资本资产定价模型
- 格式:docx
- 大小:29.84 KB
- 文档页数:13
名词解释资本资产定价模型
资本资产定价模型(Capital Asset Pricing Model,CAPM)是一种金融模型,用于确定资产的期望回报率。
该模型基于投资组合理论,旨在帮助投资者衡量资产的风险和预期回报之间的关系。
CAPM的核心假设是,投资者在形成投资组合时是理性的,并且希望最大化预期回报并最小化风险。
该模型使用市场风险溢价和无风险利率来衡量资产的预期回报。
市场风险溢价是指投资者预期获得的超过无风险资产(通常是国库券)回报的额外回报,而无风险利率则代表没有风险的资产的预期回报率。
CAPM的数学表达式为,\[E(R_i) = R_f + \beta_i(E(R_m)
R_f)\]
其中,\(E(R_i)\)代表资产i的预期回报率,\(R_f\)代表无风险利率,\(\beta_i\)代表资产i的贝塔系数,\(E(R_m)\)代表市场组合的预期回报率。
根据CAPM,资产的预期回报率取决于其贝塔系数和市场风险溢价。
贝塔系数衡量了资产相对于整个市场组合的风险,当资产的贝
塔系数大于1时,意味着资产的风险高于市场平均水平,反之亦然。
尽管CAPM在金融理论中具有重要地位,但也存在一些争议。
一
些批评者指出,CAPM的假设过于简化,忽视了许多现实世界中的复
杂因素,例如市场摩擦和投资者的非理性行为。
此外,一些研究也
发现CAPM在解释实际市场中的资产回报率时存在一定的局限性。
总的来说,CAPM是一种重要的金融模型,用于帮助投资者理解
资产回报率与风险之间的关系,但在实际应用中需要结合其他因素
进行综合分析。
资本资产定价模型
在金融领域,资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是一种被广泛应用的理论模型,用于衡量资产的预期收益率。
资本资产定价模型基于市场有效性假设,即市场上的所有投资者都具有相同的信息和投资目标,在没有风险的市场中将做出相似的投资选择。
CAPM模型通过分析资产的系统性风险和风险溢价来确定资产的预期回报率。
资本资产定价模型的基本公式为:
\[ E(R_i) = R_f + \beta_i(E(R_m) - R_f) \]
其中,\( E(R_i) \) 表示资产的预期回报率,\( R_f \) 表示无风险利率,
\( \beta_i \) 表示资产的贝塔系数,\( E(R_m) \) 表示市场组合的预期回报率。
CAPM模型的核心概念是风险溢价,即投资者对承担风险所要求的回报。
贝塔系数代表了资产相对于市场组合的风险敞口,当贝塔系数大于1时,表示资产的风险大于市场平均水平;当贝塔系数小于1时,表示资产的风险低于市场平均水平。
资本资产定价模型的应用范围涵盖了各种金融资产,包括股票、债券、衍生品等。
投资者可以利用CAPM模型来评估资产的风险和回报之间的关系,从而制定有效的投资策略。
然而,CAPM模型也存在一些局限性,例如假设过于理想化、参数估计误差等问题,限制了其在实际投资中的应用。
总的来说,资本资产定价模型作为金融领域中重要的理论框架,为投资者提供了一种有效的资产定价方法。
通过对资产的风险和回报进行定量分析,CAPM模型帮助投资者更准确地评估资产的价值,优化投资组合,实现资产配置的最优化。
四、资本资产定价模型(一)资本资产定价模型的基本原理必要收益率=无风险收益率+风险收益率,即:R=Rf+β×(Rm-Rf)Rf表示无风险收益率,以短期国债的利率来近似替代;Rm表示市场组合收益率,通常用股票价格指数收益率的平均值或所有股票的平均收益率来代替;β表示该资产的系统风险系数;(Rm-Rf)称为市场风险溢酬;β×(Rm-Rf)称为资产风险收益率。
【提示】(Rm-Rf)称为市场风险溢酬①它是附加在无风险收益率之上的,由于承担了市场平均风险所要求获得的补偿,它反映的是市场作为整体对风险的平均“容忍”程度,也就是市场整体对风险的厌恶程度。
