计算机算法设计与分析基础(第五章减治法)
- 格式:ppt
- 大小:1.58 MB
- 文档页数:39
第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。
计算机算法设计与分析计算机算法设计与分析在计算机科学领域扮演着重要的角色。
它是研究和开发高效算法的过程,以解决各种计算问题。
在本文中,我们将探讨算法设计与分析的基本原理、常见算法类型以及算法分析的重要性。
一、算法设计与分析的基本原理算法设计的目标是开发一种能够解决特定问题的步骤序列。
这些步骤应该是明确的、非歧义的,并且能够在有限的时间内产生预期的结果。
为了实现这一目标,算法设计需要考虑以下几个主要原理:1. 问题抽象:将实际问题转化为计算机能够理解和处理的抽象形式。
这涉及到定义输入和输出,以及建立问题的数学模型。
2. 分解与合成:将复杂问题分解为更简单的子问题,然后将子问题的解合并成原始问题的解。
这种分解与合成的过程可以提高算法的可读性和效率。
3. 数据结构选择:选择适当的数据结构来存储和操作问题的输入和输出。
不同的数据结构对于不同的问题具有不同的性能和效率。
4. 控制结构设计:设计算法控制结构,如循环、条件语句和递归等,以实现预期的计算过程。
二、常见的算法类型在算法设计与分析中,有各种各样的算法类型可供选择。
以下是一些常见的算法类型:1. 排序算法:排序算法用于按照一定的规则对数据进行排序。
常见的排序算法包括冒泡排序、插入排序、选择排序、归并排序和快速排序等。
2. 搜索算法:搜索算法用于查找指定数据的位置或者判断数据是否存在。
常见的搜索算法包括线性搜索、二分搜索和哈希搜索等。
3. 图算法:图算法用于处理图数据结构上的问题。
常见的图算法包括最短路径算法、最小生成树算法和拓扑排序算法等。
4. 动态规划算法:动态规划算法用于解决一些最优化问题,它通过将问题分解为子问题,并利用已解决的子问题的解来解决原始问题。
三、算法分析的重要性算法分析是评估算法性能和效率的过程,它对于算法设计与分析至关重要。
通过对算法进行分析,我们可以了解算法的时间复杂度、空间复杂度和性能边界等关键指标。
这些指标可以帮助我们选择最适合特定问题的算法,并预测算法在不同输入情况下的表现。
算法分析与设计教学大纲一、课程概述二、预修条件1.数据结构基础知识。
2.编程语言基础。
三、授课目标1.掌握算法分析的基本方法和工具。
2.理解常见算法的设计思想和实现技巧。
3.能够独立设计、实现和优化算法解决实际问题。
四、教学内容1.算法基础知识(1)算法的概念和分类(2)算法分析的基本概念和方法(3)复杂度分析(4)递归与递归算法(5)分治法与减治法2.基本算法设计(1)贪心算法(2)动态规划算法(3)回溯算法3.高级算法设计(1)图算法:最短路径、最小生成树等(2)网络流算法:最大流、最小割等(4)近似算法:近似算法的基本思想与应用4.数据结构与算法分析(1)线性表和链表(2)栈和队列(3)树和二叉树(4)图和图的遍历算法五、教学方法1.理论课讲授:通过教师讲解、演示和示范等方式,让学生掌握算法基本知识和分析方法。
2.实践教学:通过课程设计和编程实践,让学生动手实践算法设计与实现,并对其进行分析和优化。
3.讨论与交流:组织学生进行小组讨论和互动交流,培养学生的合作学习能力和问题解决能力。
六、教学评估1.平时成绩:考察学生的课堂参与、作业完成情况和实验报告质量。
2.期中考试:考察学生对课程内容的掌握和理解。
3.期末考试:考察学生对课程内容的整体把握和综合应用能力。
七、参考教材1. 算法导论(第3版)- Thomas H. Cormen等2. 算法设计与分析基础(第4版)- Levitin A. V.八、教学资源1.电子课件和习题集。
2.在线编程平台和算法分析工具。
九、教学进度安排1.第1-2周:算法基础知识2.第3-5周:基本算法设计3.第6-8周:高级算法设计4.第9-11周:数据结构与算法分析5.第12-14周:综合应用与实践6.第15周:复习与总结备注:以上为算法分析与设计教学大纲的基本框架和内容,具体教学安排和进度可根据实际情况进行调整补充。