数码管电子时钟
- 格式:doc
- 大小:260.01 KB
- 文档页数:21
8位数码管显示电子时钟c51单片机程序时间:2012-09-10 13:52:26 来源:作者:/*8位数码管显示时间格式 05—50—00 标示05点50分00秒S1 用于小时加1操作S2 用于小时减1操作S3 用于分钟加1操作S4 用于分钟减1操作*/#include<reg52.h>sbit KEY1=P3^0; //定义端口参数sbit KEY2=P3^1;sbit KEY3=P3^2;sbit KEY4=P3^3;sbit LED=P1^2; //定义指示灯参数code unsigned char tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //共阴极数码管0—9unsigned char StrTab[8]; //定义缓冲区unsigned char minute=19,hour=23,second; //定义并初始化为 12:30:00void delay(unsigned int cnt){while(--cnt);}/******************************************************************//* 显示处理函数*//******************************************************************/void Displaypro(void){StrTab[0]=tab[hour/10]; //显示小时StrTab[1]=tab[hour%10];StrTab[2]=0x40; //显示"-"StrTab[3]=tab[minute/10]; //显示分钟StrTab[4]=tab[minute%10];StrTab[5]=0x40; //显示"-"StrTab[6]=tab[second/10]; //显示秒StrTab[7]=tab[second%10];}main(){TMOD |=0x01; //定时器0 10ms inM crystal 用于计时TH0=0xd8; //初值TL0=0xf0;ET0=1;TR0=1;TMOD |=0x10; //定时器1用于动态扫描TH1=0xF8; //初值TL1=0xf0;ET1=1;TR1=1;EA =1;Displaypro(); //调用显示处理函数while(1){if(!KEY1) //按键1去抖以及动作{delay(10000);if(!KEY1){hour++;if(hour==24)hour=0; //正常时间小时加1 Displaypro();}}if(!KEY2) //按键2去抖以及动作{delay(10000);if(!KEY2){hour--;if(hour==255)hour=23; //正常时间小时减1 Displaypro();}}if(!KEY3) //按键去抖以及动作{delay(10000);if(!KEY3){minute++;if(minute==60)minute=0; //分加1Displaypro();}}if(!KEY4) //按键去抖以及动作{delay(10000);if(!KEY4){minute--;if(minute==255)minute=59; //分减1Displaypro();}}}}/******************************************************************//* 定时器1中断 */ /******************************************************************/void time1_isr(void) interrupt 3 using 0 //定时器1用来动态扫描{static unsigned char num;TH1=0xF8; //重入初值TL1=0xf0;switch (num){case 0:P2=0;P0=StrTab[num];break; //分别调用缓冲区的值进行扫描 case 1:P2=1;P0=StrTab[num];break;case 2:P2=2;P0=StrTab[num];break;case 3:P2=3;P0=StrTab[num];break;case 4:P2=4;P0=StrTab[num];break;case 5:P2=5;P0=StrTab[num];break;case 6:P2=6;P0=StrTab[num];break;case 7:P2=7;P0=StrTab[num];break;default:break;}num++; //扫描8次,使用8个数码管if(num==8)num=0;}/******************************************************************//* 定时器0中断 */ /******************************************************************/void tim(void) interrupt 1 using 1{static unsigned char count; //定义内部局部变量TH0=0xd8; //重新赋值TL0=0xf0;count++;switch (count){case 0:case 20:case 40:case 60:case 80:Displaypro();break; //隔一定时间调用显示处理case 50:P1=~P1;break; //半秒 LED 闪烁default:break;}if (count==100){count=0;second++; //秒加1if(second==60){second=0;minute++; //分加1if(minute==60){minute=0;hour++; //时加1if(hour==24)hour=0;}}}}基于单片机的LCD1602控制总线模式时间:2012-09-10 13:50:39 来源:作者:第一行显示"Welcome";第二行显示="Happy day";若要显示其他字符,请直接往数组LCMLineOne[16]和LCMLineTwo[16]填充相应的代码。
ds1302时钟数码管显示时分秒单片机原理课程设计课题名称:基于DS1302的数码管显示数字钟专业班级:电子信息工程学生学号:0414070126学生姓名:张向阳指导教师:张云马崇霄设计时间:2010年6月21日--2010年6月25日目录摘要 ...................................................................................1 设计任务和要求 ...........................................................2 方案论证 .......................................................................3 系统硬件设计 ...............................................................3.1................................................................. 系统总原理图3.2元器件清单...................................................................................... ................................................3.3 PCB板图...................................................................................... .................................................3.4................................................................ P roteus仿真图3.5.......................................................... 分电路图及原理说明3.5.1 主控部分(单片机MCS-51)..............................................................................3.5.2 计时部分(实时时钟芯片DS1302)..................................................................3.5.3 显示部分(共阳极数码管)................................................................................3.5.4 调时部分(按键)................................................................................................4系统软件设计 ...............................................................4.1................................................................... 程序流程图4.2........................................................... 程序源代码5心得体会 ....................................................................... 6参考文献 ....................................................................... 7结束语 ...........................................................................基于DS1302的数码管显示数字钟设计摘要本次课程设计的是使用专门的时钟芯片DS1302在数码管上显示的数字电子钟,并能通过按键对其进行调时和校准。
LED数码管设计的可调式电子钟说明说可调式电子钟的设计理念是提供用户多样化的时间显示和闹钟设定选项,以满足用户不同的需求和喜好。
以下是对设计的详细说明:1.数码管显示:LED数码管采用7段共阳极连接方式,每个数码管由7个LED灯组成,通过控制各个LED灯的点亮与否,可以显示0-9的数字。
数码管的显示仿真效果要清晰、鲜明,确保用户可以轻松辨认时间。
2.时间调节功能:可调式电子钟具备时间调节的功能,用户可以通过按钮或旋钮调整时间。
其中旋钮可以实现小时和分钟的调节,而按钮可以实现小时和分钟的增加或减少。
设计时需考虑人机交互的便利性,确保时间调节操作简单明了。
3.闹钟设定:可调式电子钟还具备闹钟功能,用户可以设定一个或多个闹钟时间点。
用户可以通过按钮或旋钮设置闹钟的小时和分钟,还可以设定是否重复响铃。
闹铃可以通过声音、震动或LED灯闪烁等方式提醒用户。
为了避免误操作,设计时需要考虑设置闹钟的过程,确保用户能够轻松设置闹钟。
4.电源供应:可调式电子钟可采用外部电源或内置电池供电。
设计时需考虑到电源的稳定性和可靠性,确保时钟长时间准确运行。
当外部电源断开时,内置电池可以提供备用电源,防止时间设置的丢失。