②对风险越是厌恶和回避,要求的补偿就越高,市场风险溢酬的数值就越大。
③如果市场的抗风险能力强,则对风险的厌恶和回避就不是很强烈,要求的补偿就越低,所以市场风险溢酬的数值就越小。
【2017年·单选题】2016年,MULTEX公布的甲公司股票的β系数是1.15,市场上短期国库券利率为3%、标准普尔股票价格指数的收益率是10%,则2016年甲公司股票的必要收益率是()。
A.10.50%B.11.05%C.10.05%D.11.50%【答案】B【解析】本题考查的知识点是资本资产定价模型中的必要收益率的计算,必要收益率=3%+1.15×(10%-3%)=11.05%,所以本题选项B正确。
【2016年·单选题】下列关于市场风险溢酬的表述中,错误的是()。
A.市场风险溢酬反映了市场整体对风险的平均容忍度B.若市场抗风险能力强,则市场风险溢酬的数值就越大C.市场风险溢酬附加在无风险收益率之上D.若市场对风险越厌恶,则市场风险溢酬的数值就越大【答案】B【解析】若市场抗风险能力强,则对风险的厌恶和回避就不是很强烈,市场风险溢酬的数值就越小,所以选择选项B。
【2015年·多选题】下列关于资本资产定价模型的表述中,正确的有()。
资本资产定价模型CAPM和公式资本资产定价模型(Capital Asset Pricing Model,CAPM)是一种金融模型,用于估算资产价格与风险之间的关系。
CAPM模型假设投资者在资产配置的过程中决策基于风险和预期收益,通过计算其中一资产的预期收益率,可以确定该资产的合理价格。
下面将详细介绍CAPM模型的原理和公式。
CAPM模型的基本原理:CAPM模型是由美国学者Sharpe、Lintner和Mossin等人在1960年代提出的。
该模型基于以下几个假设:1.投资者的决策基于预期收益和风险。
投资者倾向于追求高收益且厌恶风险。
2.投资者会将资金分散投资在多个资产上,以降低整体风险。
3.资本市场的效率假设,即投资者可以自由买入或卖出任何资产,并且资产价格反映市场上所有信息的整体预期价值。
CAPM模型的公式:CAPM模型的核心公式是:E(Ri)=Rf+βi(E(Rm)-Rf)其中E(Ri):表示资产i的预期收益率。
Rf:表示无风险资产的收益率。
βi:表示资产i的β系数,用于衡量资产i相对于市场整体风险的敏感程度。
E(Rm):表示市场整体的预期收益率。
公式中的Rf是无风险利率,可以选择国债利率等稳定且无风险的投资收益。
资产i的β系数衡量资产i相对于市场整体风险的敏感程度,β系数越大表示资产i的风险越高,反之亦然。
市场整体的预期收益率E(Rm)可以通过历史数据或其他方法进行估算。
CAPM模型的应用:CAPM模型可以应用于多种情况,比如投资组合的优化、资产定价和投资决策等。
通过计算资产的预期收益率,我们可以判断该资产的价格是否被市场低估或高估。
如果资产的实际收益率高于其预期收益率,我们可以认为该资产被低估,反之亦然。
尽管CAPM模型在理论上存在一些假设和限制,但它仍然是衡量资产风险和收益之间关系的重要工具。
通过对CAPM模型的研究和应用,我们可以更准确地估算资产的风险和收益,从而做出更明智的投资决策。
资本资产定价模型资本资产定价模型(CAPM)这个词听起来很复杂,但其实它的核心就是帮助我们理解风险和收益之间的关系。
简单来说,CAPM告诉我们,投资者应该为承担风险而获得相应的回报。
这个模型就像是投资世界里的导航仪,指引着我们在波涛汹涌的市场中找到前进的方向。
一、CAPM的基本概念1.1 风险与收益的关系在投资的世界里,风险和收益永远是密不可分的。
风险越高,潜在的收益也越大。
这就像是走在一条高山上的小路,走得越高,风景越美,但同时也更危险。
CAPM用一个简单的公式来描述这个关系,风险溢价=市场收益率-无风险收益率。
这个公式的意思是,如果你想要获得超出无风险收益率的回报,就得承担一定的市场风险。
1.2 β系数的作用说到风险,β系数就不得不提了。
这个小家伙反映了个别资产相对于市场整体的波动性。
