第八章 遗传与变异
- 格式:docx
- 大小:834.91 KB
- 文档页数:15
遗传与变异的概念一、遗传的概念遗传,通常是指亲代将自己的遗传物质传递给子代,使后代表现出与亲代相似的性状和行为。
这种由父母遗传给子女的现象,在生物学上称为遗传。
遗传是生物界普遍存在的规律,也是物种繁衍和生物进化的基础。
遗传物质是指携带遗传信息的物质,主要是指DNA和RNA。
DNA 是生物体的主要遗传物质,它由四种不同的碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)组成,通过特定的排列组合形成基因,从而控制生物体的性状和特征。
基因通过复制将遗传信息传递给下一代,从而维持物种的遗传连续性。
二、变异的概忿变异是指生物体在遗传的基础上,因环境因素、遗传因素或其他未知因素的影响,导致个体间的差异或同一物种不同个体间的差异。
变异可以分为可遗传变异和不可遗传变异两类。
可遗传变异是指基因突变、基因重组等能够遗传给后代的变异,而不可遗传变异则是指因环境因素或其他非遗传因素引起的变异,如环境适应性变异等。
基因突变是指基因在复制过程中发生碱基对的增添、缺失或替换,导致基因结构的改变。
基因突变是产生新基因的途径,也是生物变异的根本来源。
基因突变通常是不定向的,但也可以表现为一定方向的定向突变。
基因突变在自然状态下,一般是有害的或者中性的,但在人为诱变因素的影响下,可以产生有益的突变。
三、遗传与变异的相互关系遗传和变异是一对矛盾的统一体,它们相互依存、相互影响。
一方面,遗传保证了物种的相对稳定性和连续性,使得生物体能保持一定的形态和特征;另一方面,变异则使得物种具有多样性和适应性,使得生物体能适应不同的环境和生活条件。
在生物进化过程中,遗传和变异共同作用,使物种能够不断地适应环境变化并在生存竞争中获得优势。
没有遗传,物种就无法保持一定的形态和特征;没有变异,物种就无法适应新的环境变化。
正是由于变异的存在,物种可以在不断变化的环境中生存下来并不断进化。
在人类的遗传和变异中,也存在着类似的规律。
人类的遗传使得人类具有一定的生物学特征和行为模式;而人类的变异则使得人类具有不同的个体差异和多样性。
第七章习题答案一、名词解释1.转座因子:具有转座作用得一段DNA序列、2.普遍转导:通过极少数完全缺陷噬菌体对供体菌基因组上任何小片段DNA进行“误包”,而将其遗传性状传递给受体菌得现象称为普遍转导。
3.准性生殖:就是一种类似于有性生殖,但比它更为原始得两性生殖方式,这就是一种在同种而不同菌株得体细胞间发生得融合,它可不借减数分裂而导致低频率基因重组并产生重组子、4.艾姆氏试验:就是一种利用细菌营养缺陷型得回复突变来检测环境或食品中就是否存在化学致癌剂得简便有效方法5.局限转导:通过部分缺陷得温与噬菌体把供体得少数特定基因携带到受体菌中,并与后者得基因整合,重合,形成转导子得现象、6.移码突变:诱变剂使DNA序列中得一个或几个核苷酸发生增添或缺失,从而使该处后面得全部遗传密码得阅读框架发生改变、7、感受态:受体细胞最易接受外源DNA片段并能实现转化得一种生理状态、8、高频重组菌株:该细胞得F质粒已从游离态转变为整合态,当与F菌株相接合时,发生基因重组得频率非常高、9、基因工程:通过人工方法将目得基因与载体DNA分子连接起来,然后导入受体细胞,从而使受体细胞获得新得遗传性状得一种育种措施称基因工程。
10、限制性内切酶:就是一类能够识别双链DNA分子得特定序列,并能在识别位点内部或附近进行切割得内切酶。
11.基因治疗:就是指向靶细胞中引入具有正常功能得基因,以纠正或补偿基因得缺陷,从而达到治疗得目得。
12.克隆:作为名词,也称为克隆子,它就是指带有相同DNA序列得一个群体可以就是质粒,也可以就是基因组相同得细菌细胞群体。
