二十一章一元二次方程单元考试卷
- 格式:doc
- 大小:135.50 KB
- 文档页数:4
第21章一元二次方程单元测试一、选择题(共10小题).1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=02.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1 3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0 4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.25.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥16.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为.13.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①,②,③,④.(2)猜想:第n个方程为,其解为.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.2.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1解:∵(x﹣1)2=0,∴x﹣1=0,x=1,即x1=x2=1,故选:C.3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0解:∵方程的两根分别为2和3,∴2+3=5,2×3=6,∴方程为x2﹣5x+6=0.故选:D.4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.2解:设这个增长率为x,由题意得,20(1+x)2=24.2.故选:D.5.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.6.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是解:∵方程x2+bx+a=0有一个根是1,∴1+b+a=0,∴a+b=﹣1.故选:B.7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个实数根;②若方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=﹣4abm﹣4ac+4abm+b2=b2﹣4ac.所以①④成立.故选:D.8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法解:方程(5x﹣1)2=(2x+3)2的最适当方法应是直接开平方法.故选:A.9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对解:x2﹣14x+40=0,(x﹣4)(x﹣10)=0,x﹣4=0或x﹣10=0,所以x1=4,x2=10,因为4+4<9,不符合三角形三边的关系,所以三角形的第三边长是10,所以三角形的周长=4+9+10=23.故选:C.10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2解:设x+y=a,原方程可化为a(a+2)﹣8=0即:a2+2a﹣8=0解得a1=2,a2=﹣4∴x+y=2或﹣4故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为x2+x﹣3=0.解:方程整理得:x2+x﹣3=0,故答案为:x2+x﹣3=013.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=17.解:由原方程,得2x2﹣3x﹣1=0,∴二次项系数a=2,一次项系数b=﹣3,常数项c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=9+8=17;故答案是:17.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值﹣1.解:把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为1.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7.解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,解得,∴实数m的取值范围是;(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,若x1+x2=0,即﹣(2m﹣1)=0,解得,∵>,∴不合题意,舍去,若x1﹣x2=0,即x1=x2∴△=0,由(1)知,故当x12﹣x22=0时,.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.解:(1)由题意可得,,解得,241≤x≤300,即x的取值范围是:241≤x≤300(x为正整数);铅笔的零售价每支应为:元;铅笔的批发价每支应为:元;(2)由题意可得,15×﹣15×=1,化简,得x2+60x﹣900(m2﹣1)=0,解得,x1=30(m﹣1),x2=﹣30(m+1)(舍去),∴241≤30(m﹣1)≤300,解得,≤m≤11,∴m=10或m=11,当m=10时,m2﹣1=99<100,故m=10不合题意,舍去,当m=11时,m2﹣1=120>100,符合题意,∴m=11,∴x=30(m﹣1)=300,经检验x=300是原分式方程的解,答:初三年级共有300名学生,m的值是11.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?