比如说,β值为1的股票,其波动性与市场平均水平一致;而β值大于1的股票,波动性更大,潜在收益也更高。
反之,β值小于1的股票波动性较小,风险和收益都比较低。
这就像是在海滩上,冲浪者总是追逐高浪,那些波涛汹涌的浪头既刺激又危险,但带来的快感也是无与伦比的。
二、CAPM的应用2.1 投资组合的构建使用CAPM,我们可以更好地构建投资组合。
比如,如果你手上有几只不同的股票,想要减少风险,你可以选择那些β值相对较低的股票。
这样一来,即使市场波动很大,你的投资组合也能保持相对的稳定。
这就像是打游戏时,选择不同的角色,每个角色都有自己的优势和劣势,合理搭配才能打出高分。
2.2 企业价值评估除了个人投资者,CAPM对于企业价值评估也非常重要。
企业在融资时,可以使用CAPM来计算所需的资本成本。
如果一个企业的资本成本低于市场平均水平,说明它的风险相对较低,投资者会更愿意投入资金。
就像是选择餐厅,大家都愿意去那些评价高、环境好的地方消费。
2.3 决策分析CAPM还可以帮助企业在进行投资决策时评估项目的可行性。
当企业考虑一个新项目时,可以通过CAPM计算出项目的预期收益。
资本资产定价模型CAPM资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是现代金融理论中的重要模型之一,用于评估投资组合的预期回报与风险之间的关系。
CAPM基于市场有效性假设,认为投资组合的回报与其系统性风险(即与市场风险有关的风险)成正比。
CAPM模型的数学表达式为:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri)代表投资组合i的预期回报,Rf代表无风险利率,βi代表投资组合i的系统性风险,E(Rm)代表市场的预期回报。
CAPM模型的核心思想是投资者对风险敏感度不同,不同风险的资产应该有不同的预期回报,而系统性风险是不可避免的风险,因为它与整个市场相关。
因此,投资者对系统性风险的敏感度可以通过βi来衡量。
CAPM模型的主要假设是投资者是风险厌恶的,他们希望得到最大的预期回报,同时承担最小的风险。
基于这个假设,投资者将会根据系统性风险来决策,即只承担与市场相关的风险,并且市场的平均回报被视为投资者的风险补偿。
CAPM模型的应用主要有两个方面:一是通过测量β值,可以评估一个投资组合相对于整个市场的风险敏感性;二是通过计算预期回报,可以衡量一个投资组合能否获得超额回报(即超过无风险利率的回报)。
然而,CAPM模型也有一些局限性。
首先,它基于一系列假设,包括市场有效性假设、风险厌恶假设等,而这些假设在现实中可能并不完全成立。
其次,CAPM模型只考虑了与整个市场相关的风险,而忽视了非系统性风险(即与特定投资组合相关的风险),这可能会导致对投资组合风险的不准确评估。
因此,当使用CAPM模型进行投资决策时,投资者应该认识到其局限性,并综合考虑其他因素,如公司基本面、行业前景等。
同时,市场中也存在其他多因子模型,可以更全面地评估投资组合的风险和回报关系。
CAPM模型是金融理论中,用于定价资本资产的一种重要工具。
该模型基于一系列假设,如市场有效性假设和投资者风险厌恶的假设,旨在帮助投资者评估投资组合的预期回报与风险之间的关系。
资本资产定价模型资本资产定价模型(Capital Asset Pricing Model, CAPM)是一种经济金融理论模型,它描述了投资者如何在市场上进行投资决策,并确定合理的资产定价。
CAPM的基本假设是市场是完全有效的,投资者都是理性的,并且希望在市场上获得最高的收益。
CAPM模型认为,投资者在做出投资决策时,会考虑两个方面的风险:系统性风险和非系统性风险。
系统性风险,也被称为β风险,是指与整个市场相关的风险。
它是指投资者无法通过分散投资来摆脱的风险。
β系数是衡量资产价格相对于市场整体波动的指标。
如果β系数大于1,表示该资产的价格波动比市场整体要大;如果β系数小于1,表示该资产的价格波动比市场整体要小。