5.背光功能:可调式电子钟还可以考虑添加背光功能,在光线不好的情况下,用户可以通过按下按钮或通过传感器自动点亮背光。
背光的亮度可以根据用户偏好进行调节。
6.美观设计:除了功能性,可调式电子钟的外观设计也很重要。
设计时可以考虑采用简约设计风格,以及时尚的外壳材料。
同时,数字显示的对齐和间距,以及按钮和旋钮的位置、大小都需要细致推敲,确保整体外观美观大方。
总之,可调式电子钟的设计需要满足用户对时间显示和闹钟功能的需求。
通过合理的控制功能,人性化的设计以及简洁好看的外观,可为用户提供一台方便、易用的电子钟。
8位数码管显示电子时钟c51单片机程序 /*8位数码管显示时间格式 055000 标示05点50分00秒S1 用于小时加1操作S2 用于小时减1操作S3 用于分钟加1操作S4 用于分钟减1操作*/#includereg52.hsbit KEY1=P3^0; //定义端口参数sbit KEY2=P3^1;sbit KEY3=P3^2;sbit KEY4=P3^3;sbit LED=P1^2; //定义指示灯参数code unsigned chartab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //共阴极数码管09unsigned char StrTab[8]; //定义缓冲区unsigned char minute=19,hour=23,second; //定义并初始化为12:30:00void delay(unsigned int cnt){while(cnt);}/********************************************************** ********//* 显示处理函数 *//********************************************************** ********/void Displaypro(void){StrTab[0]=tab[hour/10]; //显示小时StrTab[1]=tab[hour%10];StrTab[2]=0x40; //显示StrTab[3]=tab[minute/10]; //显示分钟StrTab[4]=tab[minute%10];StrTab[5]=0x40; //显示StrTab[6]=tab[second/10]; //显示秒StrTab[7]=tab[second%10];}main(){TMOD |=0x01; //定时器0 10ms inM crystal 用于计时TH0=0xd8; //初值TL0=0xf0;ET0=1;TR0=1;TMOD |=0x10; //定时器1用于动态扫描 TH1=0xF8; //初值TL1=0xf0;ET1=1;TR1=1;EA =1;Displaypro(); //调用显示处理函数while(1){if(!KEY1) //按键1去抖以及动作{delay(10000);if(!KEY1){hour++;if(hour==24)hour=0; //正常时间小时加1Displaypro();}if(!KEY2) //按键2去抖以及动作 {delay(10000);if(!KEY2){hour;if(hour==255)hour=23; //正常时间小时减1 Displaypro();}}if(!KEY3) //按键去抖以及动作{delay(10000);if(!KEY3){minute++;if(minute==60)minute=0; //分加1Displaypro();}if(!KEY4) //按键去抖以及动作{delay(10000);if(!KEY4){minute;if(minute==255)minute=59; //分减1Displaypro();}}}}/********************************************************** ********//* 定时器1中断 *//********************************************************** ********/void time1_isr(void) interrupt 3 using 0 //定时器1用来动态扫描static unsigned char num;TH1=0xF8; //重入初值TL1=0xf0;switch (num){case 0:P2=0;P0=StrTab[num];break; //分别调用缓冲区的值进行扫描case 1:P2=1;P0=StrTab[num];break;case 2:P2=2;P0=StrTab[num];break;case 3:P2=3;P0=StrTab[num];break;case 4:P2=4;P0=StrTab[num];break;case 5:P2=5;P0=StrTab[num];break;case 6:P2=6;P0=StrTab[num];break;case 7:P2=7;P0=StrTab[num];break;default:break;}num++; //扫描8次,使用8个数码管if(num==8)num=0;}/******************************************************************//* 定时器0中断 *//********************************************************** ********/void tim(void) interrupt 1 using 1{static unsigned char count; //定义内部局部变量TH0=0xd8; //重新赋值TL0=0xf0;count++;switch (count){case 0:case 20:case 40:case 60:case 80:Displaypro();break; //隔一定时间调用显示处理case 50:P1=~P1;break; //半秒 LED 闪烁default:break;}if (count==100){count=0;second++; //秒加1 if(second==60){second=0;minute++; //分加1 if(minute==60){minute=0;hour++; //时加1 if(hour==24)hour=0;}}}}。
Verilog实现数码管电子时钟1 原理图8位8段LED数码管,实现时钟的秒、分、小时、日期年月日的显示,其中主显示月、日、小时和分,按住按键S1显示年和秒;8x8的LED阵列显示秒的跳变,每一分钟点亮一圈,8位LED的跑马灯以1秒的频率移动;S1~S4按键实现时钟的设置,S1显示年和秒,S2选择设置的时钟段,S3实现设置数据的增加,S4跳出设置;4x4的矩阵按键,用了K1~K10共10个键,实现数据1~9、0的输入,可用于设置时钟(参考实例图)。
数码管显示的原理图如下,2个4位的8段数码管,组成的8位8段数码管,每个4位数码管的数据线独立,其实是可以以总线形式连接在一起的,可以减少IO。
共阳极的供电端用了三极管增加驱动,否则IO供电驱动多个数码管时有困难。
按键检测及跑马灯原理图如下,共5个按键,其中一个作为Reset按键(设计未加电容,可以考虑优化),每个按键采用一个IO检测,低电平表示有按键按下。
共8个LED灯,每个灯采用一个IO驱动,高电平点亮。
8x8的矩阵LED,行H1-H8为共阳,采用三极管增加驱动,但此实验板采用5V供电,因此无论行控制信号输出高电平或是低电平,都会导致LED有供电,只是供电强弱不一样,但都可能点亮LED,所以实现时需要将不供电时输出高阻z,同理对数据信号V1-V8。
此矩阵显示原理也是分时显示每一列数据,轮流显示速率较快,让人眼无法反映识别出来,避免闪烁。
4x4的矩阵按键,8个IO,检测原理是IO63、66、67、68作为输出信号,轮流赋值高电平,IO59、60、61、62作为输入信号,检测对应的按键按下。
比如,在IO68赋值高电平时,检测到IO59信号为高电平,则表示按键K1被按下,本时钟只用了10个按键,K1~K10。
2 CPLD代码module clock (clk_24m, //24M时钟reset_n, //全局异步复位/******************************************* 8位8段数码管显示接口信号*******************************************/ Bit_line,Data_line_h,Data_line_l,/******************************************* 8位跑马灯接口信号*******************************************/ led_Bit_line,/******************************************* S1-S5按键信号*******************************************/Key_line,/*******************************************8x8 LED数码管矩阵接口信号*******************************************/Hline,Vline,/*******************************************按键阵列接口信号*******************************************/Keyarray_Vline,Keyarray_Hline);input wire clk_24m;input wire reset_n;output wire [7:0] Hline;output wire [7:0] Vline;output wire [7:0] Bit_line;output wire [0:7] Data_line_h;output wire [0:7] Data_line_l;output wire [7:0] led_Bit_line;input wire [3:0] Key_line;input wire [3:0] Keyarray_Vline;output wire [2:0] Keyarray_Hline;/*************************************************************** 内部分频时钟,便于计数。
电子设计自动化(EDA)—数字时钟LED数码管显示二、实验内容和实验目的1. 6个数码管动态扫描显示驱动2. 按键模式选择(时\分\秒)与闹钟(时\分)调整控制,3. 用硬件描述语言(或混合原理图)设计时、分、秒计数器模块、闹钟模块、按键控制状态机模块、动态扫描显示驱动模块、顶层模块。
要求使用实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒;要求模式按键和调整按键信号都取自经过防抖处理后的按键跳线插孔。
实验目的: 1)学会看硬件原理图, 2)掌握FPGA硬件开发的基本技能3)培养EDA综合分析、综合设计的能力三、实验步骤、实现方法(或设计思想)及实验结果主要设备: 1)PC机, 2)硬件实验箱, 3)Quartus II软件开发平台。
1.打开Quartus II , 连接实验箱上的相关硬件资源, 如下图1所示。
2.建立新文件, 选择文本类型或原理图类型。
3. 编写程序。
4.编译5. 仿真, 加载程序到芯片, 观察硬件输出结果(数码管显示)6.结果正确则完成。
若结果不正确, 则修改程序, 再编译, 直到正确。
