第3章曲面立体
- 格式:ppt
- 大小:5.74 MB
- 文档页数:6
第3章立体的投影一、本章重点:1.平面立体和曲面立体投影的画法,及立体表面点的投影。
2.立体与平面相交其交线的画法,既求截交线。
3.两回转体轴线垂直相交其交线的画法。
4.立体的尺寸标注。
二、本章难点:1.圆球和圆环的投影及表面上点的投影。
2.圆锥、圆球被平面截切后,截交线的画法。
3.求作相贯线。
三、本章要求:通过本章的学习,要掌握基本体的三面投影画法,基本体表面点的投影,能够分析和绘制常见的截交线和两回转体轴线相交时的相贯线,掌握立体的尺寸标注的方法。
四、本章内容:§3-1 平面立体的投影一、棱柱棱柱体由若干个棱面及顶面和底面组成,它的棱线相互平行。
顶面和底面为正多边形的直棱柱,称为正棱柱。
常见的棱柱有三棱柱、四棱柱、六棱柱等。
1.棱柱的三视图2.棱柱表面上的点二、棱锥棱锥的底面为多边形,各侧面为若干具有公共顶点的三角形。
从棱锥顶点到底面的距离叫做锥高。
当棱锥底面为正多边形,各侧面是全等的等腰三角形时,称为正棱锥。
常见的棱锥有三棱锥、四棱锥、六棱锥。
1. 棱锥的三视图2.棱锥表面上的点§3-2曲面立体的投影曲面立体的表面是由一母线绕定轴旋转而成的,故称曲面立体,也称为回转体。
常见的回转体有圆柱、圆锥、圆球和圆环等。
一、圆柱1.圆柱面的形成圆柱面可看作一条直线AB围绕与它平行的轴线OO回转而成。
OO称为回转轴,直线AB称为母线,母线转至任一位置时称为素线。
这种由一条母线绕轴回转而形成的表面称为回转面,由回转面构成的立体称为回转体。
2.圆柱的三视图3.圆柱表面上的点二、圆锥1.圆锥面的形成圆锥面可看作由一条直母线围绕和它相交的轴线回转而成。
2.圆锥的三视图3.圆锥表面上的点三、圆球1.圆球面的形成圆球面可看作一圆(母线),围绕它的直径回转而成。
2.圆球的三视图3.圆球表面上的点四、圆环1.圆环的形成圆环面可看作由一圆母线,绕一与圆平面共面但不通过圆心的轴线回转而成。
图中的回转轴是铅垂线。
曲面立体常见的曲面立体是回转体,回转体是由回转面或回转面与平面围成的立体。
回转面通常由一条直线或曲线绕一固定直线作回转运动而形成的曲面,如图所示。
固定的直线称为轴线,作回转运动的线称为母线,母线在运动过程中所处的任意位置称为素线,母线上任意一点的运动轨迹是圆,常称为纬圆。
(a)圆柱 (b)圆锥 (c)球 (d)圆环回转面的形成绘制回转体的三视图归结为绘制回转体的轮廓线、顶点和曲面转向轮廓线的投影。
转向轮廓线:投射线与曲面的切线转向轮廓线投影:是指切于曲面的各投射线与投影面的交点的集合,也就是这些投射线所组成的投射面(平面或柱面)与投影面的交线,如图所示。
曲面转向轮廓线的投影也是曲面在该投影面上投影可见与不可见的分界线。
1.圆柱1)圆柱的三视图圆柱由圆柱面和两个平面围成。
三视图如图b所示。
圆柱的尺寸注法如图c所示。
(a)立体图(b)三视图(c)尺寸注法圆柱体的三视图及尺寸注意:绘制圆柱等回转体的三视图时应先用细点画线画出立体的轴线、对称中心线。
2)圆柱表面上取点在圆柱面上取点,首先要确定点在圆柱面的哪个部分,然后利用圆柱面投影的积聚性以及点的投影规律,确定圆柱面上点的位置、投影及可见性。
例题:如图a所示,已知圆柱面上M点的正面投影m’和N点的侧面投影n”。
求M点和N点的其余两个投影。
分析:因圆柱轴线垂直于水平投影面,M、N点在圆柱面上,它们的水平投影面投影必在圆上。
由已知条件可知,M点在左前圆柱面上,故m”为可见;N 点在右前圆柱面上,n’为可见。
作图:m’求得m,由m’、m得m”,判别可见性。
n”求得n,由n”、n得m’,判别可见性。
(a)已知条件(b)M点作图(c)N点作图圆柱表面取点3)圆柱表面上取线回转体表面上的线通常是空间曲线,特殊情况下是平面曲线或直线。
步骤:①确定出该线段在立体表面上的特殊点:线段的端点、该线经过立体表面转向轮廓线投影上的点;②在特殊点之间插入一些一般点;③光滑、平顺地连接各点。