实验八 系统的复频域分析
- 格式:docx
- 大小:299.65 KB
- 文档页数:4
实验四:连续系统的复频域分析一、实验目的:1、掌握连续与离散时间系统的正反复频域与Z域变换2、掌握利用MATLAB进行零极点分析,进一步了解零极点对整个系统的影响3、掌握simulink环境下系统建模与仿真以及系统求解。
二、实验内容:1、已知某连续系统的系统函数为:(1)利用[r, p, k]=residue(num, den),求H(s)的极零点以及多项式系数;(2)画出系统的零极点分布图,判断系统得稳定性。
(3)求h(t),判断系统得稳定性。
2、已知某离散系统的系统函数为:,(1)利用[r, p, k]=residuez(num, den)求H(z)的极零点以及多项式系数;(2)画出零极点分布图,判断系统得稳定性。
(3)求单位函数响应用impz(b, a),判断系统是否稳定;3、已知线性时不变微分方程在Simulink环境下搭建起系统的仿真模型,并查看仿真结果曲线。
(1)写出传递函数H(s),绘出系统模拟框图;(2)当f(t)分别为,,的零状态响应;且当与课本P81的结果进行比较(3)方程的初值为, ,求全响应;4、已知某信号,n(t)为正态噪声干扰且服从N(0,0.22)分布,对此信号进行采样,采样间隔为0.001s,之后对此信号进行Botterworth低通滤波,从信号中过滤10HZ的输出信号,试对系统进行建模与仿真。
三、实验数据处理与结果分析:第一题:题1_1:>> num=[2,5];den=[1,1,3,2];[r,p,k]=residue(num,den) r = -0.5750 - 0.7979i-0.5750 + 0.7979i1.1499p =-0.1424 + 1.6661i-0.1424 - 1.6661i-0.7152k =[]P为极零点,r为多项式系数。
题1_2:r=[2,5];p=[1,1,3,2];zplane(r,p)legend('零点','极点');分析:系统函数的极点位于s左半平面,所以系统稳定。
控制系统的频域分析实验报告
摘要:
本实验旨在通过频域分析的方法来研究和评估控制系统的特性和性能。
在实验中,我们采用了频域分析的基本工具——Bode图和Nyquist图,通过对控制系统的幅频特性和相频特性进行分析,得出了系统的稳定性、干扰抑制能力和稳态性精度等方面的结论。
实验结果表明,频域分析是评估和优化控制系统的一种有效方法。
一、引言
频域分析是控制系统分析中常用的一种方法,通过对系统的频率响应进行研究,可以揭示系统的动态特性和性能,为控制系统的设计和优化提供指导。
在本实验中,我们将利用频域分析方法对一个具体的控制系统进行分析,通过实验验证频域分析的有效性。
二、实验装置和方法
实验所用控制系统包括一个控制对象(如电动机或水流系统)和一个控制器(如PID控制器)。
在实验中,我们将通过改变输入信号的频率来研究系统的频率响应。
实验步骤如下:
1. 连接实验装置,确保控制系统可正常工作。
2. 设计和设置适当的输入信号,包括常值信号、正弦信号和随
机信号等。
3. 改变输入信号的频率,记录系统的输出信号。
4. 利用实验记录的数据,绘制系统的幅频特性曲线和相频特性
曲线。
三、实验结果与讨论
根据实验记录的数据,我们绘制了控制系统的幅频特性曲线和
相频特性曲线,并对实验结果进行了分析和讨论。
1. 幅频特性分析
幅频特性曲线描述了控制系统对不同频率输入信号的增益特性。
在幅频特性曲线中,频率越高,输出信号的幅值越低,说明系统对
高频信号具有抑制作用。
实验八 连续系统复频域分析1实验目的(1) 掌握拉普拉斯变换的物理意义及应用。
(2) 掌握用MA TLAB 绘制拉普拉斯变换的曲面图。
(3) 理解拉普拉斯变换与傅里叶变换之间关系。
(4) 掌握系统函数的概念,掌握系统函数的零、极点分布与系统的稳定性、时域特性等之间的相互关系。
(5) 拉普拉斯逆变换的MA TLAB 计算。
2 实验原理及方法2.1连续时间L TI 系统的复频域描述拉普拉斯变换主要用于连续时间LTI 系统分析。