作为动词,克隆就是指利用DNA体外重组技术,将一个特定得基因或DNA序列插入一个载体DNA分子上,进行扩增。
二、填空1.微生物修复因UV而受损DNA得作用有光复活作用与切除修复、2.基因组就是指一种生物得全套基因。
3.基因工程中取得目得基因得途径有 _____3_____条。
4.基因突变可分为点突变与染色体突变两种类型。
遗传与变异讲解1.把握遗传各核心概念之间的联系2.相对性状显隐性的判断(1)根据定义直接判断:具有一对相对性状的两纯合亲本杂交,若后代只表现出一种性状,则该性状为显性性状,未表现出来的性状为隐性性状。
(2)依据杂合子自交后代的性状分离来判断:若两亲本的性状相同,后代中出现了不同的性状,那么新出现的性状就是隐性性状,而亲本的性状为显性性状。
这可简记成“无中生有”,其中的“有”指的就是隐性性状。
(3)根据子代性状分离比判断:表现型相同的两亲本杂交,若子代出现3∶ 1 的性状分离比,则“3”对应的性状为显性性状。
(4)假设法:在运用假设法判断显隐性性状时,若出现假设与事实相符的情况,要注意另一种假设,切不可只根据一种假设得出片面的结论;但若假设与事实不相符,则不必再作另一假设,可直接予以判断。
3.由子代推断亲代的基因型(1)基因填充法。
先根据亲代表现型写出能确定的基因,如显性性状的基因型可用A_来表示,那么隐性性状基因型只有一种aa,根据子代中一对基因分别来自两个亲本,可推出亲代中未知的基因。
(2)隐性纯合突破法。
如果子代中有隐性个体存在,它往往是逆推过程中的突破口,因为隐性个体是纯合子(aa),因此亲代基因型中必然都有一个 a 基因,然后再根据亲代的表现型做进一步的判断。
(3)根据分离定律中规律性比值来直接判断:①若后代性状分离比为显性∶隐性=3∶ 1,则双亲一定都是杂合子(Bb)。
即Bb×Bb→3B_∶1bb。
②若后代性状分离比为显性∶隐性=1∶ 1,则双亲一定是测交类型。
即Bb×bb→1Bb∶1bb 。
1③若后代只有显性性状,则双亲至少有一方为显性纯合子。
即BB×BB或BB× Bb或BB×bb。
④若后代只有隐性性状,则双亲一定都是隐性纯合子(bb)。
即bb×bb→bb。
4.“三法”验证分离定律(1)自交法:自交后代的性状分离比为3∶1,则符合基因的分离定律,由位于一对同源染色体上的一对等位基因控制。
第八章微生物的遗传概述:遗传(heredity or inheritanc® 和变异(variation)是生物体的最本质的属性之一。
遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。
变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。
基因型(ge no type某一生物个体所含有的全部基因的总和。
表型(phe no type)某一生物所具有的一切外表特征及内在特性的总和。
饰变( modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。
8.1遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。
1944年O.T.Avery等人进一步研究得出DNA是遗传因子。
S strun A2. 噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。
3.植物病毒的重建实1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV 近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。
