第4章空间统计分析
- 格式:ppt
- 大小:1.56 MB
- 文档页数:58
空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。
包括空间数据操作、空间数据分析、空间统计分析、空间建模。
空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据属性数据的类型名义量、次序量、间隔量、比率量属性:与空间数据库中一个独立对象(记录)关联的数据项。
属性已成为描述一个位置任何可记录特征或性质的术语。
空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。
空间自相关破坏了经典统计当中的样本独立性假设。
避免空间自相关所用的方法称为空间回归模型。
2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。
其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。
②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。
3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。
生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。
(给定尺度下不同的单元组合方式)空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。
一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。
空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。
空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。
ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。
常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。
空间分析要点(参考)第一章1空间对象的属性大致可分为两类:一是空间要素属性是指与空间(时间)位置相关的属性,主要包括:空间对象的位置、大小、形状、速度、事件发生的时间。
二是非空间要素属性,也称描述属性,是指与空间位置无关或无直接关系的属性:如颜色、密度、质地等等。
2、空间分析的目的就是根据空间对象的属性进行分析,探求空间对象的时空分布规律、发生原因及发展规律。
3、空间对象的类型:按空间维数分类,大致可分为四类0维空间对象:有位置无长度的对象,如:居民点、地图中的城市、地震的震中位置。
1维空间对象:有长度的对象,一般由两个或多个0维目标组成,如:道路、河流。
2维空间对象:有面积的空间对象,如土地使用的类型、湖泊。
3维空间对象:具有体积的空间对象,如地下的矿体、大坝、隧道等。
根据空间对象的连续性,可分为两类:连续型的空间对象:在空间中连续分布的对象,如:某区域的地球化学元素分布,大气污染物浓度、海水的盐度。
离散型的空间对象:在空间中不连续分布的对象,女口:城市中商业网点的分布,道路与河流,建筑物。
4、空间实体之间存在复杂的空间关系,主要可包括:距离关系、方位关系、拓扑关系、空间相关、空间关联、空间配置、空间过程、空间尺度5、空间要素模型:前GIS系统中数据组织的基本方式。
点要素,线要素,面要素。
6、空间的主要内容:空间位置空间分布:同类空间对象的群体定位信息,包括分布、趋势、对比等内容空间形态:空间对象的几何形态空间距离:空间物体的接近程度空间关系:空间对象的相关关系,包括拓扑、方位、相似、相关等空间过程7、空间的主要方法:(1)基于地图的空间图形分析,如GIS中的缓冲区、叠加分析、数字高程模型、数字地面模型等;(2)空间动力学分析,有城市扩张模型(驱动力等)、空间价格竞争模型(区位优势)、空间择位模型(中心地等);(3)空间信息分析,是指根据数据或统计方法建立的模型,如空间聚_________ 模型等。
空间数据分析分析解析空间数据分析是指通过对空间数据进行处理、分析和解析,以获得对空间现象和空间关系的深入理解。
它是地理信息系统(GIS)的核心功能之一,被广泛应用于城市规划、环境保护、交通运输、农业决策等领域。
空间数据分析能够揭示地理现象的模式和趋势,为决策者提供科学、准确的信息支持。
空间数据分析的核心方法包括空间查询、空间统计和空间建模。
空间查询是指对空间数据进行检索和筛选,根据特定的条件获取所需的数据。
例如,可以查询其中一地区内的房价分布、道路密度、绿地覆盖等信息。
空间统计则是通过统计分析方法,对空间数据的分布特征和相互关系进行量化和描述。
常用的空间统计方法有空间自相关分析、核密度估计、热点分析等。
空间建模则是利用数学模型和算法,对空间数据的演化和变化过程进行预测和模拟。
典型的空间建模方法包括地理加权回归、环境模拟等。
以城市规划为例,空间数据分析可以帮助规划师了解城市的土地利用、人口分布、交通流动等情况,为城市规划和土地利用决策提供科学依据。
通过空间查询,可以获取其中一地区内不同用地类型的分布情况,为规划师提供土地利用的基础数据。
通过空间统计,可以分析城市的空间结构和分布格局,如通过核密度估计分析人口的集聚程度,通过热点分析找出交通拥堵的热点区域。
通过空间建模,可以预测城市未来的发展趋势,如通过地理加权回归模型预测不同因素对房价的影响程度。
空间数据分析在环境保护领域也有重要应用。