解:(1)设经过x秒,线段PQ能将△ABC分成面积相等的两部分由题意知:AP=x,BQ=2x,则BP=6﹣x,∴(6﹣x)•2x=××6×8,∴x2﹣6x+12=0,∵b2﹣4ac<0,此方程无解,∴线段PQ不能将△ABC分成面积相等的两部分;(2)设t秒后,△PBQ的面积为1①当点P在线段AB上,点Q在线段CB上时此时0<t≤4由题意知:(6﹣t)(8﹣2t)=1,整理得:t2﹣10t+23=0,解得:t1=5+(不合题意,应舍去),t2=5﹣,②当点P在线段AB上,点Q在线段CB的延长线上时此时4<t≤6,由题意知:(6﹣t)(2t﹣8)=1,整理得:t2﹣10t+25=0,解得:t1=t2=5,③当点P在线段AB的延长线上,点Q在线段CB的延长线上时此时t>6,由题意知:(t﹣6)(2t﹣8)=1,整理得:t2﹣10t+23=0,解得:t1=5+,t2=5﹣,(不合题意,应舍去),综上所述,经过5﹣秒、5秒或5+秒后,△PBQ的面积为1.24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①x1=1,x2=﹣1,②x1=1,x2=﹣2,③x1=1,x2=﹣3,④x1=1,x2=﹣4.(2)猜想:第n个方程为x2+(n﹣1)x﹣n=0,其解为x1=1,x2=﹣n.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).解:(1)①(x+1)(x﹣1)=0,∴x1=1,x2=﹣1.②(x+2)(x﹣1)=0,∴x1=1,x2=﹣2.③(x+3)(x﹣1)=0,∴x1=1,x2=﹣3.④(x+4)(x﹣1)=0,∴x1=1,x2=﹣4.(2)由(1)找出规律,可写出第n个方程为:x2+(n﹣1)x﹣n=0,(x﹣1)(x+n)=0,解得x1=1,x n=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.故答案是:(1)①x1=1,x2=﹣1.②x1=1,x2=﹣2.③x1=1,x2=﹣3.④x1=1,x2=﹣4.(2)x2+(n﹣1)x﹣n=0;x1=1,x2=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。
人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中是一元二次方程的是()A.x+y2=2B.x+4=2C.x2+4x=2D.x2+1x=22.如果x=2是一元二次方程x2+bx+2=0的一个根,则b的值是()A.2 B.-2 C.3 D.−33.一元二次方程x2−6x+1=0配方后可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=8D.(x+3)2=104.一元二次方程x2+2x−1=0的实数根有()A.1个B.2个C.0个D.无数个5.方程x2−49=0的解为()A.x1=7,x2=−7B.x1=1,x2=7C.x1=x2=7D.x1=x2=−76.已知关于x的一元二次方程ax2+2x−1=0有两个实数根,则a的取值范围是()A.a>−1且a≠0B.a≥−1且a≠0C.a≥−1D.a≤−17.2024年元旦开始,梧州市体育训练基地吹响冬季足球训练“集结号”,该基地组织了一次单循环的足球比赛(每两支队伍之间比赛一场),共进行了36场比赛,设有x支队伍参加了比赛,依题意可列方程为()A.x(x+1)=36B.x(x−1)=36C.x(x+1)2=36D.x(x−1)2=368.设x1,x2是一元二次方程x2−2x−1=0的两根,则1x1+1x2=()A.12B.−12C.2 D.−2二、填空题9.若方程(m−1)x m2+1−x−2=0是一元二次方程,则m的值是.10.将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b 为常数)的形式,则ab=.11.关于x的一元二次方程ax2−2(a−1)x+a=0有实数根.则a的取值范围.12.已知三角形的两边长为1和2,第三边的长是方程x2−5x+6=0的一个根,则这个三角形的周长是.13.若 m,n 是一元二次方程x2−2x−5=0的两个根,则m2n+mn2=.三、计算题14.解方程:(1)x2+1=7x;(2)x2+4x−5=0.四、解答题15.关于x的一元二次方程−x2+2x−k=0.(1)若方程有两个实根,求k的取值范围.(2)若方程的一根为−1,求k的值及另一根.16.已知关于x的方程x2﹣3ax﹣3a﹣6=0(1)求证:方程恒有两不等实根;(2)若x1,x2是该方程的两个实数根,且(x1﹣1)(x2﹣1)=1,求a的值.17.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m2,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.18.第31届世界大学生夏季运动会在成都举办,吉祥物“蓉宝”深受大家的喜爱.某商场从厂家购进了成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品,每个毛绒公仔的进价比每个3D钥匙扣的进价多30元.若购进毛绒公仔4个,3D钥匙扣5个,共需要570元.(1)求毛绒公仔、3D钥匙扣两种商品的每个进价分别是多少元?(2)该商场从厂家购进成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品共60个,所用资金恰好为4200元.在销售时,每个毛绒公仔的售价为100元,要使得这60个商品卖出后获利25%,则每个3D钥匙扣的售价应定为多少元?参考答案1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】-110.【答案】-111.【答案】a≤12且a≠012.【答案】513.【答案】514.