模24计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count24 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count24;ARCHITECTURE arc OF count24 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk,en)BEGINhh<=a;hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0010" AND b="0011") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;IF(a="0010" AND b="0010") THENcout<='1';ELSE cout<='0';END IF;END IF;END IF;END PROCESS;END arc;模60计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count60 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count60;ARCHITECTURE arc OF count60 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL sout:STD_LOGIC;BEGINPROCESS(clk)BEGINhh<=a; hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0101" AND b="1001") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;END IF;END IF;END PROCESS;sout<='1' WHEN a="0101" AND b="1001" ELSE '0';cout<=sout AND en;END arc;4-7显示译码模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY segment4to7 ISPORT(s:IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g:OUT STD_LOGIC);END segment4to7;ARCHITECTURE arc OF segment4to7 IS SIGNAL y:STD_LOGIC_VECTOR(6 DOWNTO 0); BEGINa<= y(6);b<= y(5);c<= y(4);d<= y(3);e<= y(2); f<= y(1);g<= y(0);PROCESS(s)BEGINCASE s ISWHEN "0000"=>y<="1111110"; WHEN "0001"=>y<="0110000"; WHEN "0010"=>y<="1101101"; WHEN "0011"=>y<="1111001"; WHEN "0100"=>y<="0110011"; WHEN "0101"=>y<="1011011"; WHEN "0110"=>y<="1011111"; WHEN "0111"=>y<="1110000"; WHEN "1000"=>y<="1111111"; WHEN "1001"=>y<="1111011"; WHEN OTHERS=>y<="0000000"; END CASE;END PROCESS;END arc;带闹钟控制模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mode_adjust_with_alarm ISPORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END mode_adjust_with_alarm;ARCHITECTURE arc OF mode_adjust_with_alarm ISTYPE mystate IS (s0,s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS (c_state)BEGINCASE c_state ISWHEN s0=> next_state <= s1; clkh<=clk1hz; clkm<=clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="000";WHEN s1=> next_state <= s2; clkh<=adjust; clkm<= '0'; clks<='0';enh<='1'; enm<='0';enha<='0'; clkh_a<= '0';clkm_a<= '0'; mode_ss <="001";WHEN s2=> next_state <= s3; clkh<= '0'; clkm<=adjust; clks <= '0';enh<='0';enm<='1';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="010";WHEN s3=> next_state <= s4; clkh<= '0'; clkm<= '0'; clks<=adjust;enh<='0'; enm<='0';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="011";WHEN s4=> next_state <= s5; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0';enm<='0';enha<='1'; clkh_a<=adjust; clkm_a<= '0'; mode_ss <="100";WHEN s5=> next_state <= s0; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<=adjust; mode_ss <="101";END CASE;END PROCESS;PROCESS (mode)BEGINIF (mode'EVENT AND mode='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;扫描模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY scan ISPORT(clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END scan;ARCHITECTURE arc OF scan ISTYPE mystate IS (s0, s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS ( c_state )BEGINCASE c_state ISWHEN s0=> next_state <=s1; ss<="010";WHEN s1=> next_state <=s2; ss<="011";WHEN s2=> next_state <=s3; ss<="100";WHEN s3=> next_state <=s4; ss<="101";WHEN s4=> next_state <=s5; ss<="110";WHEN s5=> next_state <=s0; ss<="111";END CASE;END PROCESS;PROCESS (clk256hz)BEGINIF (clk256hz'EVENT AND clk256hz='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;复用模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mux ISPORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END mux;ARCHITECTURE arc OF mux ISSIGNAL a,hhtmp,hltmp,mhtmp,mltmp,shtmp,sltmp:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(mode_ss)BEGINCASE mode_ss ISWHEN "000"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "001"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "010"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "011"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "100"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN "101"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN OTHERS=>hhtmp<="0000";hltmp<="0000";mhtmp<="0000";mltmp<="0000";shtmp<="0000";sltmp<="0000"; END CASE;END PROCESS;PROCESS(ss)BEGINCASE ss ISWHEN "010"=> a <=hhtmp;WHEN "011"=> a <=hltmp;WHEN "100"=> a <=mhtmp;WHEN "101"=> a <=mltmp;WHEN "110"=> a <=shtmp;WHEN "111"=> a <=sltmp;WHEN OTHERS => a <="0000";END CASE;y<=a;END PROCESS;alarm<='1' WHEN ((hh=hha)AND(hl=hla)AND(mh=mha)AND(ml=mla)) ELSE '0';END arc;闪烁模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY blink_control ISPORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END blink_control;ARCHITECTURE arc OF blink_control ISBEGINPROCESS (ss,mode_ss)BEGINIF(ss="010" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="110" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="111" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="010" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="101") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="101") THEN blink_en<='1';ELSE blink_en<='0';END IF;END PROCESS;END arc;Top文件LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY design3 ISPORT (mode,adjust,clk1hz,clk2hz,clk256hz,clk1khz:IN