例如,通过分析植被覆盖的空间分布,可以评估生态系统的健康状况和生物多样性水平。
通过空间查询和空间建模,可以确定环境敏感区域,以制定环境保护政策和措施。
通过空间统计,可以发现环境污染的热点区域,并考察其空间关联性,为环境监测和治理提供指导。
此外,空间数据分析还在交通运输、农业决策、应急管理等领域发挥着重要作用。
例如,在交通运输领域,可以利用空间数据分析来评估道路网络的覆盖率和服务质量,找到交通拥堵的瓶颈,优化交通流动。
间数据分析1.空间分析:(spatial analysis , SA)是基于地理对性的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息 , 是地理信息系统的主要特征 ,同时也是评价一个地理信息系统功能的主要指标之一 , 是各类综合性地学分析模型的基础 ,为人们建立复杂的空间应用模型提供了基本方法 .2.空间分析研究对象:空间目标。
空间目标基本特征:空间位置、分布、形态、空间关系 (度量、方位、拓扑)等。
3.空间分析根本目标:建立有效地空间数据模型来表达地理实体的时空特性,发展面向应用的时空分析模拟方法,以数字化方式动态的、全局的描述的地理实体和地理现象的空间分布关系,从而反映地理实体的内在规律和变化趋势。
GIS空间分析实际是一种对 GIS海量地球空间数据的增值操作。
4.ArcGIS9 中主要的三种数据组织方式: shapefile , coverage 和 geodatabase 。
Shapefile 由存储空间数据的 dBase 表和存储属性数据和存储空间数据与属性数据关系的 .shx 文件组成。
Coverage的空间数据存储在INFO表中,目标合并了二进制文件和 INFO表,成为Coverage 要素类。
5.Geodatabase 是面向对象的数据模型,能够表示要素的自然行为和要素之间的关系。
6.GIS 空间分析的基本原理与方法:根据空间对象的不同特征可以运用不同的空间分析方法,其核心是根据描述空间对象的空间数据分析其位置、属性、运动变化规律以及周围其他对象的相关制约,相互影响关系。
方法主要有矢量数据的空间分析,栅格数据的空间分析,空间数据的量算与空间内插,三维空间分析,空间统计分析。
7.栅格数据在数据处理与分析中通常使用线性代数的二维数字矩阵分析法作为数据分析的数学基础。
栅格数据的处理方法有:栅格数据的聚类、聚合分析,复合分析,追踪分析,窗口分析。
8.栅格数据的聚类与聚合分析区别:聚类是根据设定的聚类条件对原有的数据系统进行有选择的信息提取儿建立的新的栅格数据系统的方法;聚合分析是根据空间分辨率和分类表进行数据类型的合并或转换以实现空间地域的兼并。
一、群落的概念及群落水平上研究的问题错误!1.概念:同一时间内聚集在一定区域中各种生物种群的集合。
2.研究的问题3.研究群落的基础:研究种群。
二、群落的物种组成错误!1.意义:区别不同群落的重要特征。
2.衡量指标:丰富度,即群落中物种数目的多少。
3.规律:不同群落丰富度不同,一般越靠近热带地区,单位面积内的物种越丰富。
三、种间关系[连线]错误!五、土壤中小动物类群丰富度的研究错误!1.土壤生物的特点有较强的活动能力,而且身体微小,因此不适于样方法或标志重捕法进行调查。
进行这类研究时,常用取样器取样进行采集、调查。
2.丰富度的统计方法一是记名计算法,二是目测估计法。
3.组成不同群落的优势种是不同的,不同群落的物种丰富度是不同的。
一般来说,环境条件越优越,群落发育的时间越长,物种越多,群落结构也越复杂。
[共研探究]1.如图,池塘中的水面、水中、水底生活着多种生物,请分析以下问题:(1)列举该生态系统中的生物:浮游植物、浮游动物、植食性鱼、肉食性鱼、微生物等。
(2)池塘中的肉食性鱼大量减少,一些小鱼等小型水生动物因天敌减少,数量会大量增加,池塘中浮游动物、浮游植物以及其他一些水生植物数量会大量减少。
随时间推移,植食性鱼类等生物的数量也因食物来源减少而减少。
(3)群落的概念:由(2)可知,生活在该池塘的各个种群不是独立存在的,它们相互制约,相互依存。
它们构成的这个有机体就是群落,其含义为同一时间内聚集在一定区域中所有生物种群的集合。
(4)群落概念的4个关键点①随着时间的迁移,群落内种群的种类和数量会发生改变。
②群落有一定的分布范围,群落内的各种生物聚集在一起才能发生关系。
③包括这个区域内的各种植物、动物和微生物。
④不是简单随机聚集,而是通过相互之间的直接或间接关系相互影响、相互制约形成有机整体。
2(1)由上表可看出:不同群落的物种种类和数目有差别。
(2)群落中物种数目的多少可用丰富度来衡量。
(3)由表中信息可推测:越靠近热带地区,单位面积内的物种越丰富。
计量地理学期末第二章1. 地理数据有哪几种类型,各种类型地理数据之间的区别和联系是什么?答:地理数据就是用一定的测度方式描述和衡量地理对象的有关量化指标。
按类型可分为:1)空间数据:点数据,线数据,面数据;2)属性数据:数量标志数据,品质标志数据地理数据之间的区别与联系:数据包括空间数据和属性数据,空间数据的表达可以采用栅格和矢量两种形式。
空间数据表现了地理空间实体的位置、大小、形状、方向以及几何拓扑关系。
属性数据表现了空间实体的空间属性以外的其他属性特征,属性数据主要是对空间数据的说明。
如一个城市点,它的属性数据有人口,GDP,绿化率等等描述指标。
它们有密切的关系,两者互相结合才能将一个地理试题表达清楚。
2. 各种类型的地理数据的测度方法分别是什么?地理数据主要包括空间数据和属性数据:空间数据——对于空间数据的表达,可以将其归纳为点、线、面三种几何实体以及描述它们之间空间联系的拓扑关系;属性数据——对于属性数据的表达,需要从数量标志数据和品质标志数据两方面进行描述。