非系统性风险是投资者可以通过分散投资来降低的风险。
它是指与特定资产相关的风险,例如公司破产、行业变化等。
在CAPM模型中,非系统性风险被视为可以通过投资组合的方式降低的。
CAPM模型的数学形式可以表示为:E(Ri) = Rf + βi(E(Rm) - Rf),其中E(Ri)表示资产i的预期收益率,Rf表示无风险利率,βi表示资产i的β系数,E(Rm)表示市场整体的预期收益率。
根据CAPM模型,投资者应该要求高β的资产具有较高的预期收益率,因为它们承担了更大的系统性风险。
相反,低β的资产应该具有较低的预期收益率。
CAPM模型在金融领域应用广泛。
它可以用于风险管理、资产组合管理和投资决策等方面。
然而,CAPM模型也存在一些局限性,例如它忽视了市场中的交易成本和税收等因素,以及投资者可能存在非理性行为。
总之,CAPM模型是一种有用的理论模型,可以帮助投资者确定合理的资产定价。
然而,在实际应用中,投资者需要考虑其他因素,并综合运用多种模型和方法来进行投资决策。
继续写相关内容:CAPM模型在资产定价中的应用提供了一种理论框架,用于确定投资组合中各种金融资产的预期收益率。
根据CAPM模型,投资者希望获取与市场整体风险相关的收益回报。
资本资产定价模型—搜狗百科当资本市场达到均衡时,风险的边际价格是不变的,任何改变市场组合的投资所带来的边际效果是相同的,即增加一个单位的风险所得到的补偿是相同的。
按照β的定义,代入均衡的资本市场条件下,得到资本资产定价模型:E(ri)=rf+βim(E(rm)-rf)资本资产定价模型的说明如下:1.单个证券的期望收益率由两个部分组成,无风险利率以及对所承担风险的补偿-风险溢价。
2.风险溢价的大小取决于β值的大小。
β值越高,表明单个证券的风险越高,所得到的补偿也就越高。
3. β度量的是单个证券的系统风险,非系统性风险没有风险补偿。
其中:均方差分析和资本资产定价模型 E(ri) 是资产i 的预期回报率rf是无风险利率βim是[[Beta系数]],即资产i 的系统性风险E(rm) 是市场m的预期市场回报率E(rm)-rf是市场风险溢价(market risk premium),即预期市场回报率与无风险回报率之差。
解释以资本形式(如股票)存在的资产的价格确定模型。
以股票市场为例。
假定投资者通过基金投资于整个股票市场,于是他的投资完全分散化(diversification)了,他将不承担任何可分散风险。
但是,由于经济与股票市场变化的一致性,投资者将承担不可分散风险。
于是投资者的预期回报高于无风险利率。
资本资产定价模型设股票市场的预期回报率为E(rm),无风险利率为 rf,那么,市场风险溢价就是E(rm) − rf,这是投资者由于承担了与股票市场相关的不可分散风险而预期得到的回报。
考虑某资产(比如某公司股票),设其预期回报率为Ri,由于市场的无风险利率为Rf,故该资产的风险溢价为E(ri)-rf。
资本资产定价模型描述了该资产的风险溢价与市场的风险溢价之间的关系E(ri)-rf =βim (E(rm) − rf) 式中,β系数是常数,称为资产β (asset beta)。
β系数表示了资产的回报率对市场变动的敏感程度(sensitivity),可以衡量该资产的不可分散风险。
八、资本资产定价模型〔一〕资本资产定价模型的根本表达式必要收益率=无风险收益率+风险收益率R=Rf+px(Rm—Rf)其中:〔Rm—Rf〕市场风险溢酬,反映市场整体对风险的平均容忍程度〔或厌恶程度〕。
【例9】当前国债的利率为4%,整个股票市场的平均收益率为9%,甲股票的卩系数为2,问:甲股票投资人要求的必要收益率是多少?【答案】甲股票投资人要求的必要收益率=4%+2x〔9%-4%〕=14%〔二〕资产组合的必要收益率:资产组合的必要收益率〔R〕=Rf+p p X(Rm—Rf),其中:p p是资产组合的卩系数。
【例10•计算分析题】*公司拟进展股票投资,方案购置A、B、C三种股票,并分别设计了甲乙两种投资组合。