8.2微生物的基因组结构:基因组(genome是指存在于细胞或病毒中的所有基因。
细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid )。
基因组通常是指全部一套基因。
由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。
遗传与变异知识点总结遗传和变异是生命延续和进化的重要基础,也是生物学中的核心概念。
以下将对遗传与变异的相关知识点进行详细总结。
一、遗传的基本概念遗传是指生物体通过生殖过程将自身的基因传递给子代,使子代在性状上表现出与亲代相似的特征。
基因是遗传的基本单位,它位于染色体上,由脱氧核苷酸组成。
染色体是细胞核中能被碱性染料染成深色的物质,其主要成分是DNA(脱氧核糖核酸)和蛋白质。
人体细胞中有 23 对染色体,其中22 对是常染色体,1 对是性染色体。
在减数分裂过程中,染色体数目会减半,这保证了生殖细胞中的染色体数量只有体细胞的一半。
受精作用则使受精卵中的染色体数目恢复到与体细胞相同,从而维持了物种染色体数目的稳定性。
二、遗传的基本规律(一)孟德尔的分离定律孟德尔通过豌豆杂交实验发现了分离定律。
该定律指出,在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
例如,对于豌豆的高茎和矮茎这对相对性状,假设控制高茎的基因是D,控制矮茎的基因是d。
纯合高茎(DD)和纯合矮茎(dd)杂交,子一代(F1)均为高茎(Dd)。
F1 自交产生的 F2 中,基因型有 DD、Dd、dd,比例为 1:2:1,表现型为高茎和矮茎,比例为 3:1。
(二)孟德尔的自由组合定律孟德尔还发现了自由组合定律。
该定律指出,控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
比如,同时考虑豌豆的黄色圆粒和绿色皱粒这两对相对性状。
黄色(Y)对绿色(y)为显性,圆粒(R)对皱粒(r)为显性。
纯合的黄色圆粒(YYRR)和绿色皱粒(yyrr)杂交,F1 为黄色圆粒(YyRr)。
F1 自交产生的 F2 中,表现型有黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,比例为 9:3:3:1。
第八章微生物的遗传和变异习题与题解一、填空题1、证明DNA是遗传物质的事例很多,其中最直接的证明有1928年Griffith的细菌转化实验、Avery等的1944年发表的细菌细胞抽提物的降解、转化实验和1952年Alfred等进行的35S、32P标记的T2噬菌体繁殖实验。
而1956年,H.Fraenkel-Conrat 用RNA病毒(烟草花叶病毒TMV)所进行的拆分和重建实验,证明了RNA也是遗传物质。
2、细菌在一般情况下是一套基因,即单倍体;真核微生物通常是有两套基因又称二倍体。
3、大肠杆菌基因组为双链环状的在细胞中以紧密缠绕成的较致密的不规则小体形式存在于细胞中,该小体被称为拟核。
4、酵母菌基因组最显著的特点是高度重复。
酵母基因组全序列测定完成后,在其基因组上发现了许多较高同源性的DNA重复序列,称之为遗传丰余。
5、质粒DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即CCC型、OC型和L型。
6、转座因子1)是细胞中位于染色体或质粒上能改变自身位置(如从染色体或质粒的一个位点转到另一个位点,或者在两个复制子之间转移)的一段DNA序列。
2)原核微生物中的转座因子有三种类型:插入序列(IS)、转座子(Tn)和某些特殊病毒(如Mu)。
3)转座因子可引发多种遗传变化,主要包括插入突变、产生染色体畸变、基因的移动和重排。
