减治法
- 格式:ppt
- 大小:407.00 KB
- 文档页数:25
平均情况:设待查找的元素在数组中的概率为P,不在数组中的概率为1-P,若出现在数组中每个位置的概率是均等的为p/nT(n)=P1D1+P2D2+...+PiDi+(1-P)Dn+1=p/2+n(1-p/2)1.叙述分治算法和动态规划算法的基本思想,并比较两种算法的异同。
答:分治法将待求解的问题划分成K个较小规模的子问题,对这K个子问题分别求解,再将子问题的解合并为一个更大规模的问题的解,自底向上逐步求出原问题的解. 动态规划将待求解的问题分解成若干的子问题,自底向上地通过求解子问题的解得到原问题的解。
动态规划将每个子问题只求解一次并将其解保存在一个表格中,当需要再次求解此子问题时,只是简单的通过查表过的该子问题的解,避免了大量的重复计算.异同:分治法求解的问题分解后的子问题都是独立的,而使用动态规划求解的问题分解后得到的子问题往往不是相互独立的。
分治法是自顶向下用递归的方法解决问题,而动态规划则是自底向上非递归解决问题。
1.简述分治算法求解过程的三个阶段。
答:(1)划分:既然是分治,当然需要把规模为n的原问题划分为k个规模较小的子问题,并尽量使这k个子问题的规模大致相同。
(2)求解子问题:各子问题的解法与原问题的解法通常是相同的,可以用递归的方法求解各个子问题,有时递归处理也可以用循环来实现。
(3)合并:把各个子问题的解合并起来,合并的代价因情况不同有很大差异,分治算法的有效性很大程度上依赖于合并的实现。
2.叙述分治法的基本思想,并分析分治法与减治法二者的区别。
答:分治法将待求解的问题划分成K个较小规模的子问题,对这K个子问题分别求解,再将子问题的解合并为一个更大规模的问题的解,自底向上逐步求出原问题的解.区别:分治法是把一个大问题划分成若干个子问题,分别求解各个子问题,然后把子问题的解进行合并并得到原问题的解。
减治法同样是把一个大问题划分成若干个子问题,但是这些子问题不需要分别求解,只需求解其中的一个子问题,因而也无需对子问题的解进行合并。
算法笔记_004:8枚硬币问题【减治法】⽬录1 问题描述(1)实验题⽬在8枚外观相同的硬币中,有⼀枚是假币,并且已知假币与真币的重量不同,但不知道假币与真币相⽐较轻还是较重。
可以通过⼀架天平来任意⽐较两组硬币,设计⼀个⾼效的算法来检测这枚假币。
(2)实验⽬的1)深刻理解并掌握减治法的设计思想并理解它与分治法的区别;2)提⾼应⽤减治法设计算法的技能。
3)理解这样⼀个观点:建⽴正确的模型对于问题的求解是⾮常重要的。
(3)实验要求1)设计减治算法实现8枚硬币问题;2)设计实验程序,考察⽤减治技术设计的算法是否⾼效;3)扩展算法,使之能处理n枚硬币中有⼀枚假币的问题。
(4)实现提⽰假设⽤⼀个数组B[n]表⽰硬币,元素B[i]中存放第i枚硬币的重量,其中n-1个元素的值都是相同的,只有⼀个元素与其他元素值不同,则当n=8时即代表8枚硬币问题。
由于8枚硬币问题限制只允许使⽤天平⽐较轻重,所以,算法中只能出现元素相加和⽐较的语句。
2 解决⽅案2.1 减治法原理叙述在说减法法原理之前,我们先来简单看看分治法原理:分治法是把⼀个⼤问题划分为若⼲⼦问题,分别求解⼦问题,然后再把⼦问题的解进⾏合并得到原问题的解。
⽽减治法同样是把⼤问题分解成为若⼲个⼦问题,但是这些⼦问题不需要分别求解,只需求解其中的⼀个⼦问题,也⽆需对⼦问题进⾏合并。
换种说法,可以说减治法是退化的分治法。
减治法原理正式描述:减治法(reduce and conquer method)将原问题的解分解为若⼲个⼦问题,并且原问题的解与⼦问题的解之间存在某种确定关系,如果原问题的规模为n,则⼦问题的规模通常是n/2 或n-1。
2.2 8枚硬币规模解法求解思路:(1)⾸先输⼊8枚硬币重量,存放在⼀个长度为8的⼀维数组中。
(2)定义a,b,c,d,e,f,g,h⼋个变量,分别对应⼀枚硬币的重量。
然后把这8枚硬币分成三组,分别为abc(abc = a+b+c)、def(def =d+e+f)、gh。
蛮力法、分治法、减治法三种方法的理解和处理问题的类型的归纳一、蛮力法蛮力法是一种基础且直接的问题解决策略,通常用于寻找问题的答案或解决方案。
其核心理念在于,通过逐一检查所有可能的解决方案,从而找到问题的答案或找到最佳的解决方案。
在蛮力法中,我们通常需要投入较多的时间和计算资源,尤其是在面对大规模或复杂的问题时。
蛮力法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,对一个数组进行排序,我们可以使用蛮力法,通过比较每对元素并交换它们的位置,使得整个数组有序。
2. 查找问题:例如,在排序数组中查找一个特定的元素,我们可以使用蛮力法,逐一检查数组中的每个元素直到找到目标元素。
3. 组合与排列问题:例如,计算给定集合的所有可能排列或组合,我们可以使用蛮力法,通过逐一排列或组合所有可能的元素组合得到答案。
二、分治法分治法是一种将复杂问题分解为更小、更易于处理的子问题的方法。
通过将问题分解为独立的子问题,我们可以分别解决每个子问题,然后将这些解决方案组合起来,形成原始问题的解决方案。
这种方法在处理复杂问题时非常有效,因为它可以降低问题的复杂性,使我们可以更有效地解决问题。
分治法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,归并排序就是一种使用分治法的排序算法,它将一个大列表分解为两个小列表,对这两个小列表分别进行排序,然后合并它们以得到有序列表。
2. 搜索问题:例如,二分搜索是一种使用分治法的搜索算法,它将搜索空间一分为二,每次迭代都排除一半的元素,直到找到目标元素或确定元素不存在。