其测度方法主要有:(1) 数量标志数据①间隔尺度(Interval Scale)数据: 以有量纲的数据形式表示测度对象在某种单位(量纲)下的绝对量。
②比例尺度(Ratio Scale)数据: 以无量纲的数据形式表示测度对象的相对量。
这种数据要求事先规定一个基点,然后将其它同类数据与基点数据相比较,换算为基点数据的比例。
(2) 品质标志数据①有序(Ordinal)数据。
当测度标准不是连续的量,而是只表示其顺序关系的数据,这种数据并不表示量的多少,而只是给出一个等级或次序。
②二元数据。
即用0、1 两个数据表示地理事物、地理现象或地理事件的是非判断问题。
③名义尺度(Nominal Scale)数据。
即用数字表示地理实体、地理要素、地理现象或地理事件的状态类型。
3. 地理数据的基本特征有哪些?1)数量化、形式化与逻辑化2 )不确定性3 )多种时空尺度4 ) 多维性4. 地理数据采集的来源渠道有哪些?1)来自于观测、测量部门的有关专业数据。
第一章:(定狡)空间分析:空间分析是基于地理对象的位巻和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。
地理智慧:也可称为空间智慧,是空间数据一空间信息一空间智慧这一数据分析链上的最高层次。
通过空间分析获得地理智慧,可以解决与位置相关的复杂空间问题。
当代GIS的特点、它对空间分析的影响:首先,它是以动态异构、时空密集、非结构化的大数据为主体:其次,GIS信息计算能力大大提高,基于高性能环境支撑下的空间处理与分析工具计算:最后,它具有个性化服务模式,庞大的地理信息服务网络。
面对GIS的不断发展,空间分析需要转换思维模式:从模型分析的思维转换为数据计算的思维,从地理大数据中挖掘信息,提供决策支持:从基于空间数字化得到的静态的空间信息转换为加入时间维的动态、实时的人地信息思维模式,把人、时间、位置紧密结合起来: 从离线的GIS工具转换到依靠云计算和计•算机网络的在线服务的思维。
什么是PPDAC模型、它与空间分析有什么关系:问题(problem)、规划(plan)、数据(data)、分析(analysis)、和结论(cconclusion):PPDAC模型为空间分析相关问题的解决流程提供了一个框架,并强调形式化分析是流程中非常重要的一部分。
空间分析的研究肉宥包插邨掘方面(主妥方式)(6个):基于传统地图方法的空间分析:基于统计方法的空间分析:时空数据分析:专业模型与GIST具集成分析:智能化空间分析和可视化空间分析。
(空间分柝理论、空间分析方法和空间分析应用)GIS的主矣特征:第二章:(概念)欧式空间:欧式空间是对现实世界(物理空间)的一种数学理解与表达,是GIS 中常用的一种空间描述方法,主要用于描述空间的几何特征,如位置、长度、面积和方位等。
拓扑空间:拓扑空间是另一种理解和描述现实世界(物理空间)的数学方法,拓扑空间是描述空间目标宏观分布或目标之间相互关系的有效工具。
拓扑属性:若空间目标间的关联、相邻与连通等几何属性不随空间目标的平移、旋转、缩放等变换而改变,这些保持不变的性质称为拓扑属性。
空间相关性的统计分析摘要院空间自相关统计量是用于度量地理数据的一个基本性质,空间分析学者结合日益成熟的电脑科技GIS、空间计量方法、以及大型资料库,目的在精确地界定空间因素的重要性及影响力,空间权重矩阵用fij 符号来表示空间的对象i,j的互相关联,fij=0 就是表示空间权重矩阵的对角元素为零。
空间权重矩阵有可以根据文中的几个函数方法来确定。
Abstract: Spatial autocorrelation statistics is a basic property used to measure geographic data. Spatial analysis scholars aim toaccurately define the importance and influence of space factors combined with the increasingly mature computer scienceand technologyGIS, spatial econometric methods andlarge database. In spatial weight matrix, fij denotes the correlationbetween i,j. fij=0 means thediagonalelements of spatial weight matrix is zero. Spatial weight matrix can be determined according to the following function methods.关键词院空间信息特殊关系;空间依赖性;空间自相关性;统计方法;空间权重矩阵Key words: spatial information special relationship;spatial dependence;spatial autocorrelation;statistical methods;spatial weight matrix中图分类号院P208 文献标识码院A 文章编号院1006-4311(2014)27-0243-021 空间的引入地理学第一定律,Tobler's First Law 或者Tobler's FirstLaw of Geography,地理事物或属性在空间分布上互为相关,存在集聚(clustering)、随机(random)、规则(Regularity)分布。