STD_LOGIC;alarm,a,b,c,d,e,f,g:OUT STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END design3;ARCHITECTURE arc OF design3 ISCOMPONENT mode_adjust_with_alarm PORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT scan PORT (clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT segment4to7 PORT (s: IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g: OUT STD_LOGIC);END COMPONENT;COMPONENT mux PORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END COMPONENT;COMPONENT blink_control PORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END COMPONENT;COMPONENT count24 PORT (clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;COMPONENT count60 PORT (clk ,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;SIGNALclkh,enh,clkm,enm,clks,clkh_a,clkm_a,coutm,couts,coutm_en,couts_en,cout,vcc,coutma_en,coutma,alarm1,bli nk_en,blink_tmp,enha: STD_LOGIC;SIGNAL mode_ss,ss1:STD_LOGIC_VECTOR(2 DOWNTO 0);SIGNAL hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,y,i:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINvcc<='1';coutm_en <= enh OR coutm;couts_en <= enm OR couts;coutma_en<= enha OR coutma;blink_tmp<=blink_en and clk2hz;i(3)<=y(3) OR blink_tmp;i(2)<=y(2) OR blink_tmp;i(1)<=y(1) OR blink_tmp;i(0)<=y(0) OR blink_tmp;ss<=ss1;alarm<=alarm1 AND clk1khz;u1:mode_adjust_with_alarmPORT MAP( adjust,mode,clk1hz,clkh,enh,clkm,enm,clks,enha,clkh_a,clkm_a,mode_ss);u2:count24 PORT MAP(clkh,coutm_en,cout,hh,hl);u3:count60 PORT MAP(clkm,couts_en,coutm,mh,ml);u4:count60 PORT MAP(clks,vcc,couts,sh,sl);u5:count24 PORT MAP(clkh_a,coutma_en,cout,hha,hla);u6:count60 PORT MAP(clkm_a,vcc,coutma,mha,mla);u7:mux PORT MAP(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,ss1,mode_ss,y,alarm1);u8:scan PORT MAP(clk256hz,ss1);u9:blink_control PORT MAP(ss1,mode_ss,blink_en);u10:segment4to7 PORT MAP(i,a,b,c,d,e,f,g);END arc;实验结果:数字钟包括正常的时分秒计时, 实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒。
多功能大尺寸LED 时钟显示屏的设计与制作LED 数码管时钟显示屏的组成及工作原理一、时钟显示屏的组成数码管时钟显示屏的组成电路如图所示:由电源电路,单片机最小系统,时钟电路,键盘电路,数码管驱动显示电路,温湿度检测电路,红外接收电路,光亮度检测电路,语音报时电路、电器控制电路,通讯电路等组成。
图3-1 多功能时钟显示屏的组成框图二、时钟显示屏的工作原理时钟显示屏以单片机为核心完成对时钟芯片DS1302管理和数码管的驱动显示控制。
数码管采用静态显示方式,由多片串入并出芯片74HC595(功能等同74HC164)级联的方式进行驱动。
通过温湿度传感器实现温湿度的检测,红外接收电路完成无线调表和多种定时等时钟功能的设置,用按键也可实现时钟调整等以及各种时钟功能的设定。
光亮传感器可以监测环境明暗,实时调整数码管的显示亮度。
语音报时电路实现语音报时,电器控制电路可实现家用电器的定时控制或者上课打铃的控制等,通讯电路可进行有线、无线通讯、控制等。
单片机最小系统数码管红外接收电路键盘电路温湿度传感器光亮检测电路驱动电路语音报时电路通讯电路电器控制电路扩展接口时钟电路功能与特点一、功能:1、年、月、日、时、分、秒、星期;2、温度、湿度检测与显示;3、农历日期的显示;4、手动按键调表;5、红外遥控器调表;6、预留光亮度检测及显示亮度的自动调整;7、预留继电器控制(10A,可实现定时打铃、家电定时控制等);8、预留语音报时和音乐报时功能;9、预留RS232和485串行通讯接口,实现与微机通讯或者远程通讯;10、预留蜂鸣器提示音功能;11、预留无线通讯接口,可实现无线通讯;12、预留I/O接口,方便今后功能扩展。
13、电源保护电路,防止电源反接烧坏路线板元件;二、特点:1、大尺寸,由1.5~2.3寸数码管显示;2、农历、星期能尾随日期变化自动调整;3、采用时钟芯片和备用电池,走时准确,断电不影响计时;4、静态显示工作模式,延长时钟显示屏使用寿命;5、采用新型单片机功能更强、速度更快;6、硬件设计功能丰富;7、可实现数码管显示亮度随环境明暗自动调节,人性化设计,使用舒适;8、可实现多种显示模式,以实现节能目的;9、软件开辟可实现多种扩展功能;10、插接件接口设计,便于组装、维护。
前言单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注,应用很广、发展很快。
单片机体积小、重量轻、抗干扰能力强、环境要求不高、价格低廉、可靠性高、灵活性好、开发较为容易。
由于具有上述优点,在我国,单片机已广泛地应用在工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,而51单片机是各单片机中最为典型和最有代表性的一种。
这次毕业设计通过对它的学习、应用,以AT89C205芯片为核心,辅以必要的电路,设计了一个简易的电子时钟,它由直流电源供电,通过数码管能够准确显示。
.数字时钟是现代社会应用广泛的计时工具,在航天、电子等科研单位,工厂、医院、学校等企事业单位,各种体育赛事及至我们每个人的日常生活中都发挥着重要的作用。
本系统是基于AT89C2051单片机设计的一个具有六位LED显示的数字时实时钟,采用独立式按键进行时间调整,该系统同时具有硬件设计简单、工作稳定性高、价格低廉等优点。
目录摘要时钟,自从它发明的那天起,就成为人类的朋友,但随着时间的推移,科学技术的不断发展,人们对时间计量的精度要求越来越高,应用越来越广。
怎样让时钟更好的为人民服务,怎样让我们的老朋友焕发青春呢?这就要求人们不断设计出新型时钟。
现今,高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟,石英表,石英钟都采用了石英技术,因此走时精度高,稳定性好,使用方便,不需要经常调校,数字式电子钟用集成电路计时时,译码代替机械式传动,用LED显示器代替显示器代替指针显示进而显示时间,减小了计时误差,这种表具有时,分,秒显示时间的功能,还可以进行时和分的校对,片选的灵活性好。
本文利用单片机实现数字时钟计时功能的主要内容,其中AT89C2051是核心元件同时采用数码管动态显示“时”,“分”,“秒”的现代计时装置。
与传统机械表相比,它具有走时精确,显示直观等特点。
它的计时周期为24小时,显满刻度为“23时59分59秒”,另外具有校时功能,断电后有记忆功能,恢复供电时可实现计时同步等特点。
电子行业电子数字时钟1. 简介电子行业中的电子数字时钟是一种常见的时间显示装置。
它通过使用数码管或液晶显示屏,以数字形式显示时间。
这种时钟广泛应用于电子产品中,如手机、平板电脑、电视、微波炉等。
2. 工作原理电子数字时钟的工作原理通常包括以下几个关键组件:2.1 时钟芯片时钟芯片是控制整个数字时钟工作的核心部件。
它通常由一个精确的振荡器和各种逻辑电路组成。
振荡器提供时钟信号,逻辑电路将时钟信号转化为需要的显示形式,并进行计算、存储等操作。
2.2 数码管或液晶显示屏数码管或液晶显示屏用于显示时钟的数字。
数码管是一种包含七段LED灯的组件,每个段代表一个数字,通过控制不同的段的亮灭来显示不同的数字。
液晶显示屏则是一种电子显示技术,通过液晶分子的改变来显示不同的数字或图形。
2.3 控制电路控制电路负责接收时钟芯片发送的信号,并通过控制数码管或液晶显示屏的亮灭来实现时间的显示。
控制电路还可以包括各种设置按钮、调节旋钮等,用于对时钟进行调整和设置。
3. 功能特点电子数字时钟具有以下几个功能特点:3.1 精确度高由于电子数字时钟采用了精确的振荡器来提供时钟信号,所以其精确度较高,通常能够达到亚秒级别的准确性。
3.2 显示清晰数码管或液晶显示屏的显示效果较好,数字清晰可见,不易模糊或反光,可在不同的环境下清晰显示时间。
3.3 功能多样电子数字时钟可以具备各种功能,如显示时、分、秒,显示日期、年份,具备闹钟功能,甚至还可以添加温度、湿度等传感器,实现更多实用功能。
3.4 能耗低电子数字时钟采用的电子元件能耗较低,相对于传统的机械时钟来说,能够节省能源。
电子数字时钟广泛应用于电子行业中,其应用领域包括但不限于以下几个方面:4.1 消费电子产品手机、平板电脑、电视等消费电子产品中都需要一个精确的时间显示装置。
电子数字时钟能够满足这一需求,并且可以与其他功能进行结合。
家用电器如微波炉、洗衣机、烤箱等在操作过程中需要显示时间。
单片机大作业——电子日历时钟的制作班级:姓名:学号:编号: 07一、题目及功能要求1.制作一个电子日历时钟,使用汇编语言进行软件编程2.实现功能(1)显示北京时间并能校准(2)时、分、秒之间以及年、月、日之间以小数点隔开(3)显示公历日期并能校准,能够自动识别“闰年”以及“大月、小月”(4)运动秒表,能够后台计时,秒表精确到0.05S(5)闹钟功能,有闹钟开关,并能显示当前闹钟是否开启(6)整点报时提醒二、硬件方案1.AT89S52最小系统2.显示电路采用动态扫描驱动电路,AT89S52的P0口连接74LS244总线驱动器,输出信号利用三极管8550进行放大,通过P1口对数码管进行段选扫描,A T89S52的P1.2~P1.7口对数码管进行位选扫描3.两个按键开关,分别接AT89S52的两个外部中断引脚4.AT89S52的P2.0口输出经三极管9012放大,驱动有源蜂鸣器发声三、电路原理图四、系统元件布局、布线图五、元器件清单型号及标称值数量AT89S52 1HD74LS244 1晶体管8550 6晶体管9012 1蜂鸣器(有源) 1电解电容10uF 17段数码管(共阳) 63K电阻9200电阻84.7K电阻 1按钮开关 312M晶振 130pF瓷介电容 2六、软件方案1.“时钟”基准时间由AT89S52定时器0中断提供,设置为最高优先级,定时器0设为工作方式1,即16进制计数器方式,计数初值设为15536,即可实现0.05s 中断一次,连续中断20次即可实现一秒定时。