3. 图问题:例如,Dijkstra的算法就是一种使用分治法的图搜索算法,它将图分解为最短路径树,然后通过搜索每个子图的最短路径来解决整个图的最短路径问题。
三、减治法减治法是一种通过减少问题的规模或复杂性来解决问题的方法。
其核心理念在于,通过消除或减少问题的某些部分或特性,从而降低问题的复杂性或规模,使得问题更容易解决。
实验三减治法的验证与思考实验
实验一:验证课本上的折半查找算法
实验二:验证课本上的堆排序算法
实验三:小组思考题
拿子游戏。
考虑下面这个游戏:桌子上有一堆火柴,游戏开始时共有n根火柴,两个玩家轮流拿走1根、2根、3根、4根,拿走最后一根火柴的玩家获胜,请为先拿的玩家设计一个必胜策略(如果策略存在)。
实验四:小组思考题
在120枚外观完全相同的硬币中有一个假币,假币重量与真币不同,可以通过一个天平来比较两组硬币的重量,试问最少用几次称重可以找到这枚假币。
第3章 算法思维3.3 算法思想简介20世纪中期以后,随着计算机的出现、发展,算法广泛地运用于种类问题的求解,成为计算机科学的灵魂,涌现出精彩纷呈的算法。
3.3.1 蛮力法蛮力法也称穷举法,其基本思想是采用一定的策略,将待解决问题的所有可能列出来,找出问题的解。
《算经》中的“百钱百鸡问题”:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一;百钱买百鸡,翁、母、雏各几何?该问题的解决方案是:设公鸡为x 只,母鸡为y 只,小鸡为z 只;则x 的取值范围为0到20,y 的取值范围为0到33,z 的取值范围为0到100,当然z 应该为3的倍数;这样总共有21×34×34,即24276种组合方案,其中满足条件x +y +z =100,并且5x +3y +z /3=100的组合就是问题的解。
[百钱百鸡VB 伪代码] p 1tep 3d (5x+3y+z/3=100)Then 采用的关键技术是描述,算法设计时应避免重复试探,时间复杂度较高,效率较低,分而治之N },其 中某段的和定义为1 设序列A 中有素,其最大段和为maxsum ;序列A 的开始位置为left ,结束位置为right 序列A left 和A rigth ,序列A left 的最大子段和为leftsu 相同,即用递归进一步分解子序列A left 和A left 中,其值为leftsum ;也有可能处在子序For x=0 To 20 Step 1 For y=0 To 33 Ste For z=0 To 100 S If (x+y+z=100)An Print x;y;z End If Next x Next y Next x蛮力法但现在的计算机有超强的计算能力,仍是直接解决问题的一种常用思路。
3.3.2 分治法分治法的基本思想是将一个难以直接解决的大问题划分成一些规模较小的子问题,,其求解过程通常由划分、求解子问题和合并3个阶段组成,如图3-8所示。
第5章减治法(Decrease and Conquer)减治法的基本思想规模为n的原问题的解与较小规模(通常是n/2)的子问题的解之间具有关系:(1)原问题的解只存在于其中一个较小规模的子问题中;(2)原问题的解与其中一个较小规模的解之间存在某种对应关系。
由于原问题的解与较小规模的子问题的解之间存在这种关系,所以,只需求解其中一个较小规模的子问题就可以得到原问题的解。
2减治法的基本思想一旦建立了这种关系,就可以从顶至下(递归),也可以从底至上(非递归)的来运用Example, n!A top down (recursive) solutionA bottom up (iterative) solution3减治法的类型减治法有三种变种:1)减去一个常量2)减去一个常数因子3)减去的规模是可变的gcd(m, n)4减(一)治技术a problem of size nsubproblemof size n-1a solution to thesubprobleme.g., n!a solution tothe original problem5减(半) 治技术a problem of size nsubproblemof size n/2a solution to thesubprobleme.g., Binary searcha solution tothe original problem67典型的分治法subproblem 2 of size n /2subproblem 1 of size n /2a solution to subproblem 1 a solution to the original problema solution to subproblem 2a problem of size ne.g., mergesort减治与分治的区别考虑以下指数问题: 计算a n减一法Bottom-up: iterative (brute Force) Top-down:recursive分治法:减常因子法:a n= a*a*a*a*...*aa n= a n-1* a if n > 1= a if n = 1a n= a ⎣n/2 ⎦* a ⎡n/2⎤if n > 1= a if n = 1a n = (a n/2 ) 2if n is even and positive= (a(n-1)/2 ) 2 * a if n is odd and > 1 = a if n = 1O (log2n) O (n log2n)89111)2/(0)(>=⎩⎨⎧+=n n n T n T 所以,通常来说,应用减治法处理问题的效率是很高的,一般是O (log 2n)数量级。