三种股票的p系数分别为1.5、1.0和0.5,它们在甲种投资组合下的投资比重为50%、30%和20%;乙种投资组合的风险收益率为3.4%。
同期市场上所有股票的平均收益率为12%,无风险收益率为8%。
要求:〔1〕根据A、B、C股票的p系数,分别评价这三种股票相对于市场投资组合而言投资风险大小。
〔2〕按照资本资产定价模型计算A股票的必要收益率。
〔3〕计算甲种投资组合的p系数和风险收益率。
〔4〕计算乙种投资组合的p系数和必要收益率。
〔5〕比较甲乙两种投资组合的p系数,评价它们的投资风险大小。
【答案】〔1〕A股票的p>1,说明该股票所承担的系统风险大于市场投资组合的风险〔或A股票所承担的系统风险等于市场投资组合风险的1.5倍〕B股票的p=1,说明该股票所承担的系统风险与市场投资组合的风险一致〔或B股票所承担的系统风险等于市场投资组合的风险〕C股票的p<1,说明该股票所承担的系统风险小于市场投资组合的风险〔或C股票所承担的系统风险等于市场投资组合风险的0.5倍〕〔2〕A股票的必要收益率=8%+1.5X〔12%—8%〕=14%〔3〕甲种投资组合的p系数=1.5X50%+1.0X30%+0.5X20%=1.15甲种投资组合的风险收益率=1.15X〔12%—8%〕=4.6%乙种投资组合的必要收益率=8%+3.4%=11.4%或者:乙种投资组合的必要收益率=8%+0.85x〔12%—8%〕=11.4%〔5〕甲种投资组合的p系数〔1.15〕大于乙种投资组合的p系数〔0.85〕,说明甲投资组合的系统风险大于乙投资组合的系统风险。
资本资产定价模型资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是一种经济金融模型,用于估计股权资本的期望收益率。
该模型基于一组基本假设,包括市场的完全竞争、投资者的理性行为和资产风险的可度量性。
CAPM模型的核心公式为以下等式:E(Ri) = Rf + βi[E(Rm) - Rf]其中,E(Ri)表示股权资本的期望收益率,Rf表示无风险利率,βi表示资产i相对于市场的系统性风险,E(Rm)表示市场资本的期望回报率。
CAPM模型的基本理论观点是,投资者对风险的回报存在一种理性的期望,期望收益率与相应的系统性风险成正比。
该模型认为,系统性风险是投资者无法通过多样化投资来消除或减少的风险,因此投资者对系统性风险的回报要求被称为风险溢酬。
CAPM模型的主要优点是简单明了,易于使用和计算。
它提供了一个可行的方法来评估股权资本的风险和回报,帮助投资者做出决策。
此外,CAPM模型也为资本市场的效率提供了一个基准,即市场回报率应与投资风险成正比。
然而,CAPM模型也存在一些局限性。
首先,该模型假设投资者具有完全理性和相同的预期。
然而,在现实中,投资者的行为受到情绪和个人偏好的影响,预期收益率存在差异。
其次,CAPM模型未考虑非系统性风险(特定于某一特定资产)对回报的影响,它假设投资者可以通过多样化投资来消除这种风险。
然而,在现实中,非系统性风险可能会对个别资产的回报产生影响。
总体而言,CAPM模型为投资者提供了一个量化的方法来评估投资风险和回报,但它仍然是一种理论模型,只能作为投资决策的参考工具。
投资者在使用CAPM模型时应意识到其限制,并结合其他因素来做出更加准确的决策。
资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是一种经济金融模型,用于估计股权资本的期望收益率。
该模型基于一组基本假设,包括市场的完全竞争、投资者的理性行为和资产风险的可度量性。
资本资产定价模型(CAPM)(一)资本资产定价模型的基本原理R=Rf+β×(Rm-Rf)R表示某资产的必要收益率;β表示该资产的系统风险系数;Rf表示无风险收益率,通常以短期国债的利率来近似替代;Rm表示市场组合收益率,通常用股票价格指数收益率的平均值或所有股票的平均收益率来代替;(Rm-Rf)称为市场风险溢酬。