2. 由于使用较多数码管,显示模块使用动态扫描方式,定义全局变量,保存各个数位的BCD 码,通过查表,将字模送到P0口进行输出;为了显示闹钟的状态,设置了另一字模数据表,在显示前进行判断,若为闹钟开关设置状态则调用此字模数据表。
3. 按键中断的时候,在2个按键都没按下的状态,2个中断引脚都为低电平,则一直调用中断0的子程序,每次进入中断0子程序中便检测中断1的引脚是否为高电平,即检测开关KEY1是否按下;相反,在按下KEY0时,进入中断1子程序,每次进入中断1子程序都检测中断0的引脚是否为高电平,为高电平则表示已按下。
4. 用寄存器R7来记录当前切换的功能,分别为,0-时间;1-日期;2-闹钟;3-闹钟开关;4-秒表。
5. 秒表的实现,采用基准时钟作为秒表时钟源,精度可以达到0.05s 。
6. 闹钟的实现,在主程序中,循环判断闹钟设置的时分与当前时分是否相等,闹钟持续1分钟7. 整点报时的实现,在主程序中,先判断当前时间的秒,若为0再判断分,再为0则使蜂鸣器嘀一声,循环判断。
七、 程序框图1. 主程序2. 定时器0中断子程序主程序系统初始化整点?闹钟到?提示音闹铃提示音N NYY3. 外部中断0子程序定时器0中断子程序保护现场重载计数初值秒表? 秒表模块到1秒?秒加1或向前进位恢复现场中断返回YYNN外部INT0中断带显示延时消抖调整模式有闪烁?切换显示模式时间调整调整时间?调整日期?调整闹钟?日期调整秒表模式?日期、闹钟、闹钟设置、秒表显示循环切换闹钟调整进入秒表中断退出YNNYYNNNYYYY保护Psw 、A 寄存器恢复psw 、A 寄存器初始化秒表后台计时?YNN提示音滴Key1按下?4. 外部中断1子程序八、 系统使用说明1. 接通电源自动复位,读取初始状态,时钟--“00.00.00”,日期—“10.06.06”,闹钟—“06.00.00”,闹钟状态—“OFF ”,秒表—“00.00.00”。
2. 按键KEY1为“切换功能/调节”按钮,按键KEY0为“确定/计时开始/计时暂停/闹钟开关按钮3. 第一功能----电子时钟:按KEY0键进入时校准状态,“时”数码管闪烁,此时按KEY1键可以调节小时,“时”调节范围为00~24,按KEY0可切换到“分”设置,调节范围为00~59再按KEY0可切换到“秒”设置, 调节范围为00~59。
4. 第二功能----电子日历:在电子时钟功能下,按KEY1可以切换到电子日历功能。
进入电子日历功能,可以对“年”.“月”.“日”进行校准,校准方式同电子时钟外部INT1中断保护psw 、A 寄存器带显示延时Key0按下?秒表模式?设置闹钟?暂停/继续计时打开/关闭闹钟闪烁循环切换滴一声提示闪烁切换模式恢复psw 、A 寄存器退出中断YYYNNN的校准方式一样,自行摸索。
5.第三功能----闹钟设置:在电子日历功能下,按KEY1可以切换到闹钟设置功能。
闹钟的设置同电子时钟的设置一样。
6.第四功能----闹钟开关:在闹钟设置功能下,按KEY1可以切换到闹钟开关设置。
默认状态为关闭闹钟功能,显示“OFF”,按KEY0可以调节闹钟开关,打开闹钟功能则显示“ON”。
闹钟设置为“ON”时,最后一个数码管的小数点会亮起,可以在任何功能状态下提示闹钟功能已开启。
7.第五功能----秒表:在闹钟设置功能下,按KEY1可以切换到秒表功能。
进入秒表功能,按KEY0开始计时,再按KEY0则暂停计时,在秒表计时的时候按KEY1可以切换到其他功能,而秒表则在后台计时,在秒表暂停时按KEY1可以将秒表清零。
九、体会第一次使用Atmel Designer Winter 09布出一个完整的PCB制板图,并用覆铜板做成实物,最大的体会是:软件能画出来的图,我们不一定就能把这样的电路板做出来。
布线时要考虑的因素除整体布局、飞线数目外,最重要的是线的宽度、线与线的间距、焊盘的大小。
唯有线宽合适、间距合理才能做出符合要求的电路板。
刚制成的电路板要先使用万用表检测各导线的连接情况,解决断路、短路的问题之后方能进行焊接。
这样做的好处是,保证了调试程序时不会受硬件接触不良等情况的影响。
由于第一次尝试完全使用汇编语言对AT89S52进行编程操作,对汇编语言的陌生给前期编程工作带来诸多不便。
汇编语言不同于C或其它高级语言,程序间的跳转,各种寄存器的压栈出栈都需要人工考虑,而这种疏漏编译器也不会给出任何提示,于是往往一些大意的疏忽,程序便无法达到预期的效果。
加之没有相关条件使用在线调试,也给故障排除带来一些障碍。
对此的体会是,确定是程序出现问题时,优先往程序间的跳转条件、重要寄存器等的现场保护、循环退出的条件方面考虑,寻找原因。
由于此次硬件电路设计采用低电平导通的PNP三极管,和74LS244电平驱动器,也没有将IO口做通用数据传输口用,故不需考虑上拉电阻的选用及将相应管脚写入高电平以正确接收数据的问题。
当然在调试的过程中合理的使用软件仿真机,熟练的设置程序断点,同时观察单片机各寄存器值的变化,可以极大方便我们查找程序漏洞,解决问题。
在书写代码的过程中,应该注意代码的规范化,尤其是使用汇编编程时,必须加上必要的注释,方便程序阅读及故障排查。
对于需要使用到的各个变量,必须在程序开头集中定义存储位置,以求一目了然,在新增变量的时候也不至于出现存储单元被重复使用而导致数据丢失的情况。
最后,看着忙碌数日得来的劳动成果乖乖的工作,确实蛮有成就感。
希望今后有更多的机会进行这样的实践实验。
十、附录;AT89S52CLOCK_FINAL.asm; (Electronic Calendar and Clock); Reference for Grade 2008, s.c.u.t.; Key0(for shift/adjust) connected to INT1; Key1(for un-flash/flash) connected to INT0; 学生姓名:黄锦波,黄卓佳; 学生学号:200830240380,200830240434; 分组编号:007;变量定义TICK_CNT EQU 20H ;T0倍乘;------------------SECOND_BCD EQU 21H ;时间记录MINUTE_BCD EQU 22HHOUR_BCD EQU 23H;------------------DAY_BCD EQU 24H ;日期记录MONTH_BCD EQU 25HYEAR_BCD EQU 26H;------------------FLASH_FLAG EQU 27H ;是否闪烁DIS_FLAG EQU R7 ;当前显示内容标志;DIS_FLAG: 0-时间;1-日期;2-闹钟;3-闹钟开关;4-秒表;------------------NSECOND_BCD EQU 2BH ;闹钟时间NMINUTE_BCD EQU 2CHNHOUR_BCD EQU 2DH;------------------TCC_BCD EQU 2EH ;秒表计时器TBB_BCD EQU 2FHTAA_BCD EQU 30H;------------------TIMER_FLAG EQU 31H ;秒表模式TIMER_START_FLAG EQU 32H ;秒表开始;------------------ALAM_STATE EQU 33H ;闹钟开启标志;------------------DI_40H EQU 34H ;提示音延时变量DI_41H EQU 35H ;延时;------------------ALAM_ON1 EQU 36H ;闹钟状态显示ALAM_ON2 EQU 37HALAM_ON3 EQU 38HALAM_OFF1 EQU 39HALAM_OFF2 EQU 3AHALAM_OFF3 EQU 3BH;------------------;中断向量表ORG 0000HLJMP MAINORG 0003HLJMP EX0_INT ; port INT0ORG 000BHLJMP T0_INT ; port T0ORG 0013HLJMP EX1_INT ; port INT1;主程序ORG 0030HMAIN: NOP ; main program;初始化堆栈MOV SP,#60H;初始化变量MOV SECOND_BCD,#00H ; BCD of "second"MOV MINUTE_BCD,#00H ; BCD of "minute"MOV HOUR_BCD,#00H ; BCD of "hour"MOV NSECOND_BCD,#00H ; BCD of "second"MOV NMINUTE_BCD,#00H ; BCD of "minute"MOV NHOUR_BCD,#06H ; BCD of "hour"MOV TCC_BCD,#00H ; BCD of "second"MOV TBB_BCD,#00H ; BCD of "minute"MOV TAA_BCD,#00H ; BCD of "hour"MOV TIMER_START_FLAG,#00H ;秒表工作标志MOV TIMER_FLAG,#00H ;秒表模式标志MOV DAY_BCD,#06H ; BCD of "day"MOV MONTH_BCD,#06H ; BCD of "month"MOV YEAR_BCD,#010H ; BCD of "year"MOV FLASH_FLAG,#00H ; flag for un-flash/flash MOV DIS_FLAG,#00H ; flag for shift(time/date) MOV ALAM_ON1,#55H ; BCD OF 闹钟状态显示MOV ALAM_ON2,#01HMOV ALAM_ON3,#55HMOV ALAM_OFF1,#63HMOV ALAM_OFF2,#42HMOV ALAM_OFF3,#33HMOV ALAM_STATE,#00H ;初始化闹钟状态为OFF;------------------MOV TL0,#0B0H ; constant for 0.05sMOV TH0,#3CH ; 65536-15536=50,000 for 12MHz MOV TICK_CNT,#14H ; times of overflow 0.05*20=1s MOV TMOD,#01H ; Mode 1 for T0, Timer Mode SETB ET0 ; open T0SETB EX0 ; open INT0, Key1SETB EX1 ; open INT1, Key0SETB EA ; total openSETB PT0 ; priority for T0,高优先级SETB TR0 ; start T0, RunSCAN_HOUR: ;闹钟扫描MOV A,SECOND_BCDCJNE A,#00H,SCANALARMMOV A,MINUTE_BCDCJNE A,#00H,SCANALARMHOUR:CLR P2.0NOP ;整点,滴SETB P2.0SCANALARM: ;闹钟扫描MOV A,ALAM_STATEJZ SCAN_HOUR ;闹钟开关已打开?MOV A,NHOUR_BCDCJNE A,HOUR_BCD,WAITMOV A,NMINUTE_BCDCJNE A,MINUTE_BCD,WAITALARM:CLR P2.0 ;闹铃:滴滴滴滴``````SETB P2.0CLR P2.0SETB P2.0CLR P2.0SETB P2.0CLR P2.0SETB P2.0NOPNOPNOPWAIT:SETB