7、在普遍性转导中,噬菌体可以将供体细菌染色体的任何部分转导到受体细菌中;而在局限性转导中,噬菌体总是携带同样的片段到受体细胞中。
8、细菌的结合作用是指细菌与细菌的直接接触而产生的遗传信息的转移和重组过程9、线粒体遗传特征的遗传发生在核外,且在有丝分裂和减数分裂过程以外,因此它是一种细胞质遗传。
10、丝状真菌遗传学研究主要是借助有性过程和准性生殖过程,并通过遗传分析进行的,而准性生殖是丝状真菌,特别是不产生有性孢子的丝状真菌特有的遗传现象。
准性生殖是指不经过减数分裂就能导致基因重组的生殖过程。
第八章遗传与变异一、遗传的基本规律一、基本概念1.概念整理:杂交:基因型的生物体间相互交配的过程,一般用表示自交:基因型的生物体间相互交配;植物体中指雌雄同花的植株自花受粉和雌雄异花的同株受粉,自交是获得纯系的有效方法。
一般用表示。
测交:就是让杂种子一代与个体相交,用来测定F1的基因型。
性状:生物体的、和的总称。
相对性状:生物性状的表现类型。
显性性状:具有相对性状的亲本杂交,F1出来的那个亲本性状。
隐性性状:具有相对性状的亲本杂交,F1出来的那个亲本性状。
性状分离:杂种的自交后代中,同时显现出性状和性状的现象。
显性基因:控制性状的基因,一般用大写英文字母表示,如D。
隐性基因:控制性状的基因,一般用小写英文字母表示,如d。
等位基因:在一对同源染色体的位置上,控制性状的基因,一般用英文字母的大写和小写表示,如D、d。
非等位基因:位于同源染色体的位置上或非同源染色体上的基因。
表现型:是指生物个体所的性状。
基因型:是指控制的基因组成。
纯合子:是由含有基因的配子结合成的合子发育而成的个体。
杂合子:是由含有基因的配子结合成的合子发育而成的个体。
2.例题:(1)判断:表现型相同,基因型一定相同。
()基因型相同,表现型一定相同。
()纯合子自交后代都是纯合子。
()纯合子测交后代都是纯合子。
()杂合子自交后代都是杂合子。
()只要存在等位基因,一定是杂合子。
()等位基因必定位于同源染色体上,非等位基因必定位于非同源染色体上。
()(2)下列性状中属于相对性状的是()A.人的长发和白发 B.花生的厚壳和薄壳C.狗的长毛和卷毛 D.豌豆的红花和黄粒(3)下列属于等位基因的是()A.aa B.Bd C.Ff D. YY二、基因的分离定律1、一对相对性状的遗传实验2、基因分离定律的实质生物体在进行分裂形成配子的过程中,基因会随着的分开而分离,分别进入到两种不同的配子中,地遗传给后代。
基因的分离定律发生是由于在减数分裂,染色体分开时,导致基因的分离。
例:(1)在二倍体的生物中,下列的基因组合中不是配子的是()A.YRB. Dd C.BrD.Bt(2)鼠的毛皮黑色(M)对褐色(m)为显性,在两只杂合黑鼠的后代中,纯种黑鼠占整个黑鼠中的比例是()A.1/2 B.1/3 C.1/4 D.全部(3)已知兔的黑色对白色是显性,要确定一只黑色雄兔是纯合体还是杂合体,选用与它交配的雌兔最好选择()A.纯合白色 B.纯合黑色 C.杂合白色 D.杂合黑色(4)绵羊的白色和黑色由基因B和b控制,现有一白色公羊和白色母羊交配生下一只小白羊,第二次交配却生下一只小黑羊。
公羊和母羊的基因型是()A.BB和Bb B.bb和Bb C. Bb和Bb D .BB和bb(5)一对表现型正常的夫妇,男方的父亲是白化病患者,女方的父母正常,但她的弟弟是白化病患者。
预计他们生育一个白化病男孩的几率是()A.1/4B .1/6C .1/8D .1/12三、基因的自由组合定律1、两对相对性状的遗传实验2、、基因自由组合定律的实质在进行减数分裂形成配子的过程中,同源染色体上的基因彼此分离的同时,非同源染色体上的基因自由组合。
5、基因自由组合定律在实践中的应用理论上,是生物变异的来源之一(基因重组);实践上利用基因重组进行育种。