(二)证劵市场线(SML)把资本资产定价模型公式中的β看作自变量(横坐标),必要收益率R作为因变量(纵坐标),无风险利率(Rf)和市场风险溢酬(Rm-Rf)作为已知系数,那么这个关系式在数学上就是一个直线方程,叫做证劵市场线(SML),即下列关系式所代表的直线:R=Rf+β×(Rm-Rf)【例2-18】某年由MULTEX公布的美国通用汽车公司的β系数是1.170,短期国库券利率为4%,标准普尔股票价格指数的收益率是10%,那么,该年通用汽车股票的必要收益率应为:R=Rf+β×(Rm-Rf)=4%+1.17×(10%-4%)=11.02%。
(三)证券资产组合的必要收益率证券资产组合的必要收益率=Rf+βp×(Rm-Rf)此公式与前面的资本资产定价模型公式非常相似,它们的右侧唯一不同的是β系数的主体,前面的β系数是单项资产或个别公司的β系数;而这里的βp则是证券资产组合的β系数。
【例2-19】假设当前短期国债收益率为3%,股票价格指数平均收益率为12%,并利用【例2-17】中的有关信息和求出的β系数,计算A、B、C三只股票组合的必要收益率。
三只股票组合的必要收益率R=3%+1.09×(12%-3%)=12.81%。
(四)资本资产定价模型的有效性和局限性1.有效性(略)2.局限性:①某些资产或企业的β值难以估计,特别是对于一些缺乏历史数据的新兴行业;②由于经济环境的不确定性和不断变化,使得依据历史数据估算出来的β值对未来的指导作用必然打折扣;③资本资产定价模型是建立在一系列假设之上的,其中一些假设与实际情况有较大偏差,使得资本资产定价模型的有效性受到质疑。
资本资产定价模型目录CAPM模型的提出 (2)一. 资本资产定价模型公式 (5)二. 资本资产定价模型的假设 (6)三. 资本资产定价模型的优缺点 (7)四. Beta系数 (9)五. 资本资产定价模型之性质 (10)六. CAPM 的意义 (10)七. 资本资产订价模式模型之应用——证券定价 (12)八. 资本资产定价模型之限制 (13)CAPM模型的提出马科维茨(Markowitz,1952)的分散投资与效率组合投资理论第一次以严谨的数理工具为手段向人们展示了一个风险厌恶的投资者在众多风险资产中如何构建最优资产组合的方法。
应该说,这一理论带有很强的规范(normative)意味,告诉了投资者应该如何进行投资选择。
但问题是,在20世纪50年代,即便有了当时刚刚诞生的电脑的帮助,在实践中应用马科维茨的理论仍然是一项烦琐、令人生厌的高难度工作;或者说,与投资的现实世界脱节得过于严重,进而很难完全被投资者采用——美国普林斯顿大学的鲍莫尔(william Baumol)在其1966年一篇探讨马科维茨一托宾体系的论文中就谈到,按照马科维茨的理论,即使以较简化的模式出发,要从1500只证券中挑选出有效率的投资组合,当时每运行一次电脑需要耗费150~300美元,而如果要执行完整的马科维茨运算,所需的成本至少是前述金额的50倍;而且所有这些还必须有一个前提,就是分析师必须能够持续且精确地估计标的证券的预期报酬、风险及相关系数,否则整个运算过程将变得毫无意义。
正是由于这一问题的存在,从20世纪60年代初开始,以夏普(w.Sharpe,1964),林特纳(J.Lintner,1965)和莫辛(J.Mossin,1966)为代表的一些经济学家开始从实证的角度出发,探索证券投资的现实,即马科维茨的理论在现实中的应用能否得到简化?如果投资者都采用马科维茨资产组合理论选择最优资产组合,那么资产的均衡价格将如何在收益与风险的权衡中形成?或者说,在市场均衡状态下,资产的价格如何依风险而确定?这些学者的研究直接导致了资本资产定价模型(capital asset pricing model,CAPM)的产生。
作为基于风险资产期望收益均衡基础上的预测模型之一,CAPM阐述了在投资者都采用马科维茨的理论进行投资管理的条件下市场均衡状态的形成,把资产的预期收益与预期风险之间的理论关系用一个简单的线性关系表达出来了,即认为一个资产的预期收益率与衡量该资产风险的一个尺度β值之间存在正相关关系。