P2.0SJMP SCAN_HOUR ; wait for interrupt; -------------------------------------------------; sub: T0 interrupt; 定时器0中断T0_INT:PUSH ACCMOV TL0,#0B0H ; constant for 0.05sMOV TH0,#3CH ; Timer 0重装载MOV A,TIMER_START_FLAGCJNE A,#01H,TIMER_NEXT ;秒表模式?LJMP TIMER_INC ;秒表计时TIMER_NEXT:DJNZ TICK_CNT,NOT_1S ; is up to 1 second ?SJMP IS_1SNOT_1S:LJMP T0_RET; 1秒时间到IS_1S:MOV A,SECOND_BCD ; take BCD of "second"CJNE A,#59H,IN3 ; is up to 59 seconds ?SJMP IN4IN3:LJMP SECOND_INC ; 秒加1IN4:MOV SECOND_BCD,#00H ; 秒进位MOV A,MINUTE_BCD ; take BCD of "minute"CJNE A,#59H,IN5 ; is up to 59 minutes ?SJMP IN6IN5: LJMP MINUTE_INCIN6: MOV MINUTE_BCD,#00H ; 分进位MOV A,HOUR_BCD ; take BCD of "hour"CJNE A,#23H,HOUR_INC ; is up to 23 hours ?MOV HOUR_BCD,#00H ; “时”进位MOV A,MONTH_BCD ; take BCD of "month"CJNE A,#02H,NOT_FEB ; is February ?;2月处理;--------------------------FEB: NOPACALL BCD_DIV4 ; BCD of "year in 26H" divided by 4MOV A,R3 ; remainder in R3CJNE A,#00H,NOT_LEAP_Y ; "00" means leap year;闰年,29天LEAP_Y: MOV A,DAY_BCD ; take BCD of "day" in Feb.CJNE A,#29H,DAY_INC ; is up to 29 days (leap year)?MOV DAY_BCD,#01H ; keep the first dayMOV MONTH_BCD,#03H ; increase "month"SJMP RESET_CNT;非闰年NOT_LEAP_Y: MOV A,DAY_BCD ; take BCD of "day" in Feb.CJNE A,#28H,DAY_INC ; is up to 28 days (common year)?MOV DAY_BCD,#01H ; keep the first dayMOV MONTH_BCD,#03H ; increase "month"SJMP RESET_CNT;---------------------------;非2月处理;30/31天?NOT_FEB:NOP ; other "month" except Feb.CJNE A,#04H,Y01 ; is April ?AJMP MON_30DY01: CJNE A,#06H,Y02 ; is June ?AJMP MON_30DY02: CJNE A,#09H,Y03 ; is September ?AJMP MON_30DY03: CJNE A,#11H,T11 ; is November ?AJMP MON_30D;31天T11: MOV A,DAY_BCD ; take BCD of "day"CJNE A,#31H,DAY_INC ; is up to 31 days ?AJMP NEXT_MONTH;30天MON_30D:MOV A,DAY_BCD ; take BCD of "day"CJNE A,#30H,DAY_INC ; is up to 30 days ?;天进位NEXT_MONTH: MOV DAY_BCD,#01H ; keep the first day MOV A,MONTH_BCD ; take BCD of "month"CJNE A,#12H,MONTH_INC; is December ?; 月进位MOV MONTH_BCD,#01H ; keep the first monthMOV A,YEAR_BCD ; take BCD of "year"CJNE A,#99H,YEAR_INC ; is up to 99 years ?MOV YEAR_BCD,#00H ; keep the first yearSJMP RESET_CNT;年加1YEAR_INC: MOV A,YEAR_BCD ; take BCD of "year"ADD A,#01H ; increase "year"DA A ; adjust BCDMOV YEAR_BCD,A ; keep "year"SJMP RESET_CNTMONTH_INC: MOV A,MONTH_BCD ; take BCD of "month"ADD A,#01H ; increase "month"DA A ; BCD码调整MOV MONTH_BCD,A ; keep "month"SJMP RESET_CNTDAY_INC: MOV A,DAY_BCD ; take BCD of "day"ADD A,#01H ; increase "day"DA A ; BCD码调整MOV DAY_BCD,A ; keep "day"SJMP RESET_CNTHOUR_INC: MOV A,HOUR_BCD ; take BCD of "hour"ADD A,#01H ; increase "hour"DA A ; BCD码调整MOV HOUR_BCD,A ; keep "hour"SJMP RESET_CNTMINUTE_INC: MOV A,MINUTE_BCD ; take BCD of "minute"ADD A,#01H ; increase "minute"DA A ; BCD码调整MOV MINUTE_BCD,A ; keep "minute"SJMP RESET_CNTSECOND_INC: MOV A,SECOND_BCD ; take BCD of "second"ADD A,#01H ; increase "second"DA A ; BCD码调整MOV SECOND_BCD,A ; save back "second"RESET_CNT: M OV TICK_CNT,#14H ; retrieve times of overflow T0_RET:POP ACCRETI;--------------------------------------------------------------------;秒表增TIMER_INC:TCC_INC:MOV A,TCC_BCD ; take BCD of "0.05S"CLR CSUBB A,#95HJZ TBB_INCMOV A,TCC_BCDADD A,#05H ; increase "0.05S"DA A ; BCD码调整MOV TCC_BCD,A ; keep "0.05S"AJMP TIMER_OUTTBB_INC:MOV TCC_BCD,#00HMOV A,TBB_BCD ; take BCD of "SECOND"CLR CSUBB A,#59HJZ TAA_INCMOV A,TBB_BCDADD A,#01H ; increase "SECOND"DA A ; BCD码调整MOV TBB_BCD,A ; keep "SECOND"AJMP TIMER_OUTTAA_INC:MOV TBB_BCD,#00HMOV A,TAA_BCD ; take BCD of "MINUTE"CLR CSUBB A,#59HJZ TDD_INCMOV A,TAA_BCDADD A,#01H ; increase "MINUTE"DA A ; BCD码调整MOV TAA_BCD,A ; save back "MINUTE"AJMP TIMER_OUTTDD_INC:MOV TAA_BCD,00HTIMER_OUT: LJMP TIMER_NEXT ;返回定时器中断;------------------------------------------------------------------; -------------------------------------------------------------------; sub: LED Display;显示子程序DISPLAY:MOV A,DIS_FLAGCJNE A,#03H,DISPLAY2 ;选择不同字模MOV DPTR,#TAB2SJMP DISPLAY3DISPLAY2:MOV DPTR,#TAB ; set address of code table DISPLAY3:MOV A,DIS_FLAG ; take flag for shiftCJNE A,#00H,DISP_DA TE ; "00" 当前显示内容为时间;R0: point to display bufferDISP_TIME: MOV R0,#SECOND_BCD ; beginning from "second"SJMP TSADISP_DA TE:CJNE A,#01H,DISP_ALAM ; "01" 当前显示内容为日期MOV R0,#DAY_BCD ; "FF" for showing dateSJMP TSA;显示时间或日期DISP_ALAM:CJNE A,#02H,DISP_ALAM_SET ; "02" 当前显示内容为闹钟MOV R0,#NSECOND_BCD ; beginning from "second"SJMP TSADISP_ALAM_SET:CJNE A,#03H,DISP_TIMER ; "03" 当前显示内容为闹钟设置MOV A,ALAM_STATE ; 闹钟状态显示JZ SHOWOFFMOV R0,#ALAM_ON1 ; 显示”ON“SJMP TSASHOWOFF:MOV R0,#ALAM_OFF1 ;显示“OFF”SJMP TSADISP_TIMER: ;"04"当前显示内容为秒表MOV R0,#TCC_BCD ; beginning from "second"TSA: MOV A,@R0 ; begin from "day"ANL A,#0FH ; get the "low half byte"MOVC A,@A+DPTR ; take character from code tableMOV R1,A ; keep in R1 for DS6 showingMOV A,@R0SWAP AANL A,#0FH ; get the "high half byte"MOVC A,@A+DPTR ; take character from code tableMOV R2,A ; keep in R2 for DS5 showing;---------------INC R0MOV A,@R0 ; next one from "month"ANL A,#0FH ; get the "low half byte"MOVC A,@A+DPTRMOV R3,A ; keep in R3 for DS4 showingMOV A,@R0SWAP AANL A,#0FH ; get the "high half byte"MOVC A,@A+DPTRMOV R4,A ; keep in R4 for DS3 showing;-------------INC R0MOV A,@R0 ; next one from "year"ANL A,#0FH ; get the "low half byte"MOVC A,@A+DPTRMOV R5,A ; keep in R5 for DS2 showingMOV A,@R0SWAP AANL A,#0FH ; get the "high half byte"MOVC A,@A+DPTRMOV R6,A ; keep in R6 for DS1 showing;---------------------;P1:位选线;P0:段选线NOPTDP: MOV P1,#0FFH ; close all showing///;Display DS6MOV A,ALAM_STATE ;是否显示闹钟状态位?