【答案】(1)解:原方程可化为x2−7x+1=0b2−4ac=(−7)2−4×1×1=45>0x=7±√452=7±3√52x1=7+3√52(2)解:∵x2+4x−5=0∴(x+5)(x−1)=0∴x+5=0或x−1=0∴x1=−515.【答案】(1)解:∵方程有两个实根∴Δ=22−4×(−1)×(−k)≥0解得k≤1∴k的取值范围为k≤1.(2)解:设方程的另一根为x 2,依题意得{−1+x 2=2−x 2=k解得{x 2=3k =−3∴k 的值为−3,另一根为316.【答案】(1)证明:∵Δ=b 2−4ac =(−3a)2−4×1×(−3a −6)=9a 2+12a +24=(3a +2)2+20>0∴该方程恒有两个不等实根;(2)解:由根与系数的关系x 1+x 2=3a,x 1x 2=−3a −6∵(x 1−1)(x 2−1)=1∴x 1x 2−(x 1+x 2)+1=1∴−3a −6−3a +1=1解得a =−117.【答案】(1)解:(1)设将绿地的长、宽增加xm ,则新的矩形绿地的长为(35+x)m ,宽为(15+x)m 根据题意得:(35+x)(15+x)=800整理得:x 2+50x −275=0解得:x 1=5,x 2=−55(不符合题意,舍去)∴35+x =35+5=40,15+x =15+5=20答:新的矩形绿地的长为40m ,宽为20m(2)设将绿地的长、宽增加ym ,则新的矩形绿地的长为(35+y)m ,宽为(15+y)m 根据题意得:(35+y):(15+y)=5:3即3(35+y)=5(15+y)解得:y =15∴(35+y)(15+y)=(35+15)×(15+15)=1500答:新的矩形绿地面积为1500m 218.【答案】(1)解:设毛绒公仔、3D 钥匙扣两种商品的每个进价分别是(30+x)和x 元,由题意得: 4(30+x)+5x =570,解得x =50答:毛绒公仔、3D 钥匙扣两种商品的每个进价分别是80和50元;(2)解:设毛绒公仔买了x 个,由题意可得:80x +50(60−x)=4200解得x=40设3D钥匙扣的每个售价为y元,由题意得:20x40+20(y−50)=4200×25%解得y=62.5答:每个3D钥匙扣的售价为62.5元。
第二十一章一元二次方程(单元测试卷人教版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.下列方程中,是一元二次方程的是()A .220x x +=B .()3x x y-=C .211x x -=D .24y x -=2.用配方法解方程2210x x --=,变形正确的是()A .()212x -=B .()212x +=C .()221x -=D .()21x x -=3.将方程2810x x --=化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A .8-、10-B .8-、10C .8、10-D .8、104.若关于x 的一元二次方程210x +=有两个相等的实数根,则实数a 的值是()A .4B .14C .16D .1165.如果关于x 的一元二次方程220k x kx +=的一个根是2-,那么()A .0k =或12k =-B .0k =或12k =C .12k =-D .12k =6.某厂家2024年1—5月份的口罩产量统计如图所示,设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程()A .2180(1)442x -=B .2180(1)461x +=C .2137(1)461x +=D .2368(1)442x +=7.等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .138.已知m ,n 是方程2340x x --=的两根,则()()2211m n --的值是()A .0B .6-C .7-D .69.我国古代数学著作《增减算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池.丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑.内方圆径若能知,堪作算中第一.”其大意为:有一块正方形水池,测量出除水池外图内可耕地的面积恰好是72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形边长和圆的直径,那么你的计算水平就是第一了.如图,设正方形的边长是x 步,则列出的方程是()A .223722x x ⎛⎫+-= ⎪⎝⎭B .22π3722x x ⎛⎫+-= ⎪⎝⎭C .()22π372x x +-=D .()22672x x +-=10.设一元二次方程()200ax bx c a ++=≠的两个根分别为1x ,2x ,则方程可写成()()12a x x x x 0--=,即()212120ax a x x x ax x -++=.容易发现:12b x x a+=-,12cx x a =.设一元三次方程()3200ax bx cx d a +++=≠的三个非零实根分别为1x ,2x ,3x ,则以下正确命题的序号是()①123b x x x a ++=-;②122313cx x x x x x a ++=;③123111cx x x d ++=;④123d x x x a =-.A .①②③B .①②④C .②③④D .①③④二、填空题:共8题,每题3分,共24分。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