应该说,作为一种阐述风险资产均衡价格决定的理论,单一指数模型,或以之为基础的CAPM不仅大大简化了投资组合选择的运算过程,使马科维茨的投资组合选择理论朝现实世界的应用迈进了一大步,而且也使得证券理论从以往的定性分析转入定量分析,从规范性转入实证性,进而对证券投资的理论研究和实际操作,甚至整个金融理论与实践的发展都产生了巨大影响,成为现代金融学的理论基础。
当然,近几十年,作为资本市场均衡理论模型关注的焦点,CAPM的形式已经远远超越了夏普、林特纳和莫辛提出的传统形式,有了很大的发展,如套利定价模型、跨时资本资产定价模型、消费资本资产定价模型等,目前已经形成了一个较为系统的资本市场均衡理论体系。
一. 资本资产定价模型公式夏普发现单个股票或者股票组合的预期回报率(Expected Return)的公式如下:其中,r f(Risk free rate),是无风险回报率,纯粹的货币时间价值;βa是证券的Beta系数,是市场期望回报率 (Expected Market Return),是股票市场溢价 (Equity Market Premium). CAPM公式中的右边第一个是无风险收益率,比较典型的无风险回报率是10年期的美国政府债券。
如果股票投资者需要承受额外的风险,那么他将需要在无风险回报率的基础上多获得相应的溢价。
那么,股票市场溢价(equity market premium)就等于市场期望回报率减去无风险回报率。
证券风险溢价就是股票市场溢价和一个β系数的乘积。
二. 资本资产定价模型的假设CAPM是建立在马科威茨模型基础上的,马科威茨模型的假设自然包含在其中:1、投资者希望财富越多愈好,效用是财富的函数,财富又是投资收益率的函数,因此可以认为效用为收益率的函数。
2、投资者能事先知道投资收益率的概率分布为正态分布。
3、投资风险用投资收益率的方差或标准差标识。
4、影响投资决策的主要因素为期望收益率和风险两项。
5、投资者都遵守主宰原则(Dominance rule),即同一风险水平下,选择收益率较高的证券;同一收益率水平下,选择风险较低的证券。
CAPM的附加假设条件:6、可以在无风险折现率R的水平下无限制地借入或贷出资金。
7、所有投资者对证券收益率概率分布的看法一致,因此市场上的效率边界只有一条。
8、所有投资者具有相同的投资期限,而且只有一期。
9、所有的证券投资可以无限制的细分,在任何一个投资组合里可以含有非整数股份。
10、买卖证券时没有税负及交易成本。
11、所有投资者可以及时免费获得充分的市场信息。
12、不存在通货膨胀,且折现率不变。
13、投资者具有相同预期,即他们对预期收益率、标准差和证券之间的协方差具有相同的预期值。
上述假设表明:第一,投资者是理性的,而且严格按照马科威茨模型的规则进行多样化的投资,并将从有效边界的某处选择投资组合;第二,资本市场是完全有效的市场,没有任何磨擦阻碍投资。
三. 资本资产定价模型的优缺点优点CAPM最大的优点在于简单、明确。
它把任何一种风险证券的价格都划分为三个因素:无风险收益率、风险的价格和风险的计算单位,并把这三个因素有机结合在一起。
CAPM的另一优点在于它的实用性。
它使投资者可以根据绝对风险而不是总风险来对各种竞争报价的金融资产作出评价和选择。
这种方法已经被金融市场上的投资者广为采纳,用来解决投资决策中的一般性问题。
局限性当然,CAPM也不是尽善尽美的,它本身存在着一定的局限性。
表现在:首先,CAPM的假设前提是难以实现的。
比如,在本节开头,我们将CAPM的假设归纳为六个方面。
假设之一是市场处于完善的竞争状态。
但是,实际操作中完全竞争的市场是很难实现的,“做市”时有发生。
假设之二是投资者的投资期限相同且不考虑投资计划期之后的情况。
但是,市场上的投资者数目众多,他们的资产持有期间不可能完全相同,而且现在进行长期投资的投资者越来越多,所以假设二也就变得不那么现实了。
假设之三是投资者可以不受限制地以固定的无风险利率借贷,这一点也是很难办到的。
假设之四是市场无摩擦。
