|a |+|b |,反之不一定成立. 3.已知AB =a +2b ,BC =-5a +6b ,CD =7a -2b ,则下列一定共线的三点是( ) A.A,B,CB.A,B,DC.B,C,DD.A,C,D【解析】选B.因为AD AB BC CD =++=3a +6b =3(a +2b )=3AB ,又AB ,AD 有公共点A. 所以A,B,D 三点共线.4.(2015·攀枝花模拟)在△ABC 中,已知D 是AB 边上一点,1CD CA CB,3=+λ则实数λ=( )2112A. B. C. D.3333-- 【解析】选D.如图,D 是AB 边上一点,过点D 作DE ∥BC,交AC 于点E,过点D 作DF ∥AC,交BC 于点F,连接CD,则CD CE CF.=+1CD CA CB,31CE CA,CF CB.3DE AE 2ADE ABC,,BC AC 322ED CF CB,.33=+λ==λ====λ=因为所以由∽得所以故【加固训练】已知△ABC 和点M 满足MA MB MC ++=0,若存在实数m 使得AB AC mAM +=成立,则m=( ) A.2B.3C.4D.5【解析】选B.根据题意,由于△ABC 和点M 满足MA MB MC ++=0,则可知点M 是三角形ABC 的重心,设BC 边的中点为D,则可知()()2211AM AD AB AC AB AC ,3323==⨯+=+ 所以AB AC 3AM,+=故m=3.5.(2015·兰州模拟)已知D 为△ABC 的边AB 的中点.M 在DC 上且满足5错误!未找到引用源。
=错误!未找到引用源。
+3错误!未找到引用源。
,则△ABM 与△ABC 的面积比为 ( ) A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【解题提示】只要明确DM 与DC 之比即可,故利用已知转化为错误!未找到引用源。
与错误!未找到引用源。
之间关系即可.【解析】选C.由5错误!未找到引用源。
=错误!未找到引用源。
+3错误!未找到引用源。
得2错误!未找到引用源。
=2错误!未找到引用源。
+3错误!未找到引用源。
-3错误!未找到引用源。
,即2(错误!未找到引用源。
-错误!未找到引用源。
)=3(错误!未找到引用源。
-错误!未找到引用源。
),即2错误!未找到引用源。
=3错误!未找到引用源。
, 故错误!未找到引用源。
=错误!未找到引用源。
, 故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.6.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB,AC 于不同的两点M,N,若AB mAM,AC nAN,==则m+n 的值为( )A.1B.2C.3D.4【解析】选B.因为O 是BC 的中点, 所以()1AO AB AC .2=+ 又因为AB mAM,AC nAN,==所以m nAO AM AN.22=+ 因为M,O,N 三点共线,所以m n22+=1,所以m+n=2.7.(2015·泉州模拟)已知D,E,F 分别为△ABC 的边BC,CA,AB 的中点,且BC =a ,CA =b ,给出下列命题:①AD =12a -b ;②BE =a +12b ;③CF =-12a +12b ;④AD BE CF ++=0.其中正确的是( ) A.①②B.②③C.③④D.②③④ 【解析】选D.所以正确命题为②③④.二、填空题(每小题5分,共15分),M为BC的中点,则MN= .(用a,b表示) 8.在▱ABCD中,AB=a,AD=b,3AN NC【解析】如图所示.答案:【方法技巧】利用基底表示向量的方法在用基底表示向量时,要尽可能将向量转化到平行四边形或三角形中,运用平行四边形法则或三角形法则进行求解,同时要注意平面几何知识的综合运用,如利用三角形的中位线、相似三角形对应边成比例等性质,把未知向量用基底向量表示.【加固训练】(2014·海口模拟)在△ABC 中,AB =c ,AC =b ,若点D 满足BD 2DC =,则AD = .【解析】如图,因为在△ABC 中, AB = c , AC =b ,且点D 满足BD 2DC =,答案:23b +13c 9.(2015·长春模拟)已知m ,n 满足|m |=2,|n |=3,|m -n |=17,则|m +n |= . 【解题提示】利用向量加减法几何意义及平行四边形对角线与边的关系求解.