人教版九年级数学上册《第二十一章一元二次方程》测试卷-附带答案一、单选题1.下列方程是关于的一元二次方程的是()A.B.C.D.2.用配方法解一元二次方程变形后的结果正确的是()A.B.C.D.3.我国古代著作四元玉鉴记载“买椽多少”问题:“六贯二百一十钱倩人去买几株椽.每株脚钱三文足无钱准与一株椽.”其大意为:现请人代买一批椽这批椽的价钱为文.如果每株椽的运费是文那么少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱试问文能买多少株椽?设这批椽的数量为株则符合题意的方程是()A.B.C.D.4.一元二次方程的根是()A.B.C.D.5.若是关于的一元二次方程的解则的值为()A.B.C.D.6.若关于x的方程有实数根则实数k的取值范围是()A.B.C.D.且7.设a b是方程的两个实数根则的值是()A.2021 B.2020 C.2019 D.20188.为了庆祝教师节市教育工会组织篮球比赛赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛则这次参加比赛的球队个数为()A.8 B.9 C.10 D.11二、填空题9.三角形的每条边的长都是方程的根则三角形的周长是. 10.一元二次方程有一根为则k的值为.11.一元二次方程两个根为且则k= 。
12.随着互联网的迅速发展某购物网站的年销售额从2020年的300万元增长到2022年的507万元设平均每年销售额增长的百分率为x 则关于x的方程是.13.一个两位数十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调得到的两位数比原来的两位数小27 则原来的两位数是三、计算题14.解下列方程:(1)(2)15.已知关于的一元二次方程有实数根.(1)求的取值范围(2)如果方程的两个实数根为且求的取值范围.16.如图老李想用长为的栅栏再借助房屋的外墙(外墙足够长)围成一个矩形羊圈并在边上留一个宽的门(建在处另用其他材料).(1)当羊圈的长和宽分别为多少米时能围成一个面积为640的羊圈?(2)羊圈的面积能达到吗?如果能请你给出设计方案如果不能请说明理由.“4•20”雅安地震后某商家为支援灾区人民计划捐赠帐篷16800顶该商家备有2辆大货车、17.8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶大、小货车每天均运送一次两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损实际运送过程中每辆大货车每次比原计划少运200m顶每辆小货车每次比原计划少运300顶为了尽快将帐篷运送到灾区大货车每天比原计划多跑次小货车每天比原计划多跑m次一天恰好运送了帐篷14400顶求m的值.18.甲、乙两工程队合作完成某修路工程该工程总长为4800米原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米刚好按时完成任务.(1)求甲工程队每小时修的路面长度(2)通过勘察地下发现大型溶洞此工程的实际施工里程比最初的4800米多了1000米在实际施工中乙工程队修路效率保持不变的情况下时间比原计划增加了()小时甲工程队的修路速度比原计划每小时下降了米而修路时间比原计划增加m小时求m的值.参考答案:1.D2.D3.D4.D5.D6.B7.C8.C9.6或10或1210.211.112.13.7414.(1)解:∵∴∴∴(2)解:∵∴则∴15.(1)解:根据题意得解得(2)解:根据题意得而所以解得而所以的范围为.16.(1)解:设矩形的边则边.根据题意得.化简得.解得.当时当时.答:当羊圈的长为宽为或长为宽为时能围成一个面积为的羊圈.(2)解:不能理由如下:由题意得.化简得.∵∴一元二次方程没有实数根.∴羊圈的面积不能达到.17.(1)解:设小货车每次运送x顶则大货车每次运送(x+200)顶根据题意得:2×[2(x+200)+8x]=16800解得:x=800.∴大货车原计划每次运:800+200=1000顶答:小货车每次运送800顶大货车每次运送1000顶(2)解:由题意得2×(1000﹣200m)(1+ m)+8(800﹣300)(1+m)=14400解得:m1=2 m2=21(舍去).答:m的值为218.(1)解:设乙两工程队每小时铺设路面x米则甲工程队每小时铺设路面米根据题意得解得:则∴甲工程队每小时铺设的路面长度为110米(2)解:根据题意得整理得解得:(舍去)∴m的值为18。
21章《一元二次方程》单元测试(时间120分钟 总分150分)姓名;__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0 C.(x+3)(x-2)=x+5 D.2332057x x +-= 2、把方程(x -5)(x +5)+(2x -1)2=0化为一元二次方程的一般形式是( ) A .5x 2-4x -4=0 B .x 2-5=0 C .5x 2-2x +1=0 D .5x 2-4x +6=03、关于x 的一元二次方程(a ﹣1)x 2+x+a 2﹣1=0的一个根0,则a 值为( ) A.1 B.﹣1 C.±1 D.04、用配方法解一元二次方程x 2﹣4x ﹣1=0,配方后得到的方程是( ) A.(x ﹣2)2=1 B.(x ﹣2)2=4 C.(x ﹣2)2=5 D.(x ﹣2)2=35、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是( ) A.5% B.10% C.15% D.20%6、a 、b 、c 是△ABC 的三边长,且关于x 的方程x 2﹣2cx+a 2+b 2=0有两个相等的实数根,这个三角形是( )A.等边三角形B.钝角三角形C.直角三角形D.等腰直角三角形 7、x 1,x 2是方程x 2+x+k=0的两个实根,若恰好21x +x 1x 2+22x =2k 2成立,k 的值为( ) A.-1 B.23或-1 C.23 D.