实验八 连续系统的复频域分析
- 格式:docx
- 大小:223.41 KB
- 文档页数:12
实验4:连续系统的频域分析一、实验目的(1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。
(2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。
二、实验原理 1.周期信号的分解根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为()f t 的傅里叶级数。
在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。
例如一个方波信号可以分解为:11114111()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ⎛⎫=++++ ⎪⎝⎭合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布斯现象(Gibbs )。
2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式:()()lim()j tj n n F j f t edt f n e ωωττωττ∞∞---∞→=-∞==∑⎰当()f t 为时限信号时,上式中的n 取值可以认为是有限项N,则有:()(),0k Nj n n F k f n e k N ωτττ-==≤≤∑,其中2k k N πωτ=3.系统的频率特性连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为()()()Y H X ωωω=三、实验内容与方法 1.周期信号的分解【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。
MA TLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; endtitle(‘信号叠加前’); subplot(212) for n=1:2:9;sum=sum+4/pi*1/n*sin(2*pi*n*f0*t);endplot(t,sum,’k ’); title(‘信号叠加后’); 产生的波形如图所示:00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加前00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加后2.傅里叶变换和逆变换的实现求傅里叶变换,可以调用fourier 函数,调用格式为F=fourier(f,u,v),是关于u 的函数f 的傅里叶变换,返回函数F 是关于v 的函数。
因而拉普拉斯变换分析法常称为复频域分析法。
拉普拉斯变换分析法和傅里叶变换分析法都是建立在线性非时变系统的齐次性可迭加性基础上的。
只是信号分解的基本单元函数不同。
(1)拉普拉斯变换的数学定义和物理意义(2)拉普拉斯变换的性质及计算方法(3)连续时间系统的复频域分析法(4)系统函数的定义§5.3 拉普拉斯变换的收敛域由上面的讨论可知,连续时间信号f t 的拉普拉斯变换(以下简称拉氏变换)式F s 是否存在,取决于f t 乘以衰减因子以后是否绝对可积,即:受迫分量自然分量受迫分量自然分量例5-15 图5-18中,已知C1 1F, C2 2F, R 3Ω,初始条件uC1 0 EV,方向如图。
设开关在t 0时闭合,试求通过电容C1的响应电流iC1 t 。
图5-18 (a)时域电路模型 E 图5-18 (b)s域电路模型 3 s s 2 1 s 1 1 s I C uC1 0 C1 1F, C2 2F,R 3Ω初始条件uC1 0 EV s 1 1 s I C 3 s s 2 1 E sin ?ot 例:解: 9、时域卷积定理:若则 10、频域卷积定理:则若其中初值: f t |t 0+ f 0+ 若f t 有初值,且f t ? F s ,则 12、终值定理:终值: f t |t ? f ? 若f t 有终值,且f t ?F s ,则 11、初值定理:注意:终值存在的条件:F s 在s右半平面无极点,在j?轴上单实根极点[F S 1/S]。
当f t 含有冲激及其导数时,有解:§5.6 拉普拉斯变换的基本性质§5.6 拉普拉斯变换的基本性质§5.7 线性系统的拉普拉斯变换分析方法一、由方程求响应利用拉氏变换求线性系统的响应时,需要首先对描述系统输入输出关系的微分方程进行拉氏变换,得到一个s域的代数方程; 由于在变换中自动地引入了系统起始状态的作用,因而求出响应的象函数包含了零输入响应和零状态响应,再经过拉氏反变换可以很方便地得到零输入响应、零状态响应和全响应的时域解。
实验八 连续系统复频域分析1实验目的(1) 掌握拉普拉斯变换的物理意义及应用。
(2) 掌握用MA TLAB 绘制拉普拉斯变换的曲面图。
(3) 理解拉普拉斯变换与傅里叶变换之间关系。
(4) 掌握系统函数的概念,掌握系统函数的零、极点分布与系统的稳定性、时域特性等之间的相互关系。
(5) 拉普拉斯逆变换的MA TLAB 计算。
2 实验原理及方法2.1连续时间L TI 系统的复频域描述拉普拉斯变换主要用于连续时间LTI 系统分析。
描述系统的另一种数学模型是建立在拉普拉斯变换基础上的“系统函数”—H(s):[][])()()()()(t x L s X t y L s Y s H 换系统激励信号的拉氏变换系统冲击响应的拉氏变→→= 8-1 系统函数H(s)的实质就是系统单位冲激响应h(t)的拉普拉斯变换。
因此,系统函数可以定义为:⎰∞∞--=dt e t h s H st )()( 8-2 系统函数H(s)的一些特点是和系统时域响应h(t)的特点相对应。
求H(s)的方法,除了按照定义之外,更常用的是根据描述系统的线性常系数微分方程,经拉氏变换后得到H(s)。
假设描述一个连续LTI 系统的线性常系数微分方程为:∑∑===M k k k k Nk k k k dt t x d b dt t y d a 00)()( 8-3 对式8-3两边做拉普拉斯变换,则有∑∑===M k k k N k k k s X s b s Y s a 00)()( 即:∑∑====N k kk M k k k s as b s X s Y s H 00)()()( 8-4 式8-4告诉我们,对于一个能够用线性常系数微分方程描述的连续时间L TI 系统,它的系统函数是一个关于复变量s 的有理多项式的分式,其分子和分母多项式系数与系统微分方程左右两端的系数是对应的。
根据这一特点,可以很容易根据微分方程写出系统函数表达式,或者根据系统函数表达式写出系统微分方程。