(最末位小数点)JZ DIS_NEXTMOV A,R1ANL A,#7FHMOV R1,ADIS_NEXT:MOV A,R1MOV P0,A ; send character to DS6MOV A,FLASH_FLAG ; get flag of un-flash/flashCJNE A,#03H,A02 ; "03" is flash on DS5&DS6SJMP A03A02: CJNE A,#03H,A04; ; "03" is flash on DS5&DS6A03: MOV A,TICK_CNT ; take Counter of overflow RRC AJNC A05 ; check bit C ( 1 or 0 )A04: MOV P1,#0FBH ; turn on DS6A05: LCALL DELAYMOV P1,#0FFH ; close all showing;Display DS5MOV P0,R2 ; send character to DS5MOV A,FLASH_FLAG ; get flag of un-flash/flashCJNE A,#03H,B02 ; "03" is flash on DS5&DS6SJMP B03B02: CJNE A,#03H,B04B03: MOV A,TICK_CNT ; take times of overflow RRC AJNC B05 ; check bit C ( 1 or 0 )B04: MOV P1,#0F7H ; turn on DS5B05: LCALL DELAYMOV P1,#0FFH ; close all showing;Display DS4MOV A,R3ANL A,#7FH ;该位增加小数点显示MOV P0,A ; send character to DS4MOV A,FLASH_FLAG ; get flag of un-flash/flashCJNE A,#02H,C02 ; "02" is flash on DS3&DS4SJMP C03C02: CJNE A,#02H,C04C03: MOV A,TICK_CNT ; take times of overflow RRC AJNC C05 ; check bit C ( 1 or 0 )C04: MOV P1,#0EFH ; turn on DS4C05: LCALL DELAYMOV P1,#0FFH ; close all showing;Display DS3MOV P0,R4 ; send character to DS3MOV A,FLASH_FLAG ; get flag of un-flash/flashCJNE A,#02H,D02 ; "02" is flash on DS3&DS4SJMP D03D02: CJNE A,#02H,D04D03: MOV A,TICK_CNT ; take times of overflow RRC AJNC D05 ; check bit C ( 1 or 0 )D04: MOV P1,#0DFH ; turn on DS3D05: LCALL DELAYMOV P1,#0FFH ; close all showing;Display DS2MOV A,R5ANL A,#7FH ;该位增加小数点显示MOV P0,A ; send character to DS2MOV A,FLASH_FLAG ; get flag of un-flash/flashCJNE A,#01H,E02 ; "01" is flash on DS1&DS2SJMP E03E02: CJNE A,#01H,E04E03: MOV A,TICK_CNT ; take times of overflow RRC AJNC E05 ; check bit C ( 1 or 0 )E04: MOV P1,#0BFH ; turn on DS2E05: LCALL DELAYMOV P1,#0FFH ; close all showingMOV P0,R6 ; send character to DS1MOV A,FLASH_FLAG ; get flag of un-flash/flashCJNE A,#01H,F02 ; "01" is flash on DS1&DS2SJMP F03F02: CJNE A,#01H,F04F03: MOV A,TICK_CNT ; take times of overflowRRC AJNC F05 ; check bit C ( 1 or 0 )F04: MOV P1,#07FH ; turn on DS1F05: LCALL DELAYMOV P1,#0FFH ; close all showingRET; -------------------------------------------------------------------; ----------------------------------------; sub: delay (1.542ms for 12MHz, 3.084ms for 6MHz);延时子程序D_CNT_2 EQU 28HD_CNT_1 EQU 29HDELAY: M OV D_CNT_2,#03HD_LOOP2: MOV D_CNT_1,#0FFH ;[1]D_LOOP1: DJNZ D_CNT_1,D_LOOP1 ;[2]DJNZ D_CNT_2,D_LOOP2 ;[2]RET; ----------------------------------------; ---------------------------------------------------------;外部中断0; sub: INT0 interrupt; 处理按键K0,切换时间/日期/闹钟/闹钟设置/秒表显示或者调整EX0_INT: NOP ; switch or adjust with date/timePUSH ACCPUSH PSWLCALL DIS_DELAY ; re-bounce (with LED display)JNB P3.3,OUT ; check port INT1;K0按下NOP ; inhibit INT1 ( use k0);---------------------------------------------------MOV A,FLASH_FLAGCJNE A,#00H,JUDGE_MODE ;有闪烁进入调整模式SET_DIS: ;无闪烁进入设置显示或秒表模式CLR P2.0 ;按键滴一声MOV DI_41H,#19HDI_LPO:MOV DI_40H,#0FFHDI_LP:DJNZ DI_40H,DI_LPDJNZ DI_41H,DI_LPOSETB P2.0;---------------------------------------------------MOV A,DIS_FLAGINC AMOV DIS_FLAG,ACJNE A,#04H,CROSSTIMER ;进入秒表?;---------------------------------------------------TIMER:MOV TIMER_FLAG,#01H ;进入秒表,秒表模式设置为开LJMP EX0_RET ;退出;---------------------------------------------------CROSSTIMER: ;显示模式切换CJNE A,#05H,OUTMOV DIS_FLAG,#00H ;已到5需置零MOV TIMER_FLAG,#00HMOV A,TIMER_START_FLAGJNZ OUT ;秒表后台工作,暂停计数时退出则对秒表清零MOV TCC_BCD,#00H ; BCD of "second" 秒表清零MOV TBB_BCD,#00H ; BCD of "minute"MOV TAA_BCD,#00H ; BCD of "hour"OUT: LJMP EX0_RET ; 退出;---------------------------------------------------JUDGE_MODE: ;进入调整模式MOV A,DIS_FLAG ; 读取当前显示内容为?(时间/日期/秒表/闹钟)CJNE A,#00H,JDA TE ;是否进入时间调整00;---------------------------------------------------JTIME: ;调整时间MOV A,FLASH_FLAG ; take flag of un-flash/flashADH: CJNE A,#01H,ADM ; "03" for adjusting "hour"MOV A,HOUR_BCD ; take BCD of "hour"CJNE A,#23H,JH0 ; is up to 23 hours ?MOV HOUR_BCD,#00H ; keep the first hourLJMP JHFJH0: ADD A,#01H ; increase "hour"DA A ; adjust BCDMOV HOUR_BCD,A ; keep "hour"JHF: LJMP EX0_RET;-----------------------------------------ADM: CJNE A,#02H,ADS ; "02" for adjusting "minute"MOV A,MINUTE_BCD ; take BCD of "minute"CJNE A,#59H,JM0 ; is up to 59 minutes ?MOV MINUTE_BCD,#00H ; keep the first minuteLJMP JMFJM0: ADD A,#01H ; increase "minute"DA A ; adjust BCDMOV MINUTE_BCD,A ; keep "minute"JMF: LJMP EX0_RETADS: MOV A,SECOND_BCD ; take BCD of "second"CJNE A,#59H,JS0 ; is up to 59 seconds ?MOV SECOND_BCD,#00H ; keep the first secondLJMP JSFJS0: ADD A,#01H ; increase "second"DA A ; adjust BCDMOV SECOND_BCD,A ; keep "second"JSF: NOPLJMP EX0_RET;---------------------------------------------------JALAM0: LJMP JALAMJDATE: CJNE A,#01H,JALAM0 ;是否进入日期调整01JYY: NOP ; "01 to 06" is in flashMOV A,FLASH_FLAGCJNE A,#01H,JMM ; "01" for adjusting "year";调节年MOV A,YEAR_BCD ; take BCD of "year"CJNE A,#99H,YY0 ; is up to 99 year ?MOV YEAR_BCD,#00H ; keep the first yearLJMP YYFYY0: ADD A,#01H ; increase "year"DA A ; adjust BCDMOV YEAR_BCD,A ; keep "year"YYF: LJMP EX0_RET;---------------------------------------JMM: CJNE A,#02H,JDD ; "02" for adjusting "month";调节月MOV A,MONTH_BCD ; take BCD of "month"CJNE A,#12H,MM0 ; is December ?MOV MONTH_BCD,#01H ; keep the first monthLJMP MMFMM0: ADD A,#01H ; increase "month"DA A ; adjust BCDMOV MONTH_BCD,A ; keep "month"MMF: LJMP EX0_RET;---------------------------------------JDD: CJNE A,#03H,AA1 ; "03" for adjusting "day"LJMP BB1AA1: LJMP ADH ;BB1: MOV A,MONTH_BCD ; first, should take "month"CJNE A,#02H,NFB ; is February ?IFB: NOPACALL BCD_DIV4 ; BCD of "year in YEAR_BCD" divided by 4MOV A,R3 ; remainder in R3CJNE A,#00H,ANG ; "00" means leap yearARN: MOV A,DAY_BCD ; take BCD of "day"CJNE A,#29H,D0A ; is up to 29 days in Feb.?LJMP D0BD0A: LJMP DDAD0B: LJMP DD1ANG: MOV A,DAY_BCD ; take BCD of "day"CJNE A,#28H,D0A ; is up to 28 days in Feb.?LJMP DD1NFB: NOP ; check "little/large" monthCJNE A,#04H,Y04 ; is April ?LJMP AD1Y04: CJNE A,#06H,Y05 ; is June ?LJMP AD1Y05: CJNE A,#09H,Y06 ; is September ?LJMP AD1Y06: CJNE A,#11H,Y07 ; is November ?LJMP AD1Y07: NOP ; for "large" monthMOV A,DAY_BCD ; take BCD of "day"CJNE A,#31H,D0A ; is up to 31 days ?LJMP DD1AD1: NOP ; for "little" monthMOV A,DAY_BCD ; take BCD of "day"CJNE A,#30H,D0A ; is up to 30 days ?DD1: MOV DAY_BCD,#01H ; keep the first dayLJMP DDFDDA: ADD A,#01H ; increase "day"DA A ; adjust BCDMOV DAY_BCD,A ; keep "day"DDF: LJMP EX0_RET;---------------------------------------------------JALAM: ;调整闹钟MOV A,FLASH_FLAG ; take flag of un-flash/flashNADH: CJNE A,#01H,NADM ; "03" for adjusting "hour"MOV A,NHOUR_BCD ; take BCD of "hour"CJNE A,#23H,NJH0 ; is up to 23 hours ?MOV NHOUR_BCD,#00H ; keep the first hourLJMP NJHFNJH0: ADD A,#01H ; increase "hour"DA A ; adjust BCDMOV NHOUR_BCD,A ; keep "hour"NJHF: LJMP EX0_RET;-----------------------------------------NADM: CJNE A,#02H,NADS ; "02" for adjusting "minute"MOV A,NMINUTE_BCD ; take BCD of "minute"CJNE A,#59H,NJM0 ; is up to 59 minutes ?MOV NMINUTE_BCD,#00H ; keep the first minuteLJMP NJMFNJM0: ADD A,#01H ; increase "minute"DA A ; adjust BCDMOV NMINUTE_BCD,A ; keep "minute"NADS: MOV A,NSECOND_BCD ; take BCD of "second"CJNE A,#59H,NJS0 ; is up to 59 seconds ?MOV NSECOND_BCD,#00H ; keep the first secondLJMP NJSFNJS0: ADD A,#01H ; increase "second"DA A ; adjust BCDMOV NSECOND_BCD,A ; keep "second"NJSF: NOPLJMP EX0_RET;---------------------------------------------------EX0_RET:NOP ;中断退出POP PSWPOP ACCRETI;---------------------------------------------------;---------------------------------------------------; sub: INT1 interrupt; 处理按键K1,设置闪烁EX1_INT:NOP ; revise flag(00 to 06) in FLASH_FLAG PUSH ACCPUSH PSWJNB P3.2,EX1_RET ; check port INT0LCALL DIS_DELAY ; re-bounce (with LED display);;K1按键按下NOP ; inhibit INT0 (use k1)MOV A,DIS_FLAGCJNE A,#03H,TIMER_START0 ;非设置闹钟开关模式?MOV A,ALAM_STATECPL A ;取非ANL A,#01H ;保留最后MOV ALAM_STATE,A ;设置闹钟开关AJMP DI_START ;提示音后退出;---------------------------------------------------TIMER_START0:MOV A,TIMER_FLAGCJNE A,#01,FLASH_SHIFT ;非秒表模式?TIMER_START:MOV A,TIMER_START_FLAGCPL AANL A,#01H ;保留最低位MOV TIMER_START_FLAG,A ;设置秒表开关;---------------------------------------------------DI_START:CLR P2.0 ;按键滴一声MOV DI_41H,#19HDI_LOOPO:MOV DI_40H,#0FFHDI_LOOP:DJNZ DI_40H,DI_LOOPDJNZ DI_41H,DI_LOOPOSETB P2.0AJMP EX1_RET ;退出;---------------------------------------------------FLASH_SHIFT: ;进入切换闪烁MOV A,FLASH_FLAG ; take flag of un-flash/flashCJNE A,#00H,ED1 ; "00" 无闪烁MOV FLASH_FLAG,#01H ; 设置1,2号数码管闪烁SJMP EX1_RETED1: CJNE A,#01H,ED2 ; "01" 1,2号闪烁中MOV FLASH_FLAG,#02H ; 设置3,4号闪烁ED2: CJNE A,#02H,ED3 ; "02" 3,4号闪烁MOV FLASH_FLAG,#03H ; 设置5,6号闪烁SJMP EX1_RETED3: MOV FLASH_FLAG,#00H ; 关闭所有闪烁EX1_RET:NOPPOP PSWPOP ACCRETI;------------------------------------; ---------------------------------------------; 带显示延迟D_CNT_DIS EQU 2AHDIS_DELAY: MOV D_CNT_DIS,#10H ; or(#0BH)DELAY_LOOP: LCALL DISPLAY ; with LED display DJNZ D_CNT_DIS,DELAY_LOOPRET; -----------------------------------------------; ----------------------------------------------------------; sub: BCD division; BCD除法:除4; 输出:; R3: 余数; R2: 商BCD_DIV4: MOV R0,YEAR_BCD ; dividend in BCD MOV R1,#04H ; divider in BCDMOV R2,#00H ; R2:输出商MOV A,R1CPL AADD A,#9BHMOV R1,A ; R1:BCD补码MOV A,R0ANL A,#0F0H ; BCD高位SWAP ALP0: MOV R3,A ; BCD码的余数ADD A,R1DA AJNC LP1INC R2SJMP LP0LP1: MOV A,R3SWAP AMOV R3,AMOV A,R2SWAP AMOV R2,A ; 商的高位MOV A,R0ANL A,#0FH ; 年BCD的低位ORL A,R3LP2: MOV R3,AADD A,R1DA AJNC LP3INC R2SJMP LP2LP3: NOP ; no roundingRET;----------------------------------------------____________________________________________________________________________________________ 20; ------------------------------------------------------; 放在代码段的字模表TAB:DB 0c0H ; for "0"DB 0f9H ; for "1"DB 0a4H ; for "2"DB 0b0H ; for "3"DB 99H ; for "4"DB 92H ; for "5"DB 82H ; for "6"DB 0f8H ; for "7"DB 80H ; for "8"DB 90H ; for "9"TAB2: ;闹钟状态显示的字模DB 0C0H ; "0"DB 11001000B ; "N"DB 10001110B ; "F"DB 0FFH ; " "DB 40H ; "0."DB 07FH ; "."DB 00001110B ; "F."END。