-23-或1 8、班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x 人,则可列方程为( )A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x +1)=90 9、若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-c47 B.k ≥-47 且k ≠0 C.k ≥-47 D.k>47且k ≠0 10、使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-611、在实数范围内定义一种运算“*”,使a *b =(a +1)2-ab ,则方程(x +2)*5=0的解为( ) A .x =-2 B .x 1=-2,x 2=3 C .x =-1±32 D .x =-1±5212、若x 0是方程ax 2+2x +c =0(a ≠0)的一个根,设M =1-ac ,N =(ax 0+1)2,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不确定 二、填空题(共6小题,每小题4分,共24分) 13、用______法解方程3(x-2)2=2x-4比较简便.14、一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.15、关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .16、已知一元二次方程x 2﹣6x+c=0有一个根为2,则c= ,另一根为 . 17、已知关于x 的一元二次方程x 2+kx+1=0有两个相等的实数根,则k= . 18、14.已知实数x 满足(x 2-x )2-4(x 2-x )-12=0,则代数式x 2-x+1的值为 . 三、解答题(共8小题,共78分) 19、(8分)用适当的方法解(1)(2x +1)2=3(2x +1); (2)3x 2-10x +6=0.20、(8分)已知关于x 的一元二次方程x 2+7x +11-m =0有实数根.(1)求m 的取值范围;(2)当m 为负整数时,求方程的两个根.21、(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m).现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.22、(8分)19.阅读以下材料,解答问题:例:设y=x2+6x-1,求y的最小值.解:y=x2+6x-1=x2+2·3·x+32-32-1=(x+3)2-10,∵(x+3)2≥0,∴(x+3)2-10≥-10即y的最小值是-10.问题:(1)设y=x2-4x+5,求y的最小值.(2)已知:a2+2a+b2-4b+5=0,求ab的值.23、(10分)已知关于x的方程x2-2(k+1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围; (2)若x1+x2=3x1x2-6,求k的值.24、(10分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?25、(12分)已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.(1)判断方程根的情况;(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;(3)若△ABC的两边AB,AC的长是方程的两根,第三边BC的长为5,①则k为何值时,△ABC是以BC为斜边的直角三角形?②k为何值时,△ABC是等腰三角形,并求出△ABC的周长.26、(14分)如图,在矩形ABCD中,BC=20 cm,点P,Q,M,N分别从点A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,四个点的运动均停止.已知在相同时间内,若BQ=x cm(x≠0),则AP=2x cm,CM=3x cm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边能构成一个三角形?(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形?【参考答案】1.B2.A3.B4.C5.B6.C7.A8.A9.B 10.A 11.D 12.B13.因式分解法 14. 3 15. 2 1 16. 8 4 17. ±2 18. 719.(1)x 1=-12,x 2=1; (2)x 1=5+73,x 2=5-73.20.(1)m ≥-54. (2)x 1=-3,x 2=-4.21.当砌墙宽为15 m ,长为20 m 时,花园面积为300 m 2. 22.解:(1)∵y=x 2-4x+5,∴y=x 2-4x+4+1=(x-2)2+1.∵(x-2)2≥0,∴(x-2)2+1≥1,即y 的最小值是1.(2)∵a 2+2a+b 2-4b+5=0,∴a 2+2a+1+b 2-4b+4=0,∴(a+1)2+(b-2)2=0,∵(a+1)2≥0,(b-2)2≥0,∴a+1=0,b-2=0,∴a=-1,b=2,∴ab=-1×2=-2.23.解:(1)∵方程x 2-2(k+1)x+k 2=0有两个实数根x 1,x 2,∴Δ≥0,即4(k+1)2-4×1×k 2≥0,解得k ≥-,∵k ≥-,∴k=2.24.(1)y =⎩⎪⎨⎪⎧600<x <20,-x +8020≤x ≤80.(2)要使销售利润达到800元,销售单价应定为每千克40元或60元.25.解:(1)∵在方程x 2-(2k+3)x+k 2+3k+2=0中,Δ=b 2-4ac=[-(2k+3)]2-4(k 2+3k+2)=1>0,∴方程有两个不相等的实数根.(2)∵x 1+x 2=2k+3,x 1·x 2=k 2+3k+2,∴由(x 1-1)(x 2-1)=5,得x 1·x 2-(x 1+x 2)+1=5,即k 2+3k+2-2k-3+1=5,整理,得k 2+k-5=0,解得k=.(3)∵x 2-(2k+3)x+k 2+3k+2=(x-k-1)(x-k-2)=0,∴x 1=k+1,x 2=k+2.