描述系统的另一种数学模型是建立在拉普拉斯变换基础上的“系统函数”—H(s):[][])()()()()(t x L s X t y L s Y s H 换系统激励信号的拉氏变换系统冲击响应的拉氏变→→= 8-1 系统函数H(s)的实质就是系统单位冲激响应h(t)的拉普拉斯变换。
因此,系统函数可以定义为:⎰∞∞--=dt e t h s H st )()( 8-2 系统函数H(s)的一些特点是和系统时域响应h(t)的特点相对应。
求H(s)的方法,除了按照定义之外,更常用的是根据描述系统的线性常系数微分方程,经拉氏变换后得到H(s)。
假设描述一个连续LTI 系统的线性常系数微分方程为:∑∑===M k k k k Nk k k k dt t x d b dt t y d a 00)()( 8-3 对式8-3两边做拉普拉斯变换,则有∑∑===M k k k N k k k s X s b s Y s a 00)()( 即:∑∑====N k kk M k k k s as b s X s Y s H 00)()()( 8-4 式8-4告诉我们,对于一个能够用线性常系数微分方程描述的连续时间L TI 系统,它的系统函数是一个关于复变量s 的有理多项式的分式,其分子和分母多项式系数与系统微分方程左右两端的系数是对应的。
根据这一特点,可以很容易根据微分方程写出系统函数表达式,或者根据系统函数表达式写出系统微分方程。
信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。
L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
L=laplace(F,t)用t 替换结果中的变量s 。
F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。
F=ilaplace(L,x)用x 替换结果中的变量t 。
2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。
对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。
实验八系统的复频域
分析
一、实验目的
1、掌握系统的复频域分析方法。
2、掌握测试系统的频率响应的方法。
二、预习内容
1、系统频响的方法。
(见第四章波特图的介绍)
三、实验原理
1. N 阶系统系统的传递函数
用微分方程描述的N 阶系统为:
根据零状态响应(起始状态为零),则对其进行拉氏变换有:
则系统传递函数可表达为:
用差分方程描述的N 阶系统为:
根据零状态响应(起始状态为零),则对其进行拉氏变换有:
则系统传递函数可表达为:
2.根据系统传递函数的零极点图分析系统
零点:传递函数分子多项式的根。
极点:传递函数分母多项式的根。
根据零极点图的不同分布分析系统。
3.涉及到的Matlab 函数
(1)freqz 函数:实验六中出现过,可用来求单位圆上的有理z 变换的值。
调用格式:同实验六
(2)zplane 函数:得到有理z 变换的零极点图。
调用格式:zplane(num,den)
其中,num和 den是按z −1 的升幂排列的、z 变换分子分母多项式系数的行向量。
(3)roots 函数:求多项式的根。
调用格式:r=roots(c), c 为多项式系数向量;r 为根向量。
四、实验内容
1.系统零极点的求解
(1)求解系统和的零极点,验
证下面程序的运行结果,根据系统零极点图分析系统性质。
b=[1,0,-1]; a=[1,2,3,2]; zr=roots(b); pr=roots(a);
plot(real(zr),imag(zr),'go',real(pr),imag(pr),'mx','markersize',12,'linewidth',2); grid; legend('零点','极点');
figure; zplane(b,a);
(2)参考上述程序,绘制系统和
的零极点图,并分析系统性质。
与用zplane 函数直接绘制系统零极点图(注:圆心的圆圈并非系统的零点)做比较。
2. 求解z 变换
(1)对上题中的系统H (z )在单位圆上求 z 变换。