四、孟德尔获得成功的原因1、选用豌豆做试验材料:严格的花受粉;有一些稳定的、的相对性状。
2、先针对一对相对性状的传递情况进行研究,再对两对、三对甚至多对相对性状的传递情况进行研究(由单因素到多因素)。
3、对实验结果记载,并应用方法对实验结果进行分析。
例:(1)若两对基因在非同源染色体上,下列各杂交组合中,子代只出现1种表现型的是()A.aaBb和AABb B.AaBB和AABbC.AaBb和AABb D.AaBB和aaBb(2)有一基因型为MmNNPp(这3对基因位于3对同源染色体上)的雄兔,它产生的配子种类有()A.2种 B.4种 C .8种 D.16种(3)黄色(Y)、圆粒(R)对绿色(y)、皱粒(r)为显性,现用黄色皱粒豌豆与绿色圆粒豌豆杂交,杂交后代得到的种子数为:黄色圆粒106、绿色圆粒108、黄色皱粒110、绿色皱粒113。
问亲本杂交组合是()A.Yyrr和yyRR B.YYrr和yyRRC.Yyrr和yyRr D.YyRr和YyRr(4)等位基因分离和非等位基因的自由组合在()A.有丝分裂后期 B.减数的一次分裂后期C.减数的一次分裂末期 D.减数的二次分裂后期(5)基因型为AaBb的个体与基因型为Aabb的个体杂交,子代会出现几种表现型和几种基因型()A.4和4 B.4和6 C.4和8 D.6和6二、性别决定和伴性遗传一、性别决定生物体细胞中的染色体可以分为两类:一类是雌性(女性)个体和雄性(男性)个体相同的染色体,叫染色体,另一类是雌性(女性)个体和雄性(男性)个体不同的染色体,叫染色体。
生物的性别通常就是由染色体决定的。
生物的性别决定方式主要有两种:①XY型:该性别决定的生物,雌性的性染色体是,雄性的性染色体是。
以人为例:男性的染色体的组成为,女性的染色体的组成为。
②ZW型:该性别决定的生物,雌性的性染色体是,雄性的是。
蛾类、鸟类的性别决定属于ZW型。
二、伴性遗传性染色体上的基因,它的遗传方式是与相联系的,这种遗传方式叫伴性遗传。
例:(1)某男孩体检时发现患红绿色盲,但他的父母、祖父母、外祖父母均无红绿色盲症状,在这一家系中色盲基因的传递途径是()A.祖母---父---男孩 B.外祖父---母---男孩C .祖父---父---男孩 D.外祖母---母---男孩(2)位于Y染色体上的基因也能决定性状,人的耳廓上长硬毛的性状就是由Y染色体上的基因决定的。
现有一对夫妇,丈夫患此病,若生一男孩,其患病的概率为()A.100% B.75% C.50% D.25%三、人类遗传病与预防一、人类遗传病概述人类遗传病通常是指由于改变而引起的人类疾病。
1、单基因遗传病单基因遗传病是指受等位基因控制的人类遗传病。
可分为:、、,、等。
2、多基因遗传病多基因遗传病是指受等位基因控制的人类遗传病,还比较容易受到环境的影响。
3、染色体异常遗传病二、遗传病的预防1、禁止近亲结婚我国的婚姻遗传病的机会大大提高。
2、遗传咨询3、避免遗传病患儿的出生女子最适于生育的年龄一般是岁。
4、婚前体检三.遗传病的类型判断:①例:(1)以下家族图谱分别是患有何种类型的遗传病:(2)右图为某个单基因遗传病的系谱图,致病基因为A 或a ,请回答下列问题∶(1)该病的致病基因在 染色体上,是 性遗传病。
(2)I-2和II-3的基因型相同的概率是 。
(3)Ⅱ-2的基因型可能是 。
(4)Ⅲ-2的基因型可能是 。
(2)下图为某家族遗传系谱图,请据图回答:(基因用A,a 表示)(1)该遗传病的遗传方式为:色体性遗传病。
(2)5号与6号再生一个患病男孩的几率为。
(3)7号与8号婚配,则子女患病的几率为 。
(3)下图是某家系红绿色盲病遗传图解。
图中除男孩Ⅲ3和他的祖父Ⅰ4是红绿色盲患者外,其他人色觉都正常,请据图回答:(1)Ⅲ3的基因型是XbY,Ⅲ2可能的基因型是或。