①不妨设AB=k+1,AC=k+2,∴斜边BC=5时,有AB 2+AC 2=BC 2,即(k+1)2+(k+2)2=25,解得k 1=2,k 2=-5(舍去).∴当k=2时,△ABC 是直角三角形.②∵AB=k+1,AC=k+2,BC=5,由(1)知AB ≠AC ,故有两种情况:(Ⅰ)当AC=BC=5时,k+2=5,∴k=3,AB=3+1=4,∵4,5,5满足任意两边之和大于第三边,∴此时△ABC 的周长为4+5+5=14;(Ⅱ)当AB=BC=5时,k+1=5,∴k=4,AC=k+2=6,∵6,5,5满足任意两边之和大于第三边,∴此时△ABC 的周长为6+5+5=16.综上可知,当k=3时,△ABC 是等腰三角形,此时△ABC 的周长为14;当k=4时,△ABC 是等腰三角形,此时△ABC 的周长为16.26.解:(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边能构成一个三角形.①当点P 与点N 重合时,由x 2+2x =20,得x 1=21-1,x 2=-21-1(不符合题意,舍去).因为BQ +CM =x +3x =4(21-1)<20,此时点Q 与点M 不重合,所以符合题意. ②当点Q 与点M 重合时,由x +3x =20,得x =5. 此时DN =x 2=25>20,不符合题意, 故点Q 与点M 不能重合, 所以所求x 的值为21-1.(2)由(1)知,点Q 只能在点M 的左侧, ①当点P 在点N 的左侧时, 由20-(x +3x )=20-(2x +x 2), 得x 1=0(舍去),x 2=2.则当x =2时,四边形PQMN 是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.则当x=4时,四边形NQMP是平行四边形.综上所述,当x=2或4时,以P,Q,M,N为顶点的四边形是平行四边形.。
第二十一章 一元二次方程(单元测试)一、单选题:1.下列各式15(1﹣x )=0,24π3x -=0,222x y -=0,10x x +=,x 2+3x =0,其中一元二次方程的个数为( ) A .2个B .3个C .4个D .5个2.用配方法解方程x 2+2x -1=0时,配方结果正确的是( )A .()212x +=B .()222x +=C .()213x +=D .()223x +=3.关于x 的方程x ²+mx +6=0的一个根为-2,则另一个根是( )A .-3B .-6C .3D .64.解一元二次方程2(1)2(1)x x -=-最适宜的方法是( )A .直接开平方B .公式法C .因式分解法D .配方法5.关于x 的方程(m ﹣3)221mm x --﹣mx +6=0是一元二次方程,则它的一次项系数是( )A .﹣1B .1C .3D .3或﹣16.方程28170x x ++=的根的情况是( ).A .没有实数根B .有一个实数根C .有两个相等的实数根D .有两个不相等的实数根7.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1;B .k >-1且k ≠0;C .k <1;D .k <1且k ≠0.8.设a 、β是方程x 2+x +2012=0的两个实数根,则a 2+2a +β的值为( )A .-2014B .2014C .2013D .-20139.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣610.据兰州市旅游局最新统计,2014年春节黄金周期间,兰州市旅游收入约为11.3亿元,而2012年春节黄金周期间,兰州市旅游收入约为8.2亿元.假设这两年兰州市旅游收入的平均增长率为x ,根据题意,所列方程为( )A .11.3(1﹣x %)2=8.2B .11.3(1﹣x )2=8.2C .8.2(1+x %)2=11.3D .8.2(1+x )2=11.311.在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是( ) A .x 2+2x ﹣3=0 B .x 2+2x ﹣20=0 C .x 2﹣2x ﹣20=0D .x 2﹣2x ﹣3=012.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出 20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价 180元增加 x 元,则有( ) A .(x ﹣20)(50﹣ 18010x - )=10890 B .x (50﹣18010x - )﹣50×20=10890 C .(180+x ﹣20)(50﹣10x)=10890 D .(x +180)(50﹣10x)﹣50×20=10890 二、填空题:13.一元二次方程3x 2﹣6x =0的根是 .14.关于x 的一元二次方程x 2+6x +m =0有两个相等的实数根,则m 的值为 .15.已知关于x 的一元二次方程3x +1=0有两个不相等的实数根x 1,x 2,则x 12+x 22的值是 16.将x 2+6x +4进行配方变形后,可得该多项式的最小值为 .17.若关于x 的一元二次方程(k ﹣1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是 .18.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m ²,设道路的宽为x m ,则根据题意,可列方程为 .19.我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x 步,则所列方程为 .20.菱形的一条对角线长为8,其边长是方程x 2﹣9x +20=0的一个根,则该菱形的面积为 .三、解答题:21.解方程(1)2x 2+4x +1=0 (配方法) (2)x 2+6x =5(公式法)22.