【解析】由平行四边形的对角线与边的关系及|m -n |与|m +n |为以m ,n 为邻边的平行四边形的两条对角线的长,得|m -n |2+|m +n |2=2|m |2+2|n |2=26, 又|m-n |=17,故|m +n |2=26-17=9,故|m +n |=3. 答案:310.给出下列命题:①若A,B,C,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ②0a =0;③a =b 的充要条件是|a |=|b |且a ∥b ;④若a 与b 均为非零向量,则|a +b |与|a |+|b |一定相等. 其中正确命题的序号是 .【解析】①正确;②数乘向量的结果为向量,而不是实数,故不正确;③当a =b 时|a |=|b |且a ∥b ,反之不成立,故错误;④当a ,b 不同向时不成立,故错误. 答案:①(20分钟 40分)1.(5分)已知A,B,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足111O P (O A O B 2O C ),322=++则点P 一定为三角形ABC 的( )A.AB 边中线的中点B.AB 边中线的三等分点(非重心)C.重心D.AB 边的中点【解析】选B.设AB 的中点为M,则()11112OA OB OM,OP OM 2OC OM OC,22333+==+=+所以即3OP OM 2OC =+,也就是MP 2PC =,又MP PC 与有公共点P,所以P,M,C 三点共线,且P 是CM 上靠近C 点的一个三等分点. 2.(5分)(2015·大理模拟)O是△ABC所在平面外一点且满足,λ为实数,则动点P 的轨迹必经过△ABC 的( )A.重心B.内心C.外心D.垂心【解题提示】明确是AB,AC 方向上的单位向量,利用平行四边形法则可转化为AP 与共线后可解.【解析】选B.如图,设AB AF,AB=AC AE,AC=已知AF,AE 均为单位向量,故▱AEDF 为菱形,所以AD 平分∠BAC, 由AB AC OP OA ()ABAC=+λ+得AP AD,AP AD =λ又与有公共点A,故A,D,P 三点共线,所以P 点在∠BAC 的平分线上,故P 的轨迹经过△ABC 的内心.3.(5分)(2015·重庆模拟)若∀k ∈R,BA kBC CA -≥恒成立,则△ABC 的形状一定是 .【解题提示】利用向量加减的几何意义,数形结合求解. 【解析】如图,设BD kBC,BA kBC BA BD DA,=-=-=则由对任意k ∈R,都有DA CA ≥恒成立知AC BC ⊥,故△ABC 为直角三角形. 答案:直角三角形4.(12分)(2015·贵阳模拟)如图,在平行四边形ABCD 中,O 是对角线AC,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E,若AE mAB AD =+,求实数m 的值.【解析】由N 是OD 的中点得又因为A,N,E 三点共线, 故AE AN,=λ故实数m=13. 【加固训练】已知△ABC 中,AB =a ,AC =b ,对于平面ABC 上任意一点O,动点P 满足OP OA =+λa +λb ,若动点P 的轨迹与边BC 的交点为M,试判断M 点的位置. 【解析】依题意,由OP OA =+λa +λb , 得OP OA -=λ(a +b ), 即()AP AB AC .=λ+如图,以AB,AC 为邻边作平行四边形ABDC,对角线交于点M, 则AP AD,=λ 所以A,P,D 三点共线,即P 点的轨迹是AD 所在的直线,由图可知P 点轨迹与BC 的交点为BC 的中点,即点M 为BC 的中点.5.(13分)(能力挑战题)设a ,b 是不共线的两个非零向量. (1)若OA =2a -b ,OB =3a +b ,OC =a -3b ,求证:A,B,C 三点共线. (2)若AB =a +b ,BC =2a -3b ,CD =2a -k b ,且A,C,D 三点共线,求k 的值. 【解析】(1)由已知得AB OB OA =-=3a +b -2a +b =a +2b , BC OC OB =-=a -3b -3a -b =-2a -4b ,故BC 2AB,=-又BC 与AB 有公共点B,所以A,B,C 三点共线. (2)因为AC AB BC =+=a +b +2a -3b =3a -2b ,CD =2a -k b ,且A,C,D 三点共线,故存在实数λ使得CD AC,=λ 即2a -k b =3λa -2λb ,。