但实际上,市场存在交易成本、税收和信息不对称等等问题。
假设之五、六是理性人假设和一致预期假设。
显然,这两个假设也只是一种理想状态。
其次,CAPM中的β值难以确定。
某些证券由于缺乏历史数据,其β值不易估计。
此外,由于经济的不断发展变化,各种证券的β值也会产生相应的变化,因此,依靠历史数据估算出的β值对未来的指导作用也要打折扣。
总之,由于CAPM的上述局限性,金融市场学家仍在不断探求比CAPM更为准确的资本市场理论。
目前,已经出现了另外一些颇具特色的资本市场理论(如套利定价模型),但尚无一种理论可与CAPM相匹敌。
四. Beta系数按照CAPM的规定,Beta系数是用以度量一项资产系统风险的指针,是用来衡量一种证券或一个投资组合相对总体市场的波动性(volatility)的一种风险评估工具。
也就是说,如果一个股票的价格和市场的价格波动性是一致的,那么这个股票的Beta值就是1。
如果一个股票的Beta是1.5,就意味着当市场上升10%时,该股票价格则上升15%;而市场下降10%时,股票的价格亦会下降15%。
Beta是通过统计分析同一时期市场每天的收益情况以及单个股票每天的价格收益来计算出的。
1972年,经济学家费歇尔·布莱克 (Fischer Black)、迈伦·斯科尔斯(Myron Scholes)等在他们发表的论文《资本资产定价模型:实例研究》中,通过研究1931年到1965年纽约证券交易所股票价格的变动,证实了股票投资组合的收益率和它们的Beta间存在着线形关系。
当Beta值处于较高位置时,投资者便会因为股份的风险高,而会相应提升股票的预期回报率。
举个例子,如果一个股票的Beta值是2.0,无风险回报率是3%,市场回报率(Market Return)是7%,那么市场溢价(Equity Market Premium) 就是4%(7%-3%),股票风险溢价(Risk Premium)为8% (2X4%,用Beta值乘市场溢价),那么股票的预期回报率则为11%(8%+3%,即股票的风险溢价加上无风险回报率)。
以上的例子说明,一个风险投资者需要得到的溢价可以通过CAPM计算出来。
换句话说,我们可通过CAPM来知道当前股票的价格是否与其回报相吻合。
五. 资本资产定价模型之性质1.任何风险性资产的预期报酬率=无风险利率+资产风险溢酬。
2.资产风险溢酬=风险的价格×风险的数量3.风险的价格 = E(R m) −R f(SML的斜率)。
4.风险的数量 = β5.证券市场线(SML)的斜率等于市场风险贴水,当投资人的风险规避程度愈高,则SML的斜率愈大,证券的风险溢酬就愈大,证券的要求报酬率也愈高。
6.当证券的系统性风险(用β来衡量)相同,则两者之要求报酬率亦相同,证券之单一价格法则。
六. CAPM 的意义CAPM给出了一个非常简单的结论:只有一种原因会使投资者得到更高回报,那就是投资高风险的股票。
不容怀疑,这个模型在现代金融理论里占据着主导地位,但是这个模型真的实用么?在CAPM里,最难以计算的就是Beta的值。
当法玛(Eugene Fama)和肯尼斯·弗兰奇(Kenneth French) 研究1963年到1990年期间纽约证交所,美国证交所,以及纳斯达克市场(NASDAQ)里的股票回报时发现:在这长时期里Beta 值并不能充分解释股票的表现。
单个股票的Beta和回报率之间的线性关系在短时间内也不存在。
他们的发现似乎表明了CAPM并不能有效地运用于现实的股票市场内!事实上,有很多研究也表示对CAPM正确性的质疑,但是这个模型在投资界仍然被广泛的利用。
虽然用Beta预测单个股票的变动是困难,但是投资者仍然相信Beta值比较大的股票组合会比市场价格波动性大,不论市场价格是上升还是下降;而Beta值较小的股票组合的变化则会比市场的波动小。
对于投资者尤其是基金经理来说,这点是很重要的。
因为在市场价格下降的时候,他们可以投资于Beta值较低的股票。
而当市场上升的时候,他们则可投资Beta值大于1的股票上。