请选择适当的方法解下列一元二次方程:(1)22630x x ++= ; (2)2(2)3(2)x x +=+ .23.已知关于x 的一元二次方程x 2﹣6x +m 2﹣3m ﹣5=0的一个根是﹣1,求m 的值及方程的另一个根.24.若等腰△ABC 的一边长a =5,另两边b ,c 的长度恰好是关于x 的一元二次方程x 2﹣(m +3)x +4m﹣4=0的两个实数根,求△ABC 的周长.25.已知关于x 的一元二次方程 ()()22310x m x m -++-= .(1)请判断这个方程的根的情况,并说明理由;(2)若这个方程的一个实根大于1,另一个实根小于0,求m的取值范围.26.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?27.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?28.根据扬州市某风景区的旅游信息,A公司组织一批员工到该风景区旅游,支付给旅行社2800元. A公司参加这次旅游的员工有多少人?扬州市某风景区旅游信息表29.如图已知直线AC的函数解析式为y= 43x+8,点P从点A开始沿AO方向以1个单位/秒的速度运动,点Q从O点开始沿OC方向以2个单位/秒的速度运动.如果P、Q两点分别从点A、点O同时出发,经过多少秒后能使△POQ的面积为8个平方单位?。
2023-2024学年人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列一元二次方程没有实数根的是( )A .x 2﹣2x ﹣1=0B .x 2+x+3=0C .x 2﹣1=0D .x 2+2x+1=0 2.用公式法解方程x 2﹣x=2时,求根公式中的a ,b ,c 的值分别是( )A .a=1,b=1,c=2B .a=1,b=﹣1,c=﹣2C .a=1,b=1,c=﹣2D .a=1,b=﹣1,c=23.解一元二次方程x 2-2x-5=0,结果正确的是( )A .x 1=-1+,x 2=-1-B .x 1=1+ ,x 2=1-C .x 1=7,x 2= 5D .x 1= 1+ ,x 2=1-4.若关于x 的方程x 2+4x+m=0有实数根,则m 的取值范围是( )A .m ≥4B .m ≤4C .m<-4D .m<45.关于x 的一元二次方程x 2-6x +k =0的一个根是1,则另一个根是( )A .5B .-5C .-6D .-76.有x 支球队进行足球单循环比赛(既每两个队之间都要进行一场比赛),共比赛了10场,列出方程是( )A .12x (x-1)=10B .12x (x+1)=10C .x (x-1)=10D .x (x+1)=10 7.方程x 2-9x+18=0的两个根是一个等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .12或15C .15D .不能确定8.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m 2提高到12.1m 2.若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%二、填空题9.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n = .10.若方程2x2−k=0有整数根,则k的值可以是.(只填一个)11.关于x的一元二次方程m x2 -(2m -l) x +1=0的根的判別式是1,那么m= .12.已知方程ax2+bx+c=0的一个根是﹣1,则a﹣b+c=.13.用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是.三、解答题14.解方程:(1)x2-4x+2=0;(2)x2+3x+2=0;(3)3x2-7x+4=0.15.苏宁电器销售某种冰箱,每台的进货价为2600元,调查发现,当销售价为3000元时,平均每天能售出8台;而当销售价每降低100元时,平均每天就能多售出8台. 商场要使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?16.20世纪20年代起,苏州河沿岸集中了大量工厂和棚户简屋,工业污水和生活污水未经处理直接排入河中,使苏州河的水质不断恶化,最终变成一条臭河.90年代起,上海市政府加大监管力度,投放大量财力用于苏州河的治理,并对沿岸工厂的污水排放量实行监控.通过实践表明,若每天有1000吨污水排入苏州河,则每吨需要500元来进行污水处理,并且每减少10吨污水排放,每吨的污水处理费可以减少4元,为了使每天的污水处理费用为30万元,则沿岸的工厂每天的污水排放量是多少吨?17.已知:关于x的一元二次方程x2−(m+3)x+m=0(1)求证:无论m取什么实数值,方程总有两个不相等的实数根;=1,求m的值(2)若x1,x2是原方程的两个实数根,且满足x1+x2−2x1x218.利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC周长的最大值.参考答案1.B2.B3.B4.B5.A6.A7.C8.B9.﹣2为完全平方数即可)10.18(k211.212.013.1614.(1)解:x2-4x+2=0x2-4x=-2x2-4x+4=-2+4(x-2)2=2,x-2=±√2∴x1=2+ √2,x2=2- √2;(2)解:x2+3x+2=0(x+1)(x+2)=0x+1=0或x+2=0∴x1=-1,x2=-2;(3)解:3x2-7x+4=0(3x-4)(x-1)=03x-4=0或x-1=0,x2=-1.∴x1= 4315.解:设每台冰箱的定价应为x元×8)=5000 根据题意得:(x-2600)(8+3000−x100解得:x1=x2=2850.答:每台冰箱的定价应为2850元.16.