3.1 双原子分子转动光谱解读
- 格式:ppt
- 大小:3.69 MB
- 文档页数:1
第四章 双原子分子的振动和转动§4-1 分子光谱概述㈠ 带状光谱对于原子而言,原子的能量是量子化的,只能取某些确定值。
例如,He 原子,在中心场近似下,各能级是1s 2、1s 2s 、1s 2p 、1s 3s 等。
当原子从一个状态变化到另一个状态时,伴随着电子的跃迁,将吸收或发射光子,hv E =∆。
由于原子的能量只能取某些特定值,跃迁时吸收或发射的光的频率也只能是某些特定值,反映在光谱上是一些分立的谱线。
因此,原子光谱是线状光谱。
分子的运动比原子复杂,不仅要考虑电子的运动,还要考虑核的运动。
分子内部运动总能量为r v e E E E E ++=其中, E e 是电子的能量,它包括纯电子能量和核间排斥能(纯电子能量则包括电子的动能、电子间的排斥能、电子与核之间的吸引能);E v 是核的振动能;E r 是分子转动能。
∙ 每个电子运动状态对应着一个电子能级,间隔约为1-20eV 。
∙ 每一电子运动状态下,有不同振动状态,每个振动状态对应着一个振动能级,能级间隔0.05-1eV 。
∙ 每个振动状态下,有不同的转动状态,每个转动状态对应着一个转动能级,能级间隔10-4-10-2eV 。
♦ 分子吸收或发射光辐射时,单纯改变转动状态是可以的,产生转动光谱,位于微波和远红外区。
♦ 振动状态变化时,往往伴随着转动状态的变化,产生振动-转动光谱,位于红外区。
♦ 电子状态变化时,往往伴随着振动、转动状态的变化,产生电子光谱,位于近红外、可见或紫外区。
由于这些能级非常靠近,谱线非常密集,在低分辨率的仪器下,不能将谱线分开,看上去象连续的谱带,因此,分子光谱表现为带状光谱。
㈡ 核运动的处理以双原子分子为例。
首先处理电子运动,根据波恩-奥本海默近似,假设核是固定的,elel NN el R U V H ψ=ψ+)()ˆ( 或 elel el el R E H ψ=ψ)(ˆ el H ˆ包含电子的动能、电子间的排斥能、电子与核之间的吸引能;NN V 是核间的排斥能。
双原子分子光谱分子的能量状态与原子的能量状态一样存在能级,而且分子能级发生跃迁时发射或吸收辐射。
然而分子同原子相比,由于它的结构和运动状态的复杂性,分子光谱比原子光谱复杂得多。
双原子分子光谱是较简单的分子光谱。
分子光谱随分子能级跃迁间隔的不同,可以出现在从紫外到微波的不同光谱区。
本实验的目的是通过拍摄双原子分子的电子一振动光谱,来了解分子光谱的特点,测量各顺序谱带组的带头波长,计算分子的振动频率ω、非筒谐性常数ωx 和分子振动力常数k 等。
【预习提要】双原子分子是结构较为简单的分子。
因而反映分子结构特征和举动状态的双原子分子光谱也是较简单的分子光谱。
用色散率不大的摄谱仪伯摄的双原子分子光谱呈现带状,实际上,它们是由大量的、密集的、分布有规律的谱线所组成的。
不同波段的谱线反映分子不同运动状态的能级跃迁。
1.双原子分子有哪些不同形式的能量,怎样利用“不确定性关系”说明不同形式的能级间隔之间的数量关系?2.用莫尔斯函数表示双原子分子的势阱时,分子振动能级间隔有什么特点?3.什么叫顺序带组,试说明相邻顺序谱组带头的波数差出现“突变”的能级结构的内在原因。
4.试判断(0,0),(1,0)和(0,1)顺序带组列出b a ,或b a '',的测定方程和相应的正则方程。
5.利用近似的谐振子频率公式,求出分子振动力常数值。
【实验原理】一、双原子分子的结构与运动状态双原子分子是由两个原子核和电子相互结合而成的微观系统。
当两个原子相结合而构成一个双原子分子时,在每个原子内部构成完整壳层的电子仍然分别属于各自的原子核,而外层的价电子向对方原子核提供库仑引力,当两核过于靠近时产生斥力,从而使两个原子核相距一定地联系在一起构成稳定的结构。
分子具有三种基本运动:①外层价电子在两个原子核共同产生的电场中绕核间轴的运动,这种运动如同价电子在孤立的原子中运动一样形成各种不同的电子能量状态。
②双原子分子的原子核由于交替地受到来自对方价电子的引力和核的斥力,在平衡位置附近,带着其周围的电子沿核间轴方向振动,伸缩核间轴长短。