(2)Ⅰ中与男孩Ⅲ3的红绿色盲基因有关的亲属的基因型是,与该男孩的亲属关系是;Ⅱ中与男孩Ⅲ3的红绿色盲基因有关的亲属的基因型是,与该男孩的亲属关系是。
(3)Ⅳ1是红绿色盲基因携带者的概率是。
四、生物的变异由于环境因素的影响造成的,并引起生物体内的遗传物质的变化,因而不能够遗传下去,属于不遗传的变异。
由于内的遗传物质的改变引起的,因而能够遗传给后代,属于可遗传的变异。
可遗传的变异有三种来源:、、。
一、基因突变1、基因突变的概念由于DNA分子中发生碱基对的、或,而引起的基因分子的改变,就叫基因突变。
基因突变发生在DNA阶段。
即体细胞发生基因突变在分裂的间期;由原始的生殖细胞到成熟的生殖细胞过程中发生基因突变是在间期。
基因突变是产生的主要来源。
对生物的具有重要意义。
2、基因突变的特点(1)(2)(3)(4)3、应用:二、基因重组1、基因重组概念生物体在进行生殖过程中,控制性状的基因。
2、基因重组产生的原因(1),(2)。
3、基因重组的意义通过生殖过程实现的基因重组,这是形成生物的重要原因之一,对于生物具有十分重要的意义。
三、染色体变异染色体变异有染色体的变异、染色体的变异等。
1、染色体结构的变异四种:。
2、染色体数目的变异一般来说,每一种生物的染色体数目都是的,但是,在某些特定的环境条件下,生物体的染色体数目会发生改变,从而产生的变异。
(1)染色体组细胞中的一组染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的(2)二倍体的个体,体细胞中含有个染色体组的个体叫做二倍体。
(3)多倍体体细胞中含有以上染色体组的个体叫做多倍体。
与二倍体植株相比,多倍体植株的茎杆,叶片、果实、种子比较,等营养物质含量。
(4)人工诱导多倍体在育种上的应用方法:最常用而且最有效的方法是用处理萌发的或,从而得到多倍体。
成因:秋水仙素作用于正在的细胞时,能够抑制形成,导致不分离,从而引起细胞内染色体数目,细胞继续进行正常的分裂,将来就可以发育成多倍体植株。
实例:三倍体无籽西瓜的培育(见课本图解)。
(5)单倍体体细胞中含有本物种染色体数目的个体(可能含有一到个染色体组),叫做单倍体。
与正常的植株相比,单倍体植株长得,而且高度。
(6)单倍体育种方法:采用培养的方法先得到倍体植株,再使用秋水仙素处理,使它的染色体数目。
这样,它的体细胞中不仅含有正常植株体细胞中的染色体数,而且的成对的基因都的。
(花药离体培养法与单倍体育种的区别)。
利用单倍体植株培育新品种,与常规的杂交育种方法相比明显了育种年限。
例:(1)下列哪种情况下可产生新的基因()A.基因突变 B.基因重组 C.染色体变异 D.不可遗传的变异(2)"一猪生九仔,九仔各不同",这种变异主要来自于()A.基因突变B.基因重组 C.染色体变异D.环境影响(3)下列有关单倍体的叙述,正确的是()A.体细胞中含有一个染色体组的个体 B.体细胞中含有奇数染色体数目的个体C.体细胞中含有本物种配子染色体数目的个体 D.体细胞中含有奇数染色体组数目的个体(4)下列能产生可遗传变异的现象是()A.用生长素处理未授粉的番茄雌蕊得到无籽果实B.正常人接受了镰刀型细胞贫血症患者的血液C.割除公鸡和母鸡的生殖腺并相互移植后表现出各种变化D.一株黄色圆粒豌豆自交,后代出现部分黄色皱粒豌豆(5)填空:若某生物体细胞含有六组染色体组,称为倍体,其花粉中含有组染色体组,称为()倍体(6)判断:含有一个染色体组的生物一定是单倍体();单倍体只含有一组染色体组();配子都是单倍体()第八章遗传与变异32.下列生物形状中,属于相对性状的是()A. 人体的卷毛和黑发B. 果蝇的红眼和长翅C. 兔子的白毛和黑毛D. 山羊的无角和弯角33.豌豆的紫花(A)和白花(a)由一对等位基因控制。