解:设每天的污水排放量减少10x吨,其中x<100,则每吨处理费用减少4x元由题意,得(1000−10x)(500−4x)=300000整理得(x−200)(x−25)=0解得x=200(舍去)或x=25当x=25,10x=250,每天的污水排放量为1000−250=750(吨)答:沿岸的工厂每天的污水排放量是 750吨.17.(1)解:证明:△=[-(m+3)]2-4×m=m2+2m+9=(m+1)2+8因为不论m为何值,(m+1)2≥0所以△>0所以无论m取什么实数值,该方程总有两个不相等的实数根(2)解:根据根与系数的关系得:x1+x2=m+3,x1•x2=m.∵x1+x2−2x1x2=1,∴m+3- 2m=1,化简,得m2+2m-2=0.解得m=-1+ √3或-1- √3.18.(1)解:m2﹣6m﹣7=m2﹣6m+9﹣9﹣7=(m﹣3)2﹣16=(m﹣3+4)(m﹣3﹣4)=(m+1)(m﹣7)(2)解:2x2+y2﹣8x+6y+20=(2x2﹣8x)+y2+6y+9+11=2(x2﹣4x+4﹣4)+y2+6y+9+11=2(x﹣2)2﹣8+(y+3)2+11=2(x﹣2)2+(y+3)2+3.∵2(x﹣2)2≥0,(y+3)2≥0∴当x=2,y=﹣3时,2x2+y2﹣8x+6y+20有最小值,最小值是3.(3)解:∵a2+b2=8a+6b﹣25∴a2﹣8a+16+b2﹣6b+9=0∴(a﹣4)2+(b﹣3)2=0∴a﹣4=0,b﹣3=0∴a=4,b=3∵4﹣3<c<4+3∴1<c<7∵c为正整数∴c最大取6.∴△ABC周长的最大值=3+4+6=13 ∴△ABC周长的最大值为13。
九年级上《一元二次方程》单元考试卷
班级 姓名 学号 成绩
一、 选择题(每小题3分,共24分)
1、方程x 2 = 2x 的解是( )
A 、x=2
B 、x 1=2-,x 2= 0
C 、x 1=2,x 2=0
D 、x = 0
2、已知3是关于x 的方程123
42+-a x =0的一个根,则2a 的值是( )A .11 B.12, C.13 D.14
3、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于( )A.-1 B.0 C.1 D.2
4、方程
0132=+-x x 根的情况是( ) A .有两个不相等的实数根 B.有两个相等的实数根,
C.没有实数根 D.只有一个实数根
5、已知关于x 的一元二次方程022=++k x x 有实数根,则k 的取值范围是( )
A .k ≤1 B.k ≥1, C.k <1 D.
k >1 6、若1x 、2x 是一元二次方程01322=+-x x 的两个根,则2221
x x +的值是( ) A .45 B.49, C.4
11 D.7 7、两个不相等的实数m ,n 满足m 2-6m=4,n 2-6n=4,则mn 的值为( )
(A)6 (B)-6 (C)4 (D)-4
8、根据下列表格的对应值:
判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)一个解x 的范围是( )
A 、3<x <3.23
B 、3.23<x <3.24
C 、3.24<x <3.25
D 、3.25 <x <3.26
二、填空题(每小题3分,共24分)
9、写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1:
10、若一元二次方程ax 2+bx+c=0中的二次项系数与常数项之和等于一次项系数,则方程必有一根是
11、设x 1、x 2是方程0222=--x x 的两个实数根,则x 1+x 2=_____;x 1·x 2=_____.
12、等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程
0102=+-m x x 的两根,则m 的值是
13、两个数的和为6,差(注意不是积)为8,以这两个数 为根的一元二次方程是
14、多项式x 2+px +12可分解为两个一次因式的积,整数p 的值是
15、公司成立3年以来,积极向国家上交利税,由第一年的200万元,增长到800万元,则平均每年增长的百分数是__
16、如果m 、n 是两个不相等的实数,且满足
122=-m m ,122=-n n ,那么代数式199444222+-+n n m =________
三、解答题(共52分)
17、解方程: (每小题5分,共15分)
① 09)
12(42=-+x
② 2230x
x --=
③ 1)
3)(5(=+-x x
18、(6分)已知方程
2(1)100x m x m +-+-=的一个根是3,求m 的值及方程的另
一个根.
19.(6分)已知关于x的一元二次方程
2
2=
+
+m
x
x
(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根;
20、(8分)已知一元二次方程
)1
2(2
2=
+
+
+
-k
k
x
k
x
(1)求证:方程有两个不相等的实数根
(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值。
21、(8分)张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体运输箱,且此长方
体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问张大叔购回这张矩形铁皮共花了多少元钱
22.(9分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出200件,第二个月如果单价不变,预计仍可售出200件,批发商为了增加销售量,根据市场调查,单价每降低1元,可多售出10件,但最低单价高于购进的价格,第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元。
(1)填表(不需化简)
(